Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2021, Vol. 15 Issue (3): 464-482   https://doi.org/10.1007/s11705-020-1983-0
  本期目录
The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap: a review
Hiep Thuan Lu1,2,3(), Wen Li1, Ehsan Soroodan Miandoab1, Shinji Kanehashi4, Guoping Hu1,5()
1. Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
2. Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC 3086, Australia
3. Australian Research Council (ARC) Research Hub for Medicinal Agriculture, La Trobe University, Bundoora, VIC 3086, Australia
4. Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
5. Fluid Science & Resources Division, Department of Chemical Engineering, the University of Western Australia, Crawley, WA 6009, Australia
 全文: PDF(1008 KB)   HTML
Abstract

The global energy market is in a transition towards low carbon fuel systems to ensure the sustainable development of our society and economy. This can be achieved by converting the surplus renewable energy into hydrogen gas. The injection of hydrogen (≤10% v/v) in the existing natural gas pipelines is demonstrated to have negligible effects on the pipelines and is a promising solution for hydrogen transportation and storage if the end-user purification technologies for hydrogen recovery from hydrogen enriched natural gas (HENG) are in place. In this review, promising membrane technologies for hydrogen separation is revisited and presented. Dense metallic membranes are highlighted with the ability of producing 99.9999999% (v/v) purity hydrogen product. However, high operating temperature (≥300 °C) incurs high energy penalty, thus, limits its application to hydrogen purification in the power to hydrogen roadmap. Polymeric membranes are a promising candidate for hydrogen separation with its commercial readiness. However, further investigation in the enhancement of H2/CH4 selectivity is crucial to improve the separation performance. The potential impacts of impurities in HENG on membrane performance are also discussed. The research and development outlook are presented, highlighting the essence of upscaling the membrane separation processes and the integration of membrane technology with pressure swing adsorption technology.

Key wordspower to hydrogen    membrane technology    hydrogen    energy
收稿日期: 2020-04-18      出版日期: 2021-05-10
Corresponding Author(s): Hiep Thuan Lu,Guoping Hu   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2021, 15(3): 464-482.
Hiep Thuan Lu, Wen Li, Ehsan Soroodan Miandoab, Shinji Kanehashi, Guoping Hu. The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap: a review. Front. Chem. Sci. Eng., 2021, 15(3): 464-482.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-020-1983-0
https://academic.hep.com.cn/fcse/CN/Y2021/V15/I3/464
Fig.1  
Fig.2  
Fig.3  
Item Molecular weight/(g?mol–1) Kinetic diameter/Å Critical temperature/K
H2 2 2.89 33.24
CH4 16 3.80 191.05
Tab.1  
Membrane material/support Preparation method a) Thickness of active layer/mm Experiment conditions Hydrogen permeance/(mol?m–2?s–1?Pa–1) Hydrogen selectivity b) Ref.
Pd/SS a) ELP 3.5 3.5 bar
500 °C–550 °C
1.7–9.4 × 10–7 [71]
Pd/PPO polymer a) ELP 5 1 bar
500 °C
1 × 10–6 [96]
Pd/α-Al2O3 MOCVD 2 1–2 bar
300 °C–500 °C
1 × 10–6 1000 [68]
Pd/α-Al2O3 ELP 0.9 1.1 bar
500 °C
4 × 10–6 9200 [69]
Pd/YSZ/SS ELP 27.7 4 bar
350 °C–450 °C
1.5 × 10–7 [78]
Pd-Ag alloy/α-Al2O3 ELP 11 4 bar
550 °C
1.3 × 10–6 1000–10000 [76]
Pd-Cu alloy ELP 7.2 2.2 bar
400 °C
1.4 × 10–6 40000 [77]
Tab.2  
Membrane Type Thickness of active layer/mm Temperature/°C Feed gas Sweep gas Hydrogen flux/(10–4 mol?m–2?s–1) Ref.
BaCe0.8Y0.2O3−α Perovskites 0.20 1050 25% H2/He N2 28.30 [91]
Sr(Ce0.6Zr0.4)0.85Y0.15O3−δ Perovskites 0.17 800 Pure H2 Ar 130 [92]
Sr0.97Ce0.9Yb0.05O3−δ Perovskites 1.16 804 10% H2/N2 Ar 3.30 [93]
Nd5.5W0.5Mo0.5O11.25−δ Tungstates 0.90 1000 50% H2/He Ar 22.30 [97]
La26.78W5.22O55.83 Tungstates 0.03 1000 10% H2/Ar
2.5% H2O
Ar 10.40 [98]
La0.5Ce0.5O2−δ (P)/Ni (E) a) Cermets 0.05 900 20% H2/Ar
3% H2O
Ar 6.83 [99]
Pd(Zr0.9Y0.1O2−δ) (P)/Pd (E) Cermets 0.02 900 Pure H2 N2 1410 [100]
BaCe0.95Tb0.05O3−δ (P)/Ni (E) Cermets 0.09 850 50% H2/N2 He 67.90 [101]
BaCe0.65Zr0.2Y0.15O3−δ (P)/Ce0.85Gd0.15O2−δ (E) Cercers 0.65 755 50% H2/He Ar 21.00 [102]
Tab.3  
Zeolite type/support Synthesis method Thickness of active layer/μm Experiment conditions Hydrogen permeance
/(mol?m–2?s–1?Pa–1)
Hydrogen selectivity a) Ref.
MFI/ceramic Hydrothermal 3 1–4 bar
25 °C–500 °C
5 × 10–8 4.9–7.9 [126]
LTA/α-Al2O3 Seeding free hydrothermal 3.5 1 bar
100 °C
2 × 10–7 5–6.5 [106]
FAU/α-Al2O3 Seeding free hydrothermal 3 1 bar
100 °C
8 × 10–7 3.5–5.6 [107]
CHA/α-Al2O3 Hydrothermal 3–4 2.7 bar
27 °C–200 °C
2.4 × 10–8 25–10 [127]
La2NiO4 MFI/α-Al2O3 Hydrothermal 60 400 °C–700 °C 5.5 × 10–7 9.2 [128]
MFI/α-Al2O3 Hydrothermal 2–3 2 bar
500 °C
5.3 × 10–7 4 [108]
Hydrothermal with CCD b) 2–3 2 bar
500 °C
3.9 × 10–7 180
Tab.4  
Silica type/support Synthesis method Thickness of active layer/nm Experiment conditions Hydrogen permeance
/(mol?m–2?s–1?Pa–1)
Hydrogen selectivity a) Ref.
SiO2/ceramic Sol-gel 20–30 1 bar
100 °C–600 °C
10–7 2800 [129]
CoSiO2/ZrO2SiO2/α-Al2O3 Sol-gel 20 1–3 bar
200 °C–500 °C
1.8 × 10–7 480–730 [111]
ZrO2Y2OSiO2/ceramic Sol-gel 1–1.5 bar
150 °C
1 × 10–8 4 [112]
MTES-SiO2/α-Al2O3b) Sol-gel 1–6 bar
50 °C–200 °C
3.4 × 10–9 24–46 [130]
SiO2/γ-Al2O3/α-Al2O3 Sol-gel 20–30 2 bar
600 °C
5 × 10–7 5900 [131]
SiO2 modified/Vycor glass (called Nanosil) High temperature atmosphere CVD c) 1.2 bar
200 °C–700 °C
1.8 × 10–8 23000–27000 [110]
Tab.5  
Precursor Synthesis method Thickness of active layer/μm Experiment conditions Hydrogen permeance
/(mol?m–2?s–1?Pa–1)
Hydrogen selectivity Ref.
6FDA/BPDA-TMPDAa) Pyrolysis 30–35 1–8.3 bar
25 °C
3.4–7.5 × 10–8 400–500 b) [132]
Kapton polyimide Pyrolysis 0.3–0.5 Up to 6 bar
30 °C–250 °C
3.1 × 10–10 150 c) [133]
Phenol-formaldehyde novolac resin Pyrolysis 45 2 bar
25 °C
1.7 × 10–9–1.2 × 10–7 5–558 b) [134]
Polyimide Pyrolysis 10.8 bar
30 °C–120 °C
3.4 × 10–7–6.0 × 10–8 132–631b) [135]
Polyimide Pyrolysis 10 bar
80 oC
1.4 × 10–7 540 b) [136]
Polypyrrolone Pyrolysis 40–50 1 bar
35 oC
1.3–4.9 ×10–8 270–1200 b) [137]
Tab.6  
MOF type/support Synthesis method Thickness of active layer/mm Experiment conditions Hydrogen permeance
/(mol?m–2?s–1?Pa–1)
Hydrogen selectivity a) Ref.
Cu3(BTC)2/Cu net Hydrothermal 60 1 bar
25 °C
10–6 5.9 [138]
ZIF-90/a-Al2O3 Hydrothermal 20 1 bar
25 °C–200 °C
1.4 × 10–7–2.5 × 10–7 7–16 [122]
ZIF-8/Titania Hydrothermal and microwave heating 30–50 1.1–2 bar
25 °C
6 × 10–8 11.2 [139]
ZIF-8/ZnAl-NO3 LDHs/g-Al2O3 Hydrothermal (in-situ growth) 1.3 1 bar
25 °C
1.4 × 10–7 12.5 [119]
ZIF-95/a-Al2O3 Hydrothermal (in-situ growth) 30 1 bar
325 °C
1.9 × 10–6 11.0 [140]
Ni-MOF-74 Hydrothermal (in-situ growth) 10–25 1 bar
25 °C
10–6 2.9 [141]
NH2-MIL-53(Al)/Glass frit Colloidal assembly of MOF seeds 15 1 bar
15 °C–80 °C
1.5 × 10–6 20.7 [123]
Tab.7  
Fig.4  
Fig.5  
Item Dense metallic membranes Ceramic mixed protonic-electronic conducting membranes Inorganic microporous membranes a) MOF membranes Polymeric membranes
Zeolite Silica Carbon based
Temperature/°C 300–600 400–1000 25–700 50–700 25–900 15–325 25–200
H2/CH4 selectivity 1000–∞ b) c) 4–25 d) Up to 5900 e) Up to 1200 3–21 Up to 730
Hydrogen permeance/(mol?m–2?s–1?Pa–1) 2 × 10–7–4 × 10–6 10–8–10–9 2 × 10–8–8 × 10–7 3 × 10–9–5 × 10–7 2 × 10–9–3 × 10–7 6 × 10–8–2 × 10–6 ~ 10–9–3 × 10–7
Development stage Small commercial scale Lab-scale membrane modules Lab-scale membrane modules Lab-scale membrane modules Lab-scale membrane modules Lab-scale membrane modules Large commercial scale
Tab.8  
Fig.6  
Fig.7  
1 BP. BP Energy Outlook: 2019 edition. 2019
2 International Energy Agency. World Energy Outlook 2013. Flagship report. 2013
3 International Energy Agency. Oil 2020. Fuel Report. 2020
4 United Nations. Paris Agreement—United Nations Framework Convention on Climate Change. 2015
5 N Pour, P A Webley, P J Cook. Opportunities for application of BECCS in the Australian power sector. Applied Energy, 2018, 224: 615–635
https://doi.org/10.1016/j.apenergy.2018.04.117
6 J Kemper. Biomass and carbon dioxide capture and storage: a review. International Journal of Greenhouse Gas Control, 2015, 40: 401–430
https://doi.org/10.1016/j.ijggc.2015.06.012
7 E Rubin, L Meyer, H D Coninck, J C Abanades, M Akai, S Benson, K Caldeira, P Cook, O Davidson, R Doctor, et al. IPCC special report on carbon dioxide capture and storage. Carbon Dioxide Capture and Storage. 2005
8 Global CCS Institute. The Global Status of CCS. 2017
9 J Andrews, B Shabani. Re-envisioning the role of hydrogen in a sustainable energy economy. International Journal of Hydrogen Energy, 2012, 37(2): 1184–1203
https://doi.org/10.1016/j.ijhydene.2011.09.137
10 K. Mohn The gravity of status quo: a review of IEA’s world energy outlook. Economics of Energy & Environmental Policy, 2020, 9(1), DOI: 10.5547/2160-5890.8.2.kmoh
11 International Energy Agency. Market Report Series: Renewables 2018: Analysis and Forecasts to 2023. 2018
12 A Pecher, J P Kofoed. Handbook of Ocean Wave Energy. London: Springer Nature, 2017, 20
13 International Energy Agency. Global Energy & CO2 Status Report 2019. Flagship Report. 2019
14 M Robinius, T Raje, S Nykamp, T Rott, M Müller, T Grube, B Katzenbach, S Küppers, D Stolten. Power-to-gas: electrolyzers as an alternative to network expansion—an example from a distribution system operator. Applied Energy, 2018, 210: 182–197
https://doi.org/10.1016/j.apenergy.2017.10.117
15 A Maroufmashat, M Fowler. Transition of future energy system infrastructure through power-to-gas pathways. Energies, 2017, 10(8): 1089
https://doi.org/10.3390/en10081089
16 W Kreuter, H Hofmann. Electrolysis: the important energy transformer in a world of sustainable energy. International Journal of Hydrogen Energy, 1998, 23(8): 661–666
https://doi.org/10.1016/S0360-3199(97)00109-2
17 A Ursua, L M Gandia, P Sanchis. Hydrogen production from water electrolysis: current status and future trends. Proceedings of the IEEE, 2011, 100(2): 410–426
https://doi.org/10.1109/JPROC.2011.2156750
18 M Laguna Bercero. Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. Journal of Power Sources, 2012, 203: 4–16
https://doi.org/10.1016/j.jpowsour.2011.12.019
19 M Götz, J Lefebvre, F Mörs, A McDaniel Koch, F Graf, S Bajohr, R Reimert, T Kolb. Renewable power-to-gas: a technological and economic review. Renewable Energy, 2016, 85: 1371–1390
https://doi.org/10.1016/j.renene.2015.07.066
20 S M M Ehteshami, S H Chan. The role of hydrogen and fuel cells to store renewable energy in the future energy network—potentials and challenges. Energy Policy, 2014, 73: 103–109
https://doi.org/10.1016/j.enpol.2014.04.046
21 International Energy Agency. The Future of Hydrogen. Technology Report. 2019
22 S Sato, K Nagai. Polymer membranes with hydrogen-selective and hydrogen-rejective properties. Membrane, 2005, 30(1): 20–28
https://doi.org/10.5360/membrane.30.20
23 W Liemberger, M Groß, M Miltner, M Harasek. Experimental analysis of membrane and pressure swing adsorption (PSA) for the hydrogen separation from natural gas. Journal of Cleaner Production, 2017, 167: 896–907
https://doi.org/10.1016/j.jclepro.2017.08.012
24 G Gahleitner. Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications. International Journal of Hydrogen Energy, 2013, 38(5): 2039–2061
https://doi.org/10.1016/j.ijhydene.2012.12.010
25 T Sinigaglia, F Lewiski, M E Santos Martins, J C Mairesse Siluk. Production, storage, fuel stations of hydrogen and its utilization in automotive applications: a review. International Journal of Hydrogen Energy, 2017, 42(39): 24597–24611
https://doi.org/10.1016/j.ijhydene.2017.08.063
26 M E Demir, I Dincer. Cost assessment and evaluation of various hydrogen delivery scenarios. International Journal of Hydrogen Energy, 2018, 43(22): 10420–10430
https://doi.org/10.1016/j.ijhydene.2017.08.002
27 F H Saadi, N S Lewis, E W McFarland. Relative costs of transporting electrical and chemical energy. Energy & Environmental Science, 2018, 11(3): 469–475
https://doi.org/10.1039/C7EE01987D
28 B C C van der Zwaan, K Schoots, R Rivera Tinoco, G P J Verbong. The cost of pipelining climate change mitigation: an overview of the economics of CH4, CO2 and H2 transportation. Applied Energy, 2011, 88(11): 3821–3831
https://doi.org/10.1016/j.apenergy.2011.05.019
29 P E Dodds, I Staffell, A D Hawkes, F Li, P Grünewald, W McDowall, P Ekins. Hydrogen and fuel cell technologies for heating: a review. International Journal of Hydrogen Energy, 2015, 40(5): 2065–2083
https://doi.org/10.1016/j.ijhydene.2014.11.059
30 M W Melaina, O Antonia, M Penev. Blending Hydrogen into Natural Gas Pipeline Networks. A Review of Key Issues. Technical Report NREL/TP-5600-51995. 2013
31 SNAM. Global Gas Report 2018. Washington D.C.: International Gas Union, 2018
32 C Yang, J Ogden. Determining the lowest-cost hydrogen delivery mode. International Journal of Hydrogen Energy, 2007, 32(2): 268–286
https://doi.org/10.1016/j.ijhydene.2006.05.009
33 E Schmura, M Klingenberg, M Paster, J Gruber. Existing Natural Gas Pipeline Materials and Associated Operational Characteristics. DOE Hydrogen Program-FY 2005 Progress Report. 2005
34 K Al Rafea. Utilizing ‘power-to-gas’ technology for storing energy and to optimize the synergy between environmental obligations and economical requirements. Dissertation for the Doctoral Degree. Ontario: University of Waterloo, 2017, 13
35 K Altfeld, D Pinchbeck. Admissible hydrogen concentrations in natural gas systems. Gas Energy, 2013, 2103(03): 1–2
36 M Penev, M Melaina, B Bush, M Muratori, E Warner, Y Chen. Low-Carbon Natural Gas for Transportation: Well-to-Wheels Emissions and Potential Market Assessment in California. Technical Report NREL/TP-6A50-66538. 2016
37 Jemena Gas Networks (NSW) Limited. Western Sydney Green Gas Project-Environmental Impact Statement. 2019
38 G A Karim, I Wierzba, Y Al Alousi. Methane-hydrogen mixtures as fuels. International Journal of Hydrogen Energy, 1996, 21(7): 625–631
https://doi.org/10.1016/0360-3199(95)00134-4
39 D M Todd. Gas turbine improvements enhance IGCC viability. In: Proceedings of the 2000 Gasification Technologies Conference. Schenectady, NY: GE Power Systems, 2000, 8–11
40 S Adhikari, S Fernando. Hydrogen membrane separation techniques. Industrial & Engineering Chemistry Research, 2006, 45(3): 875–881
https://doi.org/10.1021/ie050644l
41 H T Lu. The impact of impurities on the performance of cellulose triacetate membranes for CO2 separation. Dissertation for the Doctoral Degree. Parkville: The University of Melbourne, 2018, 3–47
42 R W Baker. Future directions of membrane gas separation technology. Industrial & Engineering Chemistry Research, 2002, 41(6): 1393–1411
https://doi.org/10.1021/ie0108088
43 K Ghosal, B D Freeman. Gas separation using polymer membranes: an overview. Polymers for Advanced Technologies, 1994, 5(11): 673–697
https://doi.org/10.1002/pat.1994.220051102
44 T C Merkel, H Lin, X Wei, R Baker. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. Journal of Membrane Science, 2010, 359(1-2): 126–139
https://doi.org/10.1016/j.memsci.2009.10.041
45 S E Kentish, C A Scholes, G W Stevens. Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Patents on Chemical Engineering, 2008, 1(1): 52–66
https://doi.org/10.2174/2211334710801010052
46 G Chen, F Buck, I Kistner, M Widenmeyer, T Schiestel, A Schulz, M Walker, A Weidenkaff. A novel plasma-assisted hollow fiber membrane concept for efficiently separating oxygen from CO in a CO2 plasma. Chemical Engineering Journal, 2020, 392: 123699
https://doi.org/10.1016/j.cej.2019.123699
47 A Bogaerts, E C Neyts. Plasma technology: an emerging technology for energy storage. ACS Energy Letters, 2018, 3(4): 1013–1027
https://doi.org/10.1021/acsenergylett.8b00184
48 L Barelli, G Bidini, F Gallorini, S Servili. Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: a review. Energy, 2008, 33(4): 554–570
https://doi.org/10.1016/j.energy.2007.10.018
49 P Li, Z Wang, Z Qiao, Y Liu, X Cao, W Li, J Wang, S Wang. Recent developments in membranes for efficient hydrogen purification. Journal of Membrane Science, 2015, 495: 130–168
https://doi.org/10.1016/j.memsci.2015.08.010
50 B Zornoza, C Casado, A Navajas. Chapter 11 Advances in Hydrogen Separation and Purification with Membrane Technology. Amsterdam: Elsevier, 2013, 245–268
51 N W Ockwig, T M Nenoff. Membranes for hydrogen separation. Chemical Reviews, 2007, 107(10): 4078–4110
https://doi.org/10.1021/cr0501792
52 W J Koros, G Fleming. Membrane-based gas separation. Journal of Membrane Science, 1993, 83(1): 1–80
https://doi.org/10.1016/0376-7388(93)80013-N
53 G Hu, K Jiang, R Wang, G Li. Chapter 7. Technological assessment of CO2 capture and EOR/EGR/ECBM-based storage. In Cheung F M, Hong Y, eds. Green Finance, Sustainable Development, and the Belt and Road Initiative. London: Taylor & Francis, 2021, ISBN: 9780367898809
54 R Uhlhorn, K Keizer, A Burggraaf. Gas and surface diffusion in modified g-alumina systems. Journal of Membrane Science, 1989, 46(2-3): 225–241
https://doi.org/10.1016/S0376-7388(00)80337-3
55 D Paul. 1.04-Fundamentals of Transport Phenomena in Polymer Membranes. In Drioli E, Giorno L, eds. Comprehensive Membrane Science and Engineering. Oxford: Elsevier, 2010, 75–90
56 M S Boutilier, C Sun, S C O’Hern, H Au, N G Hadjiconstantinou, R Karnik. Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation. ACS Nano, 2014, 8(1): 841–849
https://doi.org/10.1021/nn405537u
57 H Lin, B D Freeman. Gas solubility, diffusivity and permeability in poly(ethylene oxide). Journal of Membrane Science, 2004, 239(1): 105–117
https://doi.org/10.1016/j.memsci.2003.08.031
58 F Roa, J D Way. Influence of alloy composition and membrane fabrication on the pressure dependence of the hydrogen flux of palladiumcopper membranes. Industrial & Engineering Chemistry Research, 2003, 42(23): 5827–5835
https://doi.org/10.1021/ie030426x
59 R W Baker, K Lokhandwala. Natural gas processing with membranes: an overview. Industrial & Engineering Chemistry Research, 2008, 47(7): 2109–2121
https://doi.org/10.1021/ie071083w
60 G Lu, J D Da Costa, M Duke, S Giessler, R Socolow, R Williams, T Kreutz. Inorganic membranes for hydrogen production and purification: a critical review and perspective. Journal of Colloid and Interface Science, 2007, 314(2): 589–603
https://doi.org/10.1016/j.jcis.2007.05.067
61 S Yun, S Ted Oyama. Correlations in palladium membranes for hydrogen separation: a review. Journal of Membrane Science, 2011, 375(1-2): 28–45
https://doi.org/10.1016/j.memsci.2011.03.057
62 P Kamakoti, B D Morreale, M V Ciocco, B H Howard, R P Killmeyer, A V Cugini, D S Sholl. Prediction of hydrogen flux through sulfur-tolerant binary alloy membranes. Science, 2005, 307(5709): 569–573
https://doi.org/10.1126/science.1107041
63 C P O’Brien, B H Howard, J B Miller, B D Morreale, A J Gellman. Inhibition of hydrogen transport through Pd and Pd47Cu53 membranes by H2S at 350 °C. Journal of Membrane Science, 2010, 349(1-2): 380–384
https://doi.org/10.1016/j.memsci.2009.11.070
64 K Kuraoka, H Zhao, T Yazawa. Pore-filled palladium-glass composite membranes for hydrogen separation by novel electroless plating technique. Journal of Materials Science, 2004, 39(5): 1879–1881
https://doi.org/10.1023/B:JMSC.0000016209.53649.da
65 N Itoh, T Akiha, T Sato. Preparation of thin palladium composite membrane tube by a CVD technique and its hydrogen permselectivity. Catalysis Today, 2005, 104(2-4): 231–237
https://doi.org/10.1016/j.cattod.2005.03.048
66 A J Burggraaf. Important Characteristics of Inorganic Membranes. Amsterdam: Elsevier, 1996, 21–34
67 J P Collins, J D Way. Hydrogen selective membrane. US Patent, 5652020, 1997-07-29
68 S Yan, H Maeda, K Kusakabe, S Morooka. Thin palladium membrane formed in support pores by metal-organic chemical vapor deposition method and application to hydrogen separation. Industrial & Engineering Chemistry Research, 1994, 33(3): 616–622
https://doi.org/10.1021/ie00027a019
69 S Yun, J H Ko, S T Oyama. Ultrathin palladium membranes prepared by a novel electric field assisted activation. Journal of Membrane Science, 2011, 369(1-2): 482–489
https://doi.org/10.1016/j.memsci.2010.12.015
70 J Tong, R Shirai, Y Kashima, Y Matsumura. Preparation of a pinhole-free PdAg membrane on a porous metal support for pure hydrogen separation. Journal of Membrane Science, 2005, 260(1-2): 84–89
https://doi.org/10.1016/j.memsci.2005.03.039
71 Z Shi, S Wu, J A Szpunar, M Roshd. An observation of palladium membrane formation on a porous stainless steel substrate by electroless deposition. Journal of Membrane Science, 2006, 280(1-2): 705–711
https://doi.org/10.1016/j.memsci.2006.02.026
72 J Okazaki, D A P Tanaka, M A L Tanco, Y Wakui, F Mizukami, T M Suzuki. Hydrogen permeability study of the thin PdAg alloy membranes in the temperature range across the αβ phase transition. Journal of Membrane Science, 2006, 282(1-2): 370–374
https://doi.org/10.1016/j.memsci.2006.05.042
73 J R Harris. Coated diffusion membrane and its use. US Patent, 4536196, 1985-08-20
74 T A Peters, T Kaleta, M Stange, R Bredesen. Development of thin binary and ternary Pd-based alloy membranes for use in hydrogen production. Journal of Membrane Science, 2011, 383(1-2): 124–134
https://doi.org/10.1016/j.memsci.2011.08.050
75 T A Peters, T Kaleta, M Stange, R Bredesen. Hydrogen transport through a selection of thin Pd-alloy membranes: membrane stability, H2S inhibition, and flux recovery in hydrogen and simulated WGS mixtures. Catalysis Today, 2012, 193(1): 8–19
https://doi.org/10.1016/j.cattod.2011.12.028
76 B K R Nair, J Choi, M P Harold. Electroless plating and permeation features of Pd and Pd/Ag hollow fiber composite membranes. Journal of Membrane Science, 2007, 288(1-2): 67–84
https://doi.org/10.1016/j.memsci.2006.11.006
77 S K Gade, P M Thoen, J D Way. Unsupported palladium alloy foil membranes fabricated by electroless plating. Journal of Membrane Science, 2008, 316(1-2): 112–118
https://doi.org/10.1016/j.memsci.2007.08.022
78 R Sanz, J A Calles, D Alique, L Furones, S Ordóñez, P Marín, P Corengia, E Fernandez. Preparation, testing and modelling of a hydrogen selective Pd/YSZ/SS composite membrane. International Journal of Hydrogen Energy, 2011, 36(24): 15783–15793
https://doi.org/10.1016/j.ijhydene.2011.08.102
79 F Roa, M J Block, J D Way. The influence of alloy composition on the H2 flux of composite Pd-Cu membranes. Desalination, 2002, 147(1-3): 411–416
https://doi.org/10.1016/S0011-9164(02)00636-7
80 B N Lukyanov, D V Andreev, V N Parmon. Catalytic reactors with hydrogen membrane separation. Chemical Engineering Journal, 2009, 154(1-3): 258–266
https://doi.org/10.1016/j.cej.2009.04.023
81 S Emerson, N Magdefrau, Y She, C Thibaud Erkey. Advanced Palladium Membrane Scale-up for Hydrogen Separation. Technical Report DEFE0004967. 2012
82 M De Falco, G Iaquaniello, E Palo, B Cucchiella, V Palma, P Ciambelli. Palladium-based membranes for hydrogen separation: preparation, economic analysis and coupling with a water gas shift reactor. In: Handbook of Membrane Reactors. Cambridge: Woodhead Publishing, 2013, 456–486
83 W A Rosensteel, S Ricote, N P Sullivan. Hydrogen permeation through dense BaCe0.8Y0.2O3dCe0.8Y0.2O2d composite-ceramic hydrogen separation membranes. International Journal of Hydrogen Energy, 2016, 41(4): 2598–2606
https://doi.org/10.1016/j.ijhydene.2015.11.053
84 S Elangovan, B Nair, T Small, B Heck, I Bay, M Timper, J Hartvigsen, M Wilson. Ceramic membrane devices for ultra-high purity hydrogen production: mixed conducting membrane development. New York: Springer, 2009, 67–81
85 J Phair, S Badwal. Review of proton conductors for hydrogen separation. Ionics, 2006, 12(2): 103–115
https://doi.org/10.1007/s11581-006-0016-4
86 Z Tao, L Yan, J Qiao, B Wang, L Zhang, J Zhang. A review of advanced proton-conducting materials for hydrogen separation. Progress in Materials Science, 2015, 74: 1–50
https://doi.org/10.1016/j.pmatsci.2015.04.002
87 M L Fontaine, T Norby, Y Larring, T Grande, R Bredesen. Oxygen and hydrogen separation membranes based on dense ceramic conductors. Membrane Science and Technology, 2008, 13: 401–458
https://doi.org/10.1016/S0927-5193(07)13010-2
88 S P Cardoso, I S Azenha, Z Lin, I Portugal, A E Rodrigues, C M Silva. Inorganic membranes for hydrogen separation. Separation and Purification Reviews, 2018, 47(3): 229–266
https://doi.org/10.1080/15422119.2017.1383917
89 S T B Lundin, N S Patki, T F Fuerst, S Ricote, C A Wolden, J D Way. Dense Inorganic Membranes for Hydrogen Separation. New Jersey: World Scientific Publishing, 2017
90 W Meulenberg, M Ivanova, J Serra, S Roitsch. Proton-Conducting Ceramic Membranes for Solid Oxide Fuel Cells and Hydrogen (H2) Processing. Amsterdam: Elsevier, 2011, 541–567
91 X Tan, X Tan, N Yang, B Meng, K Zhang, S Liu. High performance BaCe0.8Y0.2O3–α (BCY) hollow fibre membranes for hydrogen permeation. Ceramics International, 2014, 40(2): 3131–3138
https://doi.org/10.1016/j.ceramint.2013.09.132
92 I M Hung, Y J Chiang, J S C Jang, J C Lin, S W Lee, J K Chang, C S Hsi. The proton conduction and hydrogen permeation characteristic of Sr(Ce0.6Zr0.4)0.85Y0.15O3–d ceramic separation membrane. Journal of the European Ceramic Society, 2015, 35(1): 163–170
https://doi.org/10.1016/j.jeurceramsoc.2014.08.019
93 G C Mather, D Poulidi, A Thursfield, M J Pascual, J R Jurado, I S Metcalfe. Hydrogen-permeation characteristics of a SrCeO3-based ceramic separation membrane: thermal, ageing and surface-modification effects. Solid State Ionics, 2010, 181(3-4): 230–235
https://doi.org/10.1016/j.ssi.2009.03.014
94 T Omata, S Otsuka Yao Matsuo. Infrared absorption spectra of high temperature proton conducting Ca2+-doped La2Zr2O7. Journal of the Electrochemical Society, 2001, 148(12): 475–482
https://doi.org/10.1149/1.1418378
95 S Hamakawa, L Li, A Li, E Iglesia. Synthesis and hydrogen permeation properties of membranes based on dense SrCe0.95Yb0.05O3–α thin films. Solid State Ionics, 2002, 148(1-2): 71–81
https://doi.org/10.1016/S0167-2738(02)00047-4
96 J Tong, L Su, K Haraya, H Suda. Thin and defect-free Pd-based composite membrane without any interlayer and substrate penetration by a combined organic and inorganic process. Chemical Communications, 2006, (10): 1142–1144
https://doi.org/10.1039/b513613j
97 S Escolástico, S Somacescu, J M Serra. Tailoring mixed ionicelectronic conduction in H2 permeable membranes based on the system Nd5.5W1−xMoxO11.25−d. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(2): 719–731
https://doi.org/10.1039/C4TA03699A
98 Y Chen, S Cheng, L Chen, Y Wei, P J Ashman, H Wang. Niobium and molybdenum co-doped La5.5WO11.25−d membrane with improved hydrogen permeability. Journal of Membrane Science, 2016, 510: 155–163
https://doi.org/10.1016/j.memsci.2016.02.065
99 Z Zhu, W Sun, Z Wang, J Cao, Y Dong, W Liu. A high stability NiLa0.5Ce0.5O2−d asymmetrical metalceramic membrane for hydrogen separation and generation. Journal of Power Sources, 2015, 281: 417–424
https://doi.org/10.1016/j.jpowsour.2015.02.005
100 U Balachandran, T Lee, L Chen, S Song, J Picciolo, S Dorris. Hydrogen separation by dense cermet membranes. Fuel, 2006, 85(2): 150–155
https://doi.org/10.1016/j.fuel.2005.05.027
101 X Meng, J Song, N Yang, B Meng, X Tan, Z F Ma, K Li. NiBaCe0.95Tb0.05O3−d cermet membranes for hydrogen permeation. Journal of Membrane Science, 2012, 401: 300–305
https://doi.org/10.1016/j.memsci.2012.02.017
102 E Rebollo, C Mortalò, S Escolástico, S Boldrini, S Barison, J M Serra, M Fabrizio. Exceptional hydrogen permeation of all-ceramic composite robust membranes based on BaCe0.65Zr0.20Y0.15O3−d and Y-or Gd-doped ceria. Energy & Environmental Science, 2015, 8(1-2): 3675–3686
https://doi.org/10.1039/C5EE01793A
103 W V Chiu, I S Park, K Shqau, J C White, M C Schillo, W S W Ho, P K Dutta, H Verweij. Post-synthesis defect abatement of inorganic membranes for gas separation. Journal of Membrane Science, 2011, 377(1): 182–190
https://doi.org/10.1016/j.memsci.2011.04.047
104 S Xu, X Zhang, D Cheng, F Chen, X Ren. Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking. Frontiers of Chemical Science and Engineering, 2018, 12(4): 780–789
https://doi.org/10.1007/s11705-018-1733-8
105 Z Ye, H Zhang, Y Zhang, Y. Tang Seedinduced synthesis of functional MFI zeolite materials: method development, crystallization mechanisms and catalytic properties. Frontiers of Chemical Science and Engineering, 2019: 1–16
106 A Huang, N Wang, J Caro. Synthesis of multi-layer zeolite LTA membranes with enhanced gas separation performance by using 3-aminopropyltriethoxysilane as interlayer. Microporous and Mesoporous Materials, 2012, 164: 294–301
https://doi.org/10.1016/j.micromeso.2012.06.018
107 A Huang, N Wang, J Caro. Seeding-free synthesis of dense zeolite FAU membranes on 3-aminopropyltriethoxysilane-functionalized alumina supports. Journal of Membrane Science, 2012, 389: 272–279
https://doi.org/10.1016/j.memsci.2011.10.036
108 Z Tang, J Dong, ‚T M Nenoff. Internal surface modification of MFI-type zeolite membranes for high selectivity and high flux for hydrogen. Langmuir, 2009, 25(9): 4848–4852
https://doi.org/10.1021/la900474y
109 A H Shafie, W An, S A Hosseinzadeh Hejazi, J A Sawada, S M Kuznicki. Natural zeolite-based cement composite membranes for H2/CO2 separation. Separation and Purification Technology, 2012, 88: 24–28
https://doi.org/10.1016/j.seppur.2011.11.020
110 A K Prabhu, S T Oyama. Highly hydrogen selective ceramic membranes: application to the transformation of greenhouse gases. Journal of Membrane Science, 2000, 176(2): 233–248
https://doi.org/10.1016/S0376-7388(00)00448-8
111 T Tsuru. Development of metal-doped silica membranes for increased hydrothermal stability and their applications to membrane reactors for steam reforming of methane. Journal of the Japan Petroleum Institute, 2011, 54(5): 277–286
https://doi.org/10.1627/jpi.54.277
112 J Fan, H Ohya, T Suga, H Ohashi, K Yamashita, S Tsuchiya, M Aihara, T Takeuchi, Y Negishi. High flux zirconia composite membrane for hydrogen separation at elevated temperature. Journal of Membrane Science, 2000, 170(1): 113–125
https://doi.org/10.1016/S0376-7388(99)00363-4
113 J E Koresh, A Soffer. The carbon molecular sieve membranes: general properties and the permeability of CH4/H2 mixture. Separation Science and Technology, 1987, 22(2-3): 973–982
https://doi.org/10.1080/01496398708068993
114 A M Vieira-Linhares, N A Seaton. Non-equilibrium molecular dynamics simulation of gas separation in a microporous carbon membrane. Chemical Engineering Science, 2003, 58(18): 4129–4136
https://doi.org/10.1016/S0009-2509(03)00304-X
115 S M Saufi, A F Ismail. Fabrication of carbon membranes for gas separation: a review. Carbon, 2004, 42(2): 241–259
https://doi.org/10.1016/j.carbon.2003.10.022
116 D E Jiang, V R Cooper, S Dai. Porous graphene as the ultimate membrane for gas separation. Nano Letters, 2009, 9(12): 4019–4024
https://doi.org/10.1021/nl9021946
117 Q Wang, D O’Hare. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical Reviews, 2012, 112(7): 4124–4155
https://doi.org/10.1021/cr200434v
118 P Lu, Y Liu, T Zhou, Q Wang, Y Li. Recent advances in layered double hydroxides (LDHs) as two-dimensional membrane materials for gas and liquid separations. Journal of Membrane Science, 2018, 567: 89–103
https://doi.org/10.1016/j.memsci.2018.09.041
119 Y Liu, N Wang, J Caro. In situ formation of LDH membranes of different microstructures with molecular sieve gas selectivity. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(16): 5716–5723
https://doi.org/10.1039/C4TA00108G
120 Y Liu, Y Peng, N Wang, Y Li, J H Pan, W Yang, J Caro. Significantly enhanced separation using ZIF-8 membranes by partial conversion of calcined layered double hydroxide precursors. ChemSusChem, 2015, 8(21): 3582–3586
https://doi.org/10.1002/cssc.201500977
121 R Ranjan, M Tsapatsis. Microporous metal organic framework membrane on porous support using the seeded growth method. Chemistry of Materials, 2009, 21(20): 4920–4924
https://doi.org/10.1021/cm902032y
122 A Huang, W Dou, J R Caro. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization. Journal of the American Chemical Society, 2010, 132(44): 15562–15564
https://doi.org/10.1021/ja108774v
123 F Zhang, X Zou, X Gao, S Fan, F Sun, H Ren, G Zhu. Hydrogen selective NH2-MIL-53 (Al) MOF membranes with high permeability. Advanced Functional Materials, 2012, 22(17): 3583–3590
https://doi.org/10.1002/adfm.201200084
124 A J Brown, N A Brunelli, K Eum, F Rashidi, J Johnson, W J Koros, C W Jones, S Nair. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science, 2014, 345(6192): 72–75
https://doi.org/10.1126/science.1251181
125 P D Sutrisna, E Savitri, N F Himma, N Prasetya, I G Wenten. Current perspectives and mini review on zeolitic imidazolate framework-8 (ZIF-8) membranes on organic substrates. IOP Conference Series. Materials Science and Engineering, 2019, 703(1): 012045
https://doi.org/10.1088/1757-899X/703/1/012045
126 J Dong, Y Lin, W Liu. Multicomponent hydrogen/hydrocarbon separation by MFI-type zeolite membranes. AIChE Journal, 2000, 46(10): 1957–1966
https://doi.org/10.1002/aic.690461008
127 J C Poshusta, V A Tuan, J L Falconer, R D Noble. Synthesis and permeation properties of SAPO-34 tubular membranes. Industrial & Engineering Chemistry Research, 1998, 37(10): 3924–3929
https://doi.org/10.1021/ie980240b
128 B S Liu, C T Au. A La2NiO4-zeolite membrane reactor for the CO2 reforming of methane to syngas. Catalysis Letters, 2001, 77(1-3): 67–74
https://doi.org/10.1023/A:1012797903344
129 D Lee, L Zhang, S Oyama, S Niu, R F Saraf. Synthesis, characterization and gas permeation properties of a hydrogen permeable silica membrane supported on porous alumina. Journal of Membrane Science, 2004, 231(1-2): 117–126
https://doi.org/10.1016/j.memsci.2003.10.044
130 J H Moon, J H Bae, Y S Bae, J T Chung, C H Lee. Hydrogen separation from reforming gas using organic templating silica/alumina composite membrane. Journal of Membrane Science, 2008, 318(1-2): 45–55
https://doi.org/10.1016/j.memsci.2008.02.001
131 Y Gu, S T Oyama. Ultrathin, hydrogen-selective silica membranes deposited on alumina-graded structures prepared from size-controlled boehmite sols. Journal of Membrane Science, 2007, 306(1-2): 216–227
https://doi.org/10.1016/j.memsci.2007.08.045
132 C W Jones, W J Koros. Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors. Carbon, 1994, 32(8): 1419–1425
https://doi.org/10.1016/0008-6223(94)90135-X
133 J Petersen, M Matsuda, K Haraya. Capillary carbon molecular sieve membranes derived from Kapton for high temperature gas separation. Journal of Membrane Science, 1997, 131(1-2): 85–94
https://doi.org/10.1016/S0376-7388(97)00041-0
134 W Wei, H Hu, L You, G Chen. Preparation of carbon molecular sieve membrane from phenol-formaldehyde Novolac resin. Carbon, 2002, 40(3): 465–467
https://doi.org/10.1016/S0008-6223(01)00306-2
135 Y Kusuki, H Shimazaki, N Tanihara, S Nakanishi, T Yoshinaga. Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyimide hollow fiber membrane. Journal of Membrane Science, 1997, 134(2): 245–253
https://doi.org/10.1016/S0376-7388(97)00118-X
136 N Tanihara, H Shimazaki, Y Hirayama, S Nakanishi, T Yoshinaga, Y Kusuki. Gas permeation properties of asymmetric carbon hollow fiber membranes prepared from asymmetric polyimide hollow fiber. Journal of Membrane Science, 1999, 160(2): 179–186
https://doi.org/10.1016/S0376-7388(99)00082-4
137 H Kita, M Yoshino, K Tanaka, K Okamoto. Gas permselectivity of carbonized polypyrrolone membrane. Chemical Communications, 1997, (11): 1051–1052
https://doi.org/10.1039/a700048k
138 H Guo, G Zhu, I J Hewitt, S Qiu. “Twin copper source” growth of metalorganic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. Journal of the American Chemical Society, 2009, 131(5): 1646–1647
https://doi.org/10.1021/ja8074874
139 H Bux, F Liang, Y Li, J Cravillon, M Wiebcke, J R Caro. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. Journal of the American Chemical Society, 2009, 131(44): 16000–16001
https://doi.org/10.1021/ja907359t
140 A Huang, Y Chen, N Wang, Z Hu, J Jiang, J Caro. A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H2/CO2 separation. Chemical Communications, 2012, 48(89): 10981–10983
https://doi.org/10.1039/c2cc35691k
141 D J Lee, Q Li, H Kim, K Lee. Preparation of Ni-MOF-74 membrane for CO2 separation by layer-by-layer seeding technique. Microporous and Mesoporous Materials, 2012, 163: 169–177
https://doi.org/10.1016/j.micromeso.2012.07.008
142 D F Sanders, Z P Smith, R Guo, L M Robeson, J E McGrath, D R Paul, B D Freeman. Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer, 2013, 54(18): 4729–4761
https://doi.org/10.1016/j.polymer.2013.05.075
143 O Ekiner, G Vassilatos. Polyaramide hollow fibers for hydrogen/methane separation—spinning and properties. Journal of Membrane Science, 1990, 53(3): 259–273
https://doi.org/10.1016/0376-7388(90)80018-H
144 L M Robeson. Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 1991, 62(2): 165–185
https://doi.org/10.1016/0376-7388(91)80060-J
145 L M Robeson. The upper bound revisited. Journal of Membrane Science, 2008, 320(1-2): 390–400
https://doi.org/10.1016/j.memsci.2008.04.030
146 E Esposito, I Mazzei, M Monteleone, A Fuoco, M Carta, N McKeown, R Malpass Evans, J Jansen. Highly permeable matrimid®/PIM-EA (H2)-TB blend membrane for gas separation. Polymers, 2018, 11(1): 46
https://doi.org/10.3390/polym11010046
147 N B McKeown, P M Budd. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chemical Society Reviews, 2006, 35(8): 675–683
https://doi.org/10.1039/b600349d
148 F Y Li, Y Xiao, T S Chung, S Kawi. High-performance thermally self-cross-linked polymer of intrinsic microporosity (PIM-1) membranes for energy development. Macromolecules, 2012, 45(3): 1427–1437
https://doi.org/10.1021/ma202667y
149 S Kim, Y M Lee. Rigid and microporous polymers for gas separation membranes. Progress in Polymer Science, 2015, 43: 1–32
https://doi.org/10.1016/j.progpolymsci.2014.10.005
150 H B Park, C H Jung, Y M Lee, A J Hill, S J Pas, S T Mudie, E Van Wagner, B D Freeman, D J Cookson. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science, 2007, 318(5848): 254–258
https://doi.org/10.1126/science.1146744
151 S H Han, J E Lee, K J Lee, H B Park, Y M Lee. Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement. Journal of Membrane Science, 2010, 357(1-2): 143–151
https://doi.org/10.1016/j.memsci.2010.04.013
152 S H Han, N Misdan, S Kim, C M Doherty, A J Hill, Y M Lee. Thermally rearranged (TR) polybenzoxazole: effects of diverse imidization routes on physical properties and gas transport behaviors. Macromolecules, 2010, 43(18): 7657–7667
https://doi.org/10.1021/ma101549z
153 Y F Yeong, H Wang, K Pallathadka Pramoda, T S Chung. Thermal induced structural rearrangement of cardo-copolybenzoxazole membranes for enhanced gas transport properties. Journal of Membrane Science, 2012, 397: 51–65
https://doi.org/10.1016/j.memsci.2012.01.010
154 B Zornoza, C Téllez, J Coronas, O Esekhile, W J Koros. Mixed matrix membranes based on 6FDA polyimide with silica and zeolite microsphere dispersed phases. AIChE Journal, 2015, 61(12): 4481–4490
https://doi.org/10.1002/aic.15011
155 M Safak Boroglu, A B Yumru. Gas separation performance of 6FDA-DAM-ZIF-11 mixed-matrix membranes for H2/CH4 and CO2/CH4 separation. Separation and Purification Technology, 2017, 173: 269–279
https://doi.org/10.1016/j.seppur.2016.09.037
156 E Kim, H Kim, D Kim, J Kim, P Lee. Preparation of mixed matrix membranes containing ZIF-8 and UiO-66 for multicomponent light gas separation. Crystals, 2019, 9(1): 15
https://doi.org/10.3390/cryst9010015
157 T H Weng, H H Tseng, M Y Wey. Preparation and characterization of multi-walled carbon nanotube/PBNPI nanocomposite membrane for H2/CH4 separation. International Journal of Hydrogen Energy, 2009, 34(20): 8707–8715
https://doi.org/10.1016/j.ijhydene.2009.08.027
158 K Xie, Q Fu, C Xu, H Lu, Q Zhao, R Curtain, D Gu, P A Webley, G G Qiao. Continuous assembly of a polymer on a metalorganic framework (CAP on MOF): a 30 nm thick polymeric gas separation membrane. Energy & Environmental Science, 2018, 11(3): 544–550
https://doi.org/10.1039/C7EE02820B
159 G Hu, C Chen, H T Lu, Y Wu, C Liu, L Tao, Y Men, G He, G Li. A review of technical advances, barriers and solutions in the power to gas (P2G) roadmap. Engineering, 2020, (in press)
160 Group APA. Gas Specification for Roma-Brisbane Pipeline. 2010
161 P De Wild, R Nyqvist, F De Bruijn, E Stobbe. Removal of sulphur-containing odorants from fuel gases for fuel cell-based combined heat and power applications. Journal of Power Sources, 2006, 159(2): 995–1004
https://doi.org/10.1016/j.jpowsour.2005.11.100
162 M Golebiowska, M Roth, L Firlej, B Kuchta, C Wexler. The reversibility of the adsorption of methanemethyl mercaptan mixtures in nanoporous carbon. Carbon, 2012, 50(1): 225–234
https://doi.org/10.1016/j.carbon.2011.08.039
163 R J Farrauto. Introduction to solid polymer membrane fuel cells and reforming natural gas for production of hydrogen. Applied Catalysis B: Environmental, 2005, 56(1-2): 3–7
https://doi.org/10.1016/j.apcatb.2004.08.011
164 T A Peters, M Stange, P Veenstra, A Nijmeijer, R Bredesen. The performance of PdAg alloy membrane films under exposure to trace amounts of H2S. Journal of Membrane Science, 2016, 499: 105–115
https://doi.org/10.1016/j.memsci.2015.10.031
165 N De Nooijer, J D Sanchez, J Melendez, E Fernandez, D A Pacheco Tanaka, M Van Sint Annaland, F Gallucci. Influence of H2S on the hydrogen flux of thin-film PdAgAu membranes. International Journal of Hydrogen Energy, 2020, 45(12): 7303–7312
https://doi.org/10.1016/j.ijhydene.2019.06.194
166 G Fotou, Y Lin, S E Pratsinis. Hydrothermal stability of pure and modified microporous silica membranes. Journal of Materials Science, 1995, 30(11): 2803–2808
https://doi.org/10.1007/BF00349647
167 D Uhlmann, S Smart, J C H Diniz Da Costa. 2S stability and separation performance of cobalt oxide silica membranes. Journal of Membrane Science, 2011, 380(1-2): 48–54
https://doi.org/10.1016/j.memsci.2011.06.025
168 R M de Vos, W F Maier, H Verweij. Hydrophobic silica membranes for gas separation. Journal of Membrane Science, 1999, 158(1-2): 277–288
https://doi.org/10.1016/S0376-7388(99)00035-6
169 Q Wei, Y L Ding, Z R Nie, X G Liu, Q Y Li. Wettability, pore structure and performance of perfluorodecyl-modified silica membranes. Journal of Membrane Science, 2014, 466: 114–122
https://doi.org/10.1016/j.memsci.2014.04.036
170 R W Glass, R A Ross. Surface studies of the adsorption of sulfur-containing gases at 423.deg.K on porus adsorbents. II. Adsorption of hydrogen sulfide, methanethiol, ethanethiol and dimethyl sulfide on gamma.-alumina. Journal of Physical Chemistry, 1973, 77(21): 2576–2578
https://doi.org/10.1021/j100907a018
171 K Akamatsu, M Nakane, T Sugawara, T Hattori, S Nakao. Development of a membrane reactor for decomposing hydrogen sulfide into hydrogen using a high-performance amorphous silica membrane. Journal of Membrane Science, 2008, 325(1): 16–19
https://doi.org/10.1016/j.memsci.2008.08.005
172 W Schell, C Wensley, M Chen, K Venugopal, B Miller, J Stuart. Recent advances in cellulosic membranes for gas separation and pervaporation. Gas Separation & Purification, 1989, 3(4): 162–169
https://doi.org/10.1016/0950-4214(89)80001-5
173 H Lu, S Kanehashi, C Scholes, S Kentish. The impact of ethylene glycol and hydrogen sulphide on the performance of cellulose triacetate membranes in natural gas sweetening. Journal of Membrane Science, 2017, 539: 432–440
https://doi.org/10.1016/j.memsci.2017.06.023
174 C P Plaisance, K M Dooley. Zeolite and metal oxide catalysts for the production of dimethyl sulfide and methanethiol. Catalysis Letters, 2009, 128(3-4): 449–458
https://doi.org/10.1007/s10562-008-9772-2
175 S B Walker, U Mukherjee, M Fowler, A Elkamel. Benchmarking and selection of power-to-gas utilizing electrolytic hydrogen as an energy storage alternative. International Journal of Hydrogen Energy, 2016, 41(19): 7717–7731
https://doi.org/10.1016/j.ijhydene.2015.09.008
176 W Lubitz, W Tumas. Hydrogen: an overview. Chemical Reviews, 2007, 107(10): 3900–3903
https://doi.org/10.1021/cr050200z
177 A Iulianelli, E Drioli. Membrane engineering: latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications. Fuel Processing Technology, 2020, 206: 106464
https://doi.org/10.1016/j.fuproc.2020.106464
178 D Coker, B Freeman, G Fleming. Modeling multicomponent gas separation using hollowfiber membrane contactors. AIChE Journal. American Institute of Chemical Engineers, 1998, 44(6): 1289–1302
https://doi.org/10.1002/aic.690440607
179 P K Kundu, A Chakma, X Feng. Simulation of binary gas separation with asymmetric hollow fibre membranes and case studies of air separation. Canadian Journal of Chemical Engineering, 2012, 90(5): 1253–1268
https://doi.org/10.1002/cjce.20631
180 E Soroodan Miandoab, S E Kentish, C A Scholes. Non-ideal modelling of polymeric hollow-fibre membrane systems: pre-combustion CO2 capture case study. Journal of Membrane Science, 2020, 595: 117470
https://doi.org/10.1016/j.memsci.2019.117470
181 J Franz, V Scherer. An evaluation of CO2 and H2 selective polymeric membranes for CO2 separation in IGCC processes. Journal of Membrane Science, 2010, 359(1-2): 173–183
https://doi.org/10.1016/j.memsci.2010.01.047
182 A Basile, F Dalena, J Tong, T N Veziroğlu. Hydrogen Production, Separation and Purification for Energy. London: The Insititution of Engineering and Technology, 2017
183 W Liemberger, D Halmschlager, M Miltner, M Harasek. Efficient extraction of hydrogen transported as co-stream in the natural gas grid—the importance of process design. Applied Energy, 2019, 233-234: 747–763
https://doi.org/10.1016/j.apenergy.2018.10.047
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed