Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2021, Vol. 15 Issue (4): 820-836   https://doi.org/10.1007/s11705-020-1997-7
  本期目录
Recent progress in the design and fabrication of MXene-based membranes
Kai Qu1, Kang Huang2(), Zhi Xu1()
1. State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
2. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
 全文: PDF(4566 KB)   HTML
Abstract

Two-dimensional membranes have attracted significant attention due to their superior characteristics, and their ability to boost both flux and selectivity have led to their reputation as potential next-generation separation membranes. Among them, emerging MXene-based membranes play significant roles in the competitive membrane-separation field. In this mini-review, we systematically discuss the assembly and separation mechanisms of these membranes. Moreover, we highlight strategies based on the crosslinking of MXene nanosheets and the construction of additional nanochannels that further enhance the permeabilities and anti-swelling properties of MXene-based membranes and meet the requirements of practical applications, such as gas-molecule sieving, ion sieving, and other small-molecule sieving. MXene nanosheets can also be used as additives that introduce specific functionalities into hybrid membranes. In addition, extended applications that use MXenes as scaffolds are also discussed.

Key wordsMXene    2D materials    membranes    separation
收稿日期: 2020-06-07      出版日期: 2021-06-04
Corresponding Author(s): Kang Huang,Zhi Xu   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2021, 15(4): 820-836.
Kai Qu, Kang Huang, Zhi Xu. Recent progress in the design and fabrication of MXene-based membranes. Front. Chem. Sci. Eng., 2021, 15(4): 820-836.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-020-1997-7
https://academic.hep.com.cn/fcse/CN/Y2021/V15/I4/820
Fig.1  
MXene sample Methods Support Improved strategy Applications Separation performances
(water flux, ion rejection)
Ref.
Ti3C2Tx membrane VFa) PVDFb) Ion sieving (size and charge effect) [45]
Ti3C2Tx membrane VFa) PANc) Ion sieving (PV desalination) 85.4 L?m–2?h–1, 99.5% (NaCl) [63]
Ti3C2Tx membrane VFa) Surface grafting (PDDAd)) Ion sieving (OEGe)) [55]
Ti3C2Tx membrane VFa) Cellulose acetate Ion sieving (OEGe)) [64]
Ti3C2Tx/Kevlar hybrid membrane VFa) Molecular crosslinking Ion sieving (OEGe)) [65]
Ti3C2Tx membrane VFa) Polypropylene Ion sieving [66]
Ti3C2Tx membrane VFa) Polyamide Self-crosslinking Ion sieving 0.0515 L?m–2?h–1?bar–1, 98% [57]
Ti3C2Tx membrane VFa) a-Al2O3 tubular Self-crosslinking Ion sieving 11.5 L?m–2?h–1?bar–1, 99.2% (VO2+) [53]
Ti3C2Tx/maleic acid membrane VFa) Nylon Molecular crosslinking Ion sieving 22.8 kg?m–2?h–1?bar–1,>99.7% (NaCl) [67]
Ti3C2Tx membrane VFa) PESf) Ionic crosslinking
(Al3+)
Ion sieving 2.8 L?m–2?h–1?bar–1, 96% (NaCl) [68]
Tab.1  
MXene sample Methods Support Improved strategy Applications Separation performances Ref.
Ti3C2Tx membrane VFa) Gas molecules sieving H2 permeability: 1201 GPU, a(H2/CO2)>160 [47]
Ti3C2Tx membrane (simulation) VFa) Gas molecules sieving [69]
Ti3C2Tx membrane VFa) AAOb) Self-crosslinking Gas molecules sieving H2 permeability: 612.7 GPU, a(H2/N2): 41 [70]
Ti3C2Tx membrane (simulation) VFa) AAOb) Self-crosslinking Gas molecules sieving [71]
Ti3C2Tx membrane VFa) AAOb) Molecular crosslinking
(PEIc)/borate)
Gas molecules sieving H2 permeability: 1584 GPU, a(H2/CO2): 27; CO2 permeability: 350 GPU, a(CO2/CH4): 15.3 [49]
Ti3C2Tx/pebax1657 hybrid membrane Dcd) PVDFe) MXene as additives Gas molecules sieving CO2 permeability: 1360 GPU, a(CO2/N2): 31 [60]
Ti3C2Tx/pebax hybrid membrane SCf) PANg) MXene as additives Gas molecules sieving CO2 permeability: 21.6 GPU, a(CO2/N2): 72.5 [72]
Ti3C2Tx membrane VFa) Nylon EtOHh) dehydration Water flux: 263.4 g?m–2?h–1, separation factor: 135.2 [73]
Ti3C2Tx/sodium alginate hybrid membrane Dcd) PANg) MXene as additives EtOHh) dehydration Water flux: 505 g?m–2?h–1, separation factor: 9946 [74]
Ti2C2Tx membrane VFa) PANg) Molecular crosslinking
(HPEIi))
IPAj) dehydration Water flux: 1069±47 g?m–2?h–1, permeate side>99 wt-% [75]
Ti3C2Tx/chitosan hybrid membrane SCf) PANg) MXene as additives Solvent dehydration Water flux: 1.4–1.5 kg?m–2?h–1, separation factor: 1421, 4898, 906 (EtOHh), EACk), DMCl)) [76]
Ti2C2Tx membrane VFa) PANg) Molecular crosslinking
(PEIc), PDDAm), PAHn))
IPAj) dehydration Water flux: 1237 g?m–2?h–1, separation factor: 1932 [77]
Tab.2  
MXene sample Method Support Improved strategy Applications Separation performances (flux, rejection) Ref.
Ti3C2Tx/GO membranes VFa) Nylon/cellulose acetate SMSb) 2.1, 0.3, 0.67, 0.23 L?m–2?h–1?bar–1 (H2O), 68%, 99.5%, 93.5%, 100% (MRc), MBd), Rbe), BBf)) [78]
Ti3C2Tx membrane VFa) PVDFg) Molecular crosslinking SMSb) 887 L?m–2?h–1?bar–1 (H2O),>99.4% (Oil) [52]
Ti3C2Tx membrane VFa) Commercial papers SMSb) 450 L?m–2?h–1?bar–1 (H2O),>99% (Oil) [51]
Ti3C2Tx membrane VFa) PESh) SMSb) 540 L?m–2?h–1?bar–1 (H2O), 99.94% (Oil) [48]
Ti3C2 membrane VFa) Glass fiber Li-S battery [79]
Ti3C2Tx membrane VFa) Mixed cellulose ester SMSb) 28.94±0.74 L?m–2?h–1?bar–1 (H2O), 100±0.1% (MBd)) [80]
Ti3C2Tx membrane VFa) PESh) SMSb) 115 L?m–2?h–1?bar–1 (H2O), 92.3% (CRi)) [81]
Ti3C2Tx membrane VFa) Nylon Wrinkles construction SMSb) 70, 64, 61 L?m–2?h–1?bar–1 (H2O), 76.4%, 67.7%, 84.3% (AY14j), EYk), EBl)) [58]
Ag@Ti3C2Tx membrane VFa) PVDFg) NPs intercalation SMSb) 387.05, 354.29, 345.81 L?m–2?h–1?bar–1 (H2O), 79.93%, 92.32%, 100% (RBm), MGn), BSAo)) [59]
Ti3C2Tx membrane VFa) AAOp) Template sacrifice method SMSb) >1000 L?m–2?h–1?bar–1 (H2O),>90% (size large than 2.5 nm) [46]
TiO2-Ti3C2Tx membrane DCq) Hollow fiber 2D scaffolds SMSb) 90 L?m–2?h–1?bar–1 (H2O),>22000 Da (dextran) [62]
TiO2-Ti3C2Tx membrane DCq) Hollow fiber 2D scaffolds SMSb) 102 L?m–2?h–1?bar–1 (H2O), 14854 Da (dextran) [82]
Ti3C2Tx/PANr) hybrid membrane ESs) MXene as additives SMSb) Pressure drop: 42 Pa, 99.7% (PM2.5) [83]
Ti3C2Tx/GO membrane VFa) Nylon SMSb) 21.02, 48.32, 25.03, 10.76, 6.18 L?m–2?h–1?bar–1 (H2O, CPt), MeOHu), EtOHv), IPAw)),>90% [23]
Ti3C2Tx membrane VFa) Nylon Surface grafting SMSb) 3337, 3018 L?m–2?h–1?bar–1 (ACNx), MeOHu)),>92%, (MBd)) [54]
Ti3C2Tx/(PEIy)/PDMSz)) hybrid membrane Dca1) PANr) Modified MXene as additives SMSb) PEIy) membrane: 2.6, 0.3 L?m–2?h–1?bar–1 (IPAw), N/Aa1)), 96%, 800 Da (PEGb1), 10 bar); PDMSz) membrane: 0.3, 1.5 L?m–2?h–1?bar–1 (IPAw), N/Aa1)), 97%, 800 Da (PEGb1), 10 bar) [61]
Ti3C2Tx/(PEIy)/PDMSz)) hybrid membrane Dca1) PANr) MXene as additives SMSb) PEIy) membrane: 25.8, 19.1, 15.1, 6.4 L?m–2?h–1?bar–1 (IPAw), EACc1), MEKd1), N/Ae1)), 200 Da; PDMSz) membrane: 19.8, 14.9 L?m–2?h–1?bar–1 (TLf1), EACc1)), 320 Da [84]
Ti3C2Tx/P84g1) hybrid membrane PIh1) MXene as additives SMSb) 268 L?m–2?h–1?bar–1 (H2O), 408 Da (GVi1)) [85]
RGOj1)/PDAk1)/MXene hybrid membrane VFa) Nylon SMSb) >200 L?m–2?h–1?bar–1 (H2O),>96% (MBd), MOl1), MRc), CRi), EBl))
Tab.3  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 K S Novoselov, A K Geim, S V Morozov, D Jiang, Y Zhang, S V Dubonos, I V Grigorieva, A A Firsov. Electric field effect in atomically thin carbon films. Science, 2014, 306(5696): 666–669
2 J Zhu, E Ha, G L Zhao, Y Zhou, D S Huang, G Z Yue, L S Hu, N Sun, Y Wang, L Y S Lee, et al. Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption. Coordination Chemistry Reviews, 2017, 352: 306–327
3 X X Zhan, C Si, J Zhou, Z M Sun. MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horizons, 2020, 5(2): 235–258
4 Q Tang, Z Zhou. Graphene-analogous low-dimensional materials. Progress in Materials Science, 2013, 58(8): 1244–1315
5 K Huang, Z J Li, J Lin, G Han, P Huang. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chemical Society Reviews, 2018, 47(14): 5109–5124
6 L Cheng, K C Guan, G P Liu, W Q Jin. Cysteamine-crosslinked graphene oxide membrane with enhanced hydrogen separation property. Journal of Membrane Science, 2020, 595: 117568
7 Y D Cheng, X R Wang, C K Jia, Y X Wang, L Z Zhai, Q Wang, D Zhao. Ultrathin mixed matrix membranes containing two-dimensional metalorganic framework nanosheets for efficient CO2/CH4 separation. Journal of Membrane Science, 2017, 539: 213–223
8 P Lu, Y Liu, T T Zhou, Q Wang, Y S Li. Recent advances in layered double hydroxides (LDHs) as two-dimensional membrane materials for gas and liquid separations. Journal of Membrane Science, 2018, 567: 89–103
9 X R Wang, C L Chi, K Zhang, Y H Qian, K M Gupta, Z X Kang, J W Jiang, D Zhao. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nature Communications, 2017, 8: 14460
10 Y Wang, J P Li, Q Y Yang, C L Zhong. Two-dimensional covalent triazine framework membrane for helium separation and hydrogen purification. ACS Applied Materials & Interfaces, 2016, 8(13): 8694–8701
11 Z X Zhong, J F Yao, R Z Chen, Z X Low, M He, J Z Liu, H T Wang. Oriented two-dimensional zeolitic imidazolate framework-L membranes and their gas permeation properties. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(30): 15715–15722
12 J Shen, G P Liu, K Huang, W Q Jin, K R Lee, N P Xu. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture. Angewandte Chemie International Edition, 2015, 54(2): 578–582
13 L Chen, G S Shi, J Shen, B Q Peng, B W Zhang, Y Z Wang, F G Bian, J J Wang, D Y Li, Z Qian, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature, 2017, 550(7676): 380–383
14 M C Zhang, K C Guan, Y F Ji, G P Liu, W Q Jin, N P Xu. Controllable ion transport by surface-charged graphene oxide membrane. Nature Communications, 2019, 10(1): 1253
15 R R Hu, R J Zhang, Y J He, G K Zhao, H W Zhu. Graphene oxide-in-polymer nanofiltration membranes with enhanced permeability by interfacial polymerization. Journal of Membrane Science, 2018, 564: 813–819
16 Y Li, S Yuan, Y Xia, W Zhao, C D Easton, C Selomulya, X W Zhang. Mild annealing reduced graphene oxide membrane for nanofiltration. Journal of Membrane Science, 2020, 601: 117900
17 B Liang, W Zhan, G G Qi, S S Lin, Q Nan, Y X Liu, B Cao, K Pan. High performance graphene oxide/polyacrylonitrile composite pervaporation membranes for desalination applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(9): 5140–5147
18 Y G Yan, W S Wang, W Li, K P Loh, J Zhang. A graphene-like membrane with an ultrahigh water flux for desalination. Nanoscale, 2017, 9: 18951
19 M C Zhang, Y Y Mao, G Z Liu, G P Liu, Y Q Fan, W Q Jin. Molecular bridges stabilize graphene oxide membranes in water. Angewandte Chemie International Edition, 2020, 59(4): 1689–1695
20 M C Zhang, J J Sun, Y Y Mao, G P Liu, W Q Jin. Effect of substrate on formation and nanofiltration performance of graphene oxide membranes. Journal of Membrane Science, 2019, 574: 196–204
21 Y C Liu, M Zhu, M Y Chen, L L Ma, B Yang, L L Li, W W Tu. A polydopamine-modified reduced graphene oxide (RGO)/MOFs nanocomposite with fast rejection capacity for organic dye. Chemical Engineering Journal, 2019, 359: 47–57
22 P Cheng, Y Chen, Y H Gu, X Yan, W Z Lang. Hybrid 2D WS2/GO nanofiltration membranes for finely molecular sieving. Journal of Membrane Science, 2019, 591: 117308
23 S C Wei, Y Xie, Y D Xing, L C Wang, H Q Ye, X Xiong, S Wang, K Han. Two-dimensional graphene oxide/MXene composite lamellar membranes for efficient solvent permeation and molecular separation. Journal of Membrane Science, 2019, 582: 414–422
24 X K Zhang, H Li, J Wang, D L Peng, J D Liu, Y T Zhang. In-situ grown covalent organic framework nanosheets on graphene for membrane-based dye/salt separation. Journal of Membrane Science, 2019, 581: 321–330
25 Y Peng, R Yao, W S Yang. A poly(amidoamine) nanoparticle cross-linked two-dimensional metal-organic framework nanosheet membrane for water purification. Chemical Communications, 2019, 55: 3935
26 F Liang, Q Liu, J Zhao, K C Guan, Y Y Mao, G P Liu, X H Gu, W Q Jin. Ultrafast water-selective permeation through graphene oxide membrane with water transport promoters. AIChE Journal. American Institute of Chemical Engineers, 2019, 66(2): e16812
27 D Zhao, J Zhao, Y F Ji, G P Liu, S M Liu, W Q Jin. Facilitated water-selective permeation via PEGylation of graphene oxide membrane. Journal of Membrane Science, 2018, 567: 311–320
28 K Huang, G P Liu, Y Y Lou, Z Y Dong, J Shen, W Q Jin. A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. Angewandte Chemie International Edition, 2014, 53(27): 6929–6932
29 H W Kim, H W Yoon, S M Yoon, B M Yoo, B K Ahn, Y H Cho, H J Shin, H Yang, U Paik, S Kwon, et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science, 2013, 342(6154): 91–95
30 M Naguib, M Kurtoglu, V Presser, J Lu, J J Niu, M Heon, L Hultman, Y Gogotsi, M W Barsoum. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011, 23(37): 4248–4253
31 M Naguib, V N Mochalin, M W Barsoum, Y Gogotsi. 25th anniversary article: MXenes: a new family of two-dimensional materials. Advanced Materials, 2014, 26(7): 992–1005
32 M Naguib, O Mashtalir, J Carle, V Presser, J Lu, L Hultman, Y Gogotsi, M W Barsoum. Two-dimensional transition metal carbides. ACS Nano, 2012, 6(2): 1322–1331
33 B Anasori, M R Lukatskaya, Y Gogotsi. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews. Materials, 2017, 2(2): 16098
34 O Mashtalir, M Naguib, V N Mochalin, Y Dall’Agnese, M Heon, M W Barsoum, Y Gogotsi. Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 2013, 4: 1716
35 Y Gogotsi, B Anasori. The rise of MXenes. ACS Nano, 2019, 13(8): 8491–8494
36 K Hantanasirisakul, M Alhabeb, A Lipatov, K Maleski, B Anasori, P Salles, C Ieosakulrat, P Pakawatpanurut, A Sinitskii, S J May, et al. Effects of synthesis and processing on optoelectronic properties of titanium carbonitride MXene. Chemistry of Materials, 2019, 31(8): 2941–2951
37 M Khazaei, M Arai, T Sasaki, C Y Chung, N S Venkataramanan, M Estili, Y Sakka, Y Kawazoe. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Advanced Functional Materials, 2013, 23(17): 2185–2192
38 N R Hemanth, K Balasubramanian. Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting applications: a review. Chemical Engineering Journal, 2019, 392: 123678
39 A Szuplewska, D Kulpinska, A Dybko, M Chudy, A M Jastrzebska, A Olszyna, Z Brzozka. Future applications of MXenes in biotechnology, nanomedicine, and sensors. Trends in Biotechnology, 2020, 38(3): 264–279
40 A Sinha, Dhanjai, H M Zhao, Y J Huang, X B Lu, J P Chen, R Jain. MXene: an emerging material for sensing and biosensing. Trends in Analytical Chemistry, 2018, 105: 424–435
41 Z L Guo, J Zhou, L G Zhu, Z M Sun. MXene: a promising photocatalyst for water splitting. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(29): 11446–11452
42 I Ihsanullah. MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: progress, challenges and prospects. Chemical Engineering Journal, 2020, 388: 124340
43 L J Fu, Z L Yan, Q H Zhao, H M Yang. Novel 2D nanosheets with potential applications in heavy metal purification: a review. Advanced Materials Interfaces, 2018, 5(23): 1801094
44 X W Huang, P Y Wu. A facile, high-yield, and freeze-and-thaw-assisted approach to fabricate MXene with plentiful wrinkles and its application in on-chip micro-supercapacitors. Advanced Functional Materials, 2020, 30(12): 1910048
45 C E Ren, K B Hatzell, M Alhabeb, Z Ling, K A Mahmoud, Y Gogotsi. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. Journal of Physical Chemistry Letters, 2015, 6(20): 4026–4031
46 L Ding, Y Y Wei, Y J Wang, H B Chen, J Caro, H H Wang. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angewandte Chemie International Edition, 2017, 56(7): 1825–1829
47 L Ding, Y Y Wei, L B Li, T Zhang, H H Wang, J Xue, L X Ding, S Q Wang, J Caro, Y Gogotsi. MXene molecular sieving membranes for highly efficient gas separation. Nature Communications, 2018, 9(1): 155
48 Z K Li, Y C Liu, L B Li, Y Y Wei, J Caro, H H Wang. Ultra-thin titanium carbide (MXene) sheet membranes for high-efficient oil/water emulsions separation. Journal of Membrane Science, 2019, 592: 117361
49 J Shen, G Z Liu, Y F Ji, Q Liu, L Cheng, K C Guan, M C Zhang, G P Liu, J Xiong, J Yang, et al. 2D MXene nanofilms with tunable gas transport channels. Advanced Functional Materials, 2018, 28(31): 1801511
50 X F Feng, Z X Yu, R X Long, Y X Sun, M Wang, X H Li, G Y Zeng. Polydopamine intimate contacted two-dimensional/two-dimensional ultrathin nylon basement membrane supported RGO/PDA/MXene composite material for oil-water separation and dye removal. Separation and Purification Technology, 2020, 247: 116945
51 J Saththasivam, K Wang, W Yiming, Z Y Liu, K A Mahmoud. A flexible Ti3C2Tx (MXene)/paper membrane for efficient oil/water separation. RSC Advances, 2016, 9(29): 16296–16304
52 H J Zhang, Z H Wang, Y Q Shen, P Mu, Q T Wang, J Li. Ultrathin 2D Ti3C2Tx MXene membrane for effective separation of oil-in-water emulsions in acidic, alkaline, and salty environment. Journal of Colloid and Interface Science, 2020, 561: 861–869
53 Y Q Sun, S L Li, Y X Zhuang, G Z Liu, W H Xing, W Q Jing. Adjustable interlayer spacing of ultrathin MXene-derived membranes for ion rejection. Journal of Membrane Science, 2019, 591: 117350
54 X L Wu, X L Cui, W J Wu, J T Wang, Y F Li, Z Y Jiang. Elucidating ultrafast molecular permeation through well-defined 2D nanochannels of lamellar membranes. Angewandte Chemie International Edition, 2019, 58(51): 18524–18529
55 L Ding, D Xiao, Z Lu, J J Deng, Y Y Wei, J Caro, H H Wang. Oppositely charged Ti3C2Tx MXene membranes with 2D nanofluidic channels for osmotic energy harvesting. Angewandte Chemie International Edition, 2020, 59(22): 8720–8726
56 J Li, X Li, B Van der Bruggen. MXene based membrane for molecular separation. Environmental Science. Nano, 2020, 7(5): 1289–1304
57 Z Lu, Y Y Wei, J J Deng, L Ding, Z K Li, H H Wang. Self-crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion. ACS Nano, 2019, 13(9): 10535–10544
58 Y D Xing, G Akonkwa, Z Liu, H Q Ye, K Han. Crumpled two-dimensional Ti3C2Tx MXene lamellar membranes for solvent permeation and separation. ACS Applied Nano Materials, 2020, 3(2): 1526–1534
59 R P Pandey, K Rasool, V E Madhavan, B Aïssa, Y Gogotsi, K A Mahmoud. Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(8): 3522–3533
60 A A Shamsabadi, A P Isfahani, S K Salestan, A Rahimpour, B Ghalei, E Sivaniah, M Soroush. Pushing rubbery polymer membranes to be economic for CO2 separation: embedment with Ti3C2Tx MXene nanosheets. ACS Applied Materials & Interfaces, 2020, 12(3): 3984–3992
61 L Hao, H Q Zhang, X L Wu, J K Zhang, J T Wang, Y F Li. Novel thin-film nanocomposite membranes filled with multi-functional Ti3C2Tx nanosheets for task-specific solvent transport. Composites. Part A, Applied Science and Manufacturing, 2017, 100: 139–149
62 Z Xu, Y Q Sun, Y X Zhuang, W H Jing, H Ye, Z F Cui. Assembly of 2D MXene nanosheets and TiO2 nanoparticles for fabricating mesoporous TiO2-MXene membranes. Journal of Membrane Science, 2018, 564: 35–43
63 G Z Liu, J Shen, Q Liu, G P Liu, J Xiong, J Yang, W Q Jin. Ultrathin two-dimensional MXene membrane for pervaporation desalination. Journal of Membrane Science, 2018, 548: 548–558
64 S Hong, F W Ming, Y Shi, R Y Li, I S Kim, C Y Tang, H N Alshareef, P Wang. Two-dimensional Ti3C2Tx MXene membranes as nanofluidic osmotic power generators. ACS Nano, 2019, 13(8): 8917–8925
65 Z Zhang, S Yang, P P Zhang, J Zhang, G B Chen, X L Feng. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nature Communications, 2019, 10(1): 2920
66 J C Lao, R J Lv, J Gao, A X Wang, J S Wu, J Y Luo. Aqueous stable Ti3C2 MXene membrane with fast and photo-switchable nanofluidic transport. ACS Nano, 2018, 12(12): 12464–12471
67 M M Ding, H Xu, W Chen, G Yang, Q Kong, D Ng, T Lin, Z L Xie. 2D laminar maleic acid-crosslinked MXene membrane with tunable nanochannels for efficient and stable pervaporation desalination. Journal of Membrane Science, 2020, 600: 117871
68 L Ding, L B Li, Y C Liu, Y Wu, Z Lu, J J Deng, Y Y Wei, J Caro, H H Wang. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nature Sustainability, 2020, 3: 296–302
69 L B Li, T Zhang, Y F Duan, Y Y Wei, C J Dong, L Ding, Z W Qiao, H H Wang. Selective gas diffusion in twodimensional MXene lamellar membranes: insights from molecular dynamics simulations. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(25): 11734–11742
70 Y Y Fan, L Y Wei, X X Meng, W M Zhang, N T Yang, Y Jin, X B Wang, M W Zhao, S M Liu. An unprecedented high-temperature-tolerance 2D laminar MXene membrane for ultrafast hydrogen sieving. Journal of Membrane Science, 2019, 569: 117–123
71 Y Jin, Y Y Fan, X X Meng, W M Zhang, B Meng, N T Yang, S M Liu. Theoretical and experimental insights into the mechanism for gas separation through nanochannels in 2D Laminar MXene membranes. Processes (Basel, Switzerland), 2019, 7(10): 751
72 G Z Liu, L Cheng, G N Chen, F Liang, G P Liu, W Q Jin. Pebax-based membrane filled with two-dimensional MXene nanosheets for efficient CO2 capture. Chemistry, an Asian Journal, 2020, 15(15): 2364–2070
73 Y Wu, L Ding, Z Lu, J J Deng, Y Y Wei. Two-dimensional MXene membrane for ethanol dehydration. Journal of Membrane Science, 2019, 590: 117300
74 S S Li, J Dai, X Geng, J D Li, P Li, J D Lei, L Y Wang, J He. Highly selective sodium alginate mixed-matrix membrane incorporating multi-layered MXene for ethanol dehydration. Separation and Purification Technology, 2020, 235: 116206
75 G Z Liu, J Shen, Y F Ji, Q Liu, G P Liu, J Yang, W Q Jin. Two-dimensional Ti2CTx MXene membranes with integrated and ordered nanochannels for efficient solvent dehydration. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(19): 12095–12104
76 Z Xu, G Z Liu, H Ye, W Q Jin, Z F Cui. Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration. Journal of Membrane Science, 2018, 563: 625–632
77 G Z Liu, S Liu, K Ma, H Y Wang, X Y Wang, G P Liu, W Q Jin. Polyelectrolyte functionalized Ti2CTx MXene membranes for pervaporation dehydration of isopropanol/water mixtures. Industrial & Engineering Chemistry Research, 2020, 59(10): 4732–4741
78 K M Kang, D W Kim, C E Ren, K M Cho, S J Kim, J H Choi, Y T Nam, Y Gogotsi, H T Jung. Selective molecular separation on Ti3C2Tx-graphene oxide membranes during pressure-driven filtration: comparison with graphene oxide and MXenes. ACS Applied Materials & Interfaces, 2017, 9(51): 44687–44694
79 C Lin, W K Zhang, L Wang, Z G Wang, W Zhao, W H Duan, Z G Zhao, B Liu, J Jin. A few-layered Ti3C2 nanosheet/glass fiber composite separator as a lithium polysulphide reservoir for high-performance lithiumsulfur batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(16): 5993–5998
80 S Y Zhang, S Y Liao, F Y Qi, R T Liu, T H Xiao, J Q Hu, K X Li, R B Wang, Y G Min. Direct deposition of two-dimensional MXene nanosheets on commercially available filter for fast and efficient dye removal. Journal of Hazardous Materials, 2020, 384: 121367
81 R L Han, X F Ma, Y L Xie, D Teng, S H Zhang. Preparation of a new 2D MXene/PES composite membrane with excellent hydrophilicity and high flux. RSC Advances, 2017, 7: 56204–56210
82 Y Q Sun, Z Xu, Y X Zhuang, G Z Liu, W Q Jin, G P Liu, W H Jing. Tunable dextran retention of MXene-TiO2 mesoporous membranes by adjusting the 2D MXene content. 2D Materials, 2018, 5(4): 045003
83 X Gao, Z K Li, J Xue, Y Qian, L Z Zhang, J Caro, H H Wang. Titanium carbide Ti3C2Tx (MXene) enhanced PAN nanofiber membrane for air purification. Journal of Membrane Science, 2019, 586: 162–169
84 X L Wu, L Hao, J K Zhang, X Zhang, J T Wang, J D Liu. Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system. Journal of Membrane Science, 2016, 515: 175–188
85 R L Han, Y L Xie, X F Ma. Crosslinked P84 copolyimide/MXene mixed matrix membrane with excellent solvent resistance and permselectivity. Chinese Journal of Chemical Engineering, 2019, 27(4): 877–883
86 W Sun, S A Shah, Y Chen, Z Tan, H Gao, T Habib, M Radovic, M J Green. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(41): 21663–21668
87 M Li, J Lu, K Luo, Y B Li, K K Chang, K Chen, J Zhou, J Rosen, L Hultman, P Eklund, et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. Journal of the American Chemical Society, 2019, 141(11): 4730–4737
88 Z Ling, C E Ren, M Q Zhao, J Yang, J M Giammarco, J S Qiu, M W Barsoum, Y Gogotsi. Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47): 16676–16681
89 Y L Ying, Y Liu, X Y Wang, Y Y Mao, W Cao, P Hu, X S Peng. Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water. ACS Applied Materials & Interfaces, 2015, 7(3): 1795–1803
90 H B Huang, Y L Ying, X S Peng. Graphene oxide nanosheet: an emerging star material for novel separation membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(34): 13772–13782
91 K W Putz, O C Compton, C Segar, Z An, S T Nguyen, L C Brinson. Evolution of order during vacuum-assisted self-assembly of graphene oxide paper and associated polymer nanocomposites. ACS Nano, 2011, 5(8): 6601–6609
92 D A Dikin, S Stankovich, E J Zimney, R D Piner, R S Ruoff. Preparation and characterization of graphene oxide paper. Nature, 2007, 448(7152): 457–460
93 R Y Han, P Y Wu. High-performance graphene oxide nanofiltration membrane with continuous nanochannels prepared by the in situ oxidation of MXene. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(11): 6475–6481
94 X P Cao, W H Jing, W H Xing, Y Q Fan, Y Kong, J H Dong. Fabrication of a visible-light response mesoporous TiO2 membrane with superior water permeability via a weak alkaline sol-gel process. Chemical Communications, 2011, 47(12): 3457–3459
95 D Zou, M H Qiu, X F Chen, Y Q Fan. One-step preparation of high-performance bilayer a-alumina ultrafiltration membranes via co-sintering process. Journal of Membrane Science, 2017, 524: 141–150
96 C S Xia, Z Xu, J Yu, Y Q Sun, W H Jing. Fabrication of microporous GO-TiO2 membrane via an improved weak alkaline solgel method. Journal of Membrane Science, 2018, 561: 10–18
97 J Yu, Y Zhang, J Chen, L L Cui, W H Jing. Solvothermal-induced assembly of 2D-2D rGO-TiO2 nanocomposite for the construction of nanochannel membrane. Journal of Membrane Science, 2020, 600: 117870
98 Y Lee, S J Kim, Y J Kim, Y Lim, Y Chae, B J Lee, Y T Kim, H Han, Y Gogotsi, C W Ahn. Oxidation-resistant titanium carbide MXene films. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(2): 573–581
99 V Natu, J L Hart, M Sokol, H Chiang, M L Taheri, M W Barsoum. Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angewandte Chemie International Edition, 2019, 58(36): 12655–12660
100 Z H Wang, H B Li, M L Luo, T H Chen, X F Xia, H L Chen, C Y Ma, J Guo, Z W He, Y F Song, et al. MXene photonic devices for near-infrared to mid-infrared ultrashort pulse generation. ACS Applied Nano Materials, 2020, 3(4): 3513–3522
101 J H Peng, X Z Chen, W J Ong, X J Zhao, N Li. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis. Chem, 2019, 5(1): 18–50
102 W Zhang, Z Y Guo, D Q Huang, Z M Liu, X Guo, H Q Zhong. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials, 2011, 32(33): 8555–8561
103 Z Y Chang, J K Deng, G G Chandrakumara, W Y Yan, J Z Liu. Two-dimensional shape memory graphene oxide. Nature Communications, 2016, 7(1): 11972
104 S Kim, M K Gupta, K Y Lee, A Sohn, T Y Kim, K S Shin, D Kim, S K Kim, K H Lee, H J Shin, et al. Transparent flexible graphene triboelectric nanogenerators. Advanced Materials, 2014, 26(23): 3918–3925
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed