Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2021, Vol. 15 Issue (3): 709-716   https://doi.org/10.1007/s11705-020-1984-z
  本期目录
Synthesis of Chl@Ti3C2 composites as an anode material for lithium storage
Wenxin Xu1, Xin Zhao1, Jiali Tang1, Chao Zhang1, Yu Gao1, Shin-ichi Sasaki2,3, Hitoshi Tamiaki2, Aijun Li1(), Xiao-Feng Wang1()
1. Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University,  Changchun 130012, China
2. Graduate School of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
3. Nagahama Institute of Bio-Science and Technology, Shiga 526-0829, Japan
 全文: PDF(1173 KB)   HTML
Abstract

Two-dimensional (2D) titanium carbide MXene Ti3C2 has attracted significant research interest in energy storage applications. In this study, we prepared Chl@Ti3C2 composites by simply mixing a chlorophyll derivative (e.g., zinc methyl 3-devinyl-3-hydroxymethyl- pyropheophorbide a (Chl)) and Ti3C2 in tetrahydrofuran, where the Chl molecules were aggregated among the multi-layered Ti3C2 MXene or on its surface, increasing the interlayer space of Ti3C2. The as-prepared Chl@Ti3C2 was employed as the anode material in the lithium-ion battery (LIB) with lithium metal as the cathode. The resulting LIB exhibited a higher reversible capacity and longer cycle performance than those of LIB based on pure Ti3C2, and its specific discharge capacity continuously increased along with the increasing number of cycles, which can be attributed to the gradual activation of Chl@Ti3C2 accompanied by the electrochemical reactions. The discharge capacity of 1 wt-% Chl@Ti3C2 was recorded to be 325 mA·h·g–1 at the current density of 50 mA·g–1 with a Coulombic efficiency of 56% and a reversible discharge capacity of 173 mA·h·g–1 at the current density of 500 mA·g–1 after 800 cycles. This work provides a novel strategy for improving the energy storage performance of 2D MXene materials by expanding the layer distance with organic dye aggregates.

Key wordszinc chlorin aggregate    Ti3C2 MXene    anode material    lithium storage
收稿日期: 2020-04-07      出版日期: 2021-05-10
Corresponding Author(s): Aijun Li,Xiao-Feng Wang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2021, 15(3): 709-716.
Wenxin Xu, Xin Zhao, Jiali Tang, Chao Zhang, Yu Gao, Shin-ichi Sasaki, Hitoshi Tamiaki, Aijun Li, Xiao-Feng Wang. Synthesis of Chl@Ti3C2 composites as an anode material for lithium storage. Front. Chem. Sci. Eng., 2021, 15(3): 709-716.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-020-1984-z
https://academic.hep.com.cn/fcse/CN/Y2021/V15/I3/709
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 L W Ji, Z Lin, M Alcoutlabi, X W Zhang. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy & Environmental Science, 2011, 4(8): 2682–2699
https://doi.org/10.1039/c0ee00699h
2 C Zhang, Y Xie, J Wang, A Pentecost, D Long, L Ling, W Qiao. Effect of graphitic structure on electrochemical ion intercalation into positive and negative electrodes. Journal of Solid State Electrochemistry, 2014, 18(10): 2673–2682
https://doi.org/10.1007/s10008-014-2527-7
3 V E Ferry, J N Munday, H A Atwater. Design considerations for plasmonic photovoltaics. Advanced Materials, 2010, 22(43): 4794–4808
https://doi.org/10.1002/adma.201000488
4 M Armand, J M Tarascon. Building better batteries. Nature, 2008, 451(7179): 652–657
https://doi.org/10.1038/451652a
5 Y Yao, M T McDowell, I Ryu, H Wu, N Liu, L Hu, W D Nix, Y Cui. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Letters, 2011, 11(7): 2949–2954
https://doi.org/10.1021/nl201470j
6 T Sheng, Y F Xu, Y X Jiang, L Huang, N Tian, Z Y Zhou, I Broadwell, S G Sun. Structure design and performance tuning of nanomaterials for electrochemical energy conversion and storage. Accounts of Chemical Research, 2016, 49(11): 2569–2577
https://doi.org/10.1021/acs.accounts.6b00485
7 P G Bruce, B Scrosati, J M Tarascon. Nanomaterials for rechargeable lithium batteries. Angewandte Chemie International Edition, 2008, 47(16): 2930–2946
https://doi.org/10.1002/anie.200702505
8 A L M Reddy, S R Gowda, M M Shaijumon, P M Ajayan. Hybrid nanostructures for energy storage applications. Advanced Materials, 2012, 24(37): 5045–5064
https://doi.org/10.1002/adma.201104502
9 C Eames, M S Islam. Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials. Journal of the American Chemical Society, 2014, 136(46): 16270–16276
https://doi.org/10.1021/ja508154e
10 S Sun, C Liao, A M Hafez, H Zhu, S Wu. Two-dimensional MXenes for energy storage. Chemical Engineering Journal, 2018, 338: 27–45
https://doi.org/10.1016/j.cej.2017.12.155
11 E Yoo, J Kim, E Hosono, H S Zhou, T Kudo, I Honma. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Letters, 2008, 8(8): 2277–2282
https://doi.org/10.1021/nl800957b
12 M V Reddy, G V Subba Rao, B V Chowdari. Metal oxides and oxysalts as anode materials for Li ion batteries. Chemical Reviews, 2013, 113(7): 5364–5457
https://doi.org/10.1021/cr3001884
13 L Cao, P Fan, A P Vasudev, J S White, Z Yu, W Cai, J A Schuller, S Fan, M L Brongersma. Semiconductor nanowire optical antenna solar absorbers. Nano Letters, 2010, 10(2): 439–445
https://doi.org/10.1021/nl9036627
14 O Mashtalir, M Naguib, V N Mochalin, Y Dall’Agnese, M Heon, M W Barsoum, Y Gogotsi. Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 2013, 4(1): 1716
https://doi.org/10.1038/ncomms2664
15 M Naguib, J Come, B Dyatkin, V Presser, P L Taberna, P Simon, M W Barsoum, Y Gogotsi. Mxene: a promising transition metal carbide anode for lithium-ion batteries. Electrochemistry Communications, 2012, 16(1): 61–64
https://doi.org/10.1016/j.elecom.2012.01.002
16 M Naguib, M Kurtoglu, V Presser, J Lu, J Niu, M Heon, L Hultman, Y Gogotsi, M W Barsoum. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011, 23(37): 4248–4253
https://doi.org/10.1002/adma.201102306
17 Z Pourali, M R Sovizi, M R Yaftian. Two-dimensional Ti3C2Tx/CMK-5 nanocomposite as high performance anodes for lithium batteries. Journal of Alloys and Compounds, 2018, 738: 130–137
https://doi.org/10.1016/j.jallcom.2017.12.116
18 M Ghidiu, M R Lukatskaya, M Q Zhao, Y Gogotsi, M W Barsoum. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516(7529): 78–81
https://doi.org/10.1038/nature13970
19 G Zou, Z Zhang, J Guo, B Liu, Q Zhang, C Fernandez, Q Peng. Synthesis of MXene/Ag composites for extraordinary long cycle lifetime lithium storage at high rates. ACS Applied Materials & Interfaces, 2016, 8(34): 22280–22286
https://doi.org/10.1021/acsami.6b08089
20 J Zhu, Y Tang, C Yang, F Wang, M Cao. Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance. Journal of the Electrochemical Society, 2016, 163(5): A785–A791
https://doi.org/10.1149/2.0981605jes
21 Y Wang, Y Li, Z Qiu, X Wu, P Zhou, T Zhou, J Zhao, Z Miao, J Zhou, S Zhuo. Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6(24): 11189–11197
https://doi.org/10.1039/C8TA00122G
22 X Zhang, Z Zhang, Z Zhou. Mxene-based materials for electrochemical energy storage. Journal of Energy Chemistry, 2018, 27(1): 73–85
https://doi.org/10.1016/j.jechem.2017.08.004
23 W T Cao, C Ma, S Tan, M G Ma, P B Wan, F Chen. Ultrathin and flexible CNTs/MXene/Cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Letters, 2019, 11(1): 72
https://doi.org/10.1007/s40820-019-0304-y
24 Y Aierken, C Sevik, O Gülseren, F M Peeters, D Çakır. Mxenes/graphene heterostructures for Li battery applications: a first principles study. Journal of Materials Chemistry A, 2018, 6(5): 2337–2345
https://doi.org/10.1039/C7TA09001C
25 M Boota, M Pasini, F Galeotti, W Porzio, M Q Zhao, J Halim, Y Gogotsi. Interaction of polar and nonpolar polyfluorenes with layers of two-dimensional titanium carbide (MXene): intercalation and pseudocapacitance. Chemistry of Materials, 2017, 29(7): 2731–2738
https://doi.org/10.1021/acs.chemmater.6b03933
26 J Luo, X Tao, J Zhang, Y Xia, H Huang, L Zhang, Y Gan, C Liang, W Zhang. Sn4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano, 2016, 10(2): 2491–2499
https://doi.org/10.1021/acsnano.5b07333
27 X Fan, L Liu, X Jin, W Wang, S Zhang, B Tang. Mxene Ti3C2Tx for phase change composite with superior photothermal storage capability. Journal of Materials Chemistry A, 2019, 7(23): 14319–14327
https://doi.org/10.1039/C9TA03962G
28 J Yan, C E Ren, K Maleski, C B Hatter, B Anasori, P Urbankowski, A Sarycheva, Y Gogotsi. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Advanced Functional Materials, 2017, 27(30): 1701264
https://doi.org/10.1002/adfm.201701264
29 X Dong, B Ding, H Guo, H Dou, X Zhang. Superlithiated polydopamine derivative for high-capacity and high-rate anode for lithium-ion batteries. ACS Applied Materials & Interfaces, 2018, 10(44): 38101–38108
https://doi.org/10.1021/acsami.8b13998
30 K Liu, J Zheng, G Zhong, Y Yang. Poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide) (PDBS) as a cathode material for lithium ion batteries. Journal of Materials Chemistry, 2011, 21(12): 4125–4131
https://doi.org/10.1039/c0jm03127e
31 Y Liang, P Zhang, S Yang, Z Tao, J Chen. Fused heteroaromatic organic compounds for high-power electrodes of rechargeable lithium batteries. Advanced Energy Materials, 2013, 3(5): 600–605
https://doi.org/10.1002/aenm.201200947
32 M Ghidiu, S Kota, J Halim, A W Sherwood, N Nedfors, J Rosen, V N Mochalin, M W Barsoum. Alkylammonium cation intercalation into Ti3C2 (MXene): effects on properties and ion-exchange capacity estimation. Chemistry of Materials, 2017, 29(3): 1099–1106
https://doi.org/10.1021/acs.chemmater.6b04234
33 M Boota, B Anasori, C Voigt, M Q Zhao, M W Barsoum, Y Gogotsi. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Advanced Materials, 2016, 28(7): 1517–1522
https://doi.org/10.1002/adma.201504705
34 D Sun, M Wang, Z Li, G Fan, L Z Fan, A Zhou. Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochemistry Communications, 2014, 47: 80–83
https://doi.org/10.1016/j.elecom.2014.07.026
35 H Tamiaki, M Amakawa, Y Shimono, R Tanikaga, A R Holzwarth, K Schaffner. Synthetic zinc and magnesium chlorin aggregates as models for supramolecular antenna complexes in chlorosomes of green photosynthetic bacteria. Photochemistry and Photobiology, 1996, 63(1): 92–99
https://doi.org/10.1111/j.1751-1097.1996.tb02997.x
36 F Du, H Tang, L Pan, T Zhang, H Lu, J Xiong, J Yang, C Zhang. Environmental friendly scalable production of colloidal 2D titanium carbonitride MXene with minimized nanosheets restacking for excellent cycle life lithium-ion batteries. Electrochimica Acta, 2017, 235: 690–699
https://doi.org/10.1016/j.electacta.2017.03.153
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed