Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2021, Vol. 15 Issue (4): 892-901   https://doi.org/10.1007/s11705-020-2011-0
  本期目录
Novel Ag-AgBr decorated composite membrane for dye rejection and photodegradation under visible light
Yixing Wang, Liheng Dai, Kai Qu, Lu Qin, Linzhou Zhuang, Hu Yang, Zhi Xu()
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
 全文: PDF(1993 KB)   HTML
Abstract

Photocatalytic membranes have received increasing attention due to their excellent separation and photodegradation of organic contaminants in wastewater. Herein, we bound Ag-AgBr nanoparticles onto a synthesized polyacrylonitrile-ethanolamine (PAN-ETA) membrane with the aid of a chitosan (CS)-TiO2 layer via vacuum filtration and in-situ partial reduction. The introduction of the CS-TiO2 layer improved surface hydrophilicity and provided attachment sites for the Ag-AgBr nanoparticles. The PAN-ETA/CS-TiO2/Ag-AgBr photocatalytic membranes showed a relatively high water permeation flux (~ 47 L·m–2·h–1·bar–1) and dyes rejection (methyl orange: 88.22%; congo red: 95%; methyl blue: 97.41%; rose bengal: 99.98%). Additionally, the composite membranes exhibited potential long-term stability for dye/salt separation (dye rejection: ~97%; salt rejection: ~6.5%). Moreover, the methylene blue and rhodamine B solutions (20 mL, 10 mg·L−1) were degraded approximately 90.75% and 96.81% in batch mode via the synthesized photocatalytic membranes under visible light irradiation for 30 min. This study provides a feasible method for the combination of polymeric membranes and inorganic catalytic materials.

Key wordsAg-AgBr    dye rejection    photodegradation    visible light
收稿日期: 2020-07-27      出版日期: 2021-06-04
Corresponding Author(s): Zhi Xu   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2021, 15(4): 892-901.
Yixing Wang, Liheng Dai, Kai Qu, Lu Qin, Linzhou Zhuang, Hu Yang, Zhi Xu. Novel Ag-AgBr decorated composite membrane for dye rejection and photodegradation under visible light. Front. Chem. Sci. Eng., 2021, 15(4): 892-901.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-020-2011-0
https://academic.hep.com.cn/fcse/CN/Y2021/V15/I4/892
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Membrane Degradation condition a) Irradiation condition Degradation efficiency Ref.
Membrane area Dye solution volume (concentration)
PVDF@CuFe2O4 10 cm2 50 mL MB (100 mg/L) Vis, 30 min 99% [16]
PDA/RGO/Ag3PO4/PVDF 36 cm2 100 mL MEB (20 mg/L) Vis, 480 min 96.8% [48]
PVDF/GO/ZnO 9 cm2 60 mL MEB (10 mg/L) Vis, 100 min 86.8% [49]
ZnO/PAN nanofiber 50 mg 10 mL MEB (10 mg/L) Vis, 480 min 96% [50]
Ag/TiO2/PVDF 30 mL MEB (10 mg/L) Vis, 100 min 51% [51]
Ag/g-C3N4/PES 20 cm2 50 mL MO (10 mg/L) Vis, 100 min 77% [52]
PS/CCA/TiO2 25 cm2 100 mL RhB (10 mg/L) Vis, 180 min 82.4% [53]
Pluronic-TiO2 12 mL RhB (100 μmol/L) UV, 480 min 90% [54]
PAN-ETA/CS-TiO2/Ag-AgBr 4 cm2 20 mL RhB (10 mg/L)
20 mL MEB (10 mg/L)
Vis, 30 min 96.81%
90.75%
This work
Tab.1  
Fig.10  
1 C Dong, J Lu, B Qiu, B Shen, M Xing, J Zhang. Developing stretchable and graphene-oxide-based hydrogel for the removal of organic pollutants and metal ions. Applied Catalysis B: Environmental, 2018, 222: 146–156
https://doi.org/10.1016/j.apcatb.2017.10.011
2 H Liu, R Sun, S Feng, D Wang, H Liu. Rapid synthesis of a silsesquioxane-based disulfide-linked polymer for selective removal of cationic dyes from aqueous solutions. Chemical Engineering Journal, 2019, 359: 436–445
https://doi.org/10.1016/j.cej.2018.11.148
3 A Khalil, N M Aboamera, W S Nasser, W H Mahmoud, G G Mohamed. Photodegradation of organic dyes by PAN/SiO2-TiO2-NH2 nanofiber membrane under visible light. Separation and Purification Technology, 2019, 224: 509–514
https://doi.org/10.1016/j.seppur.2019.05.056
4 Y Zhao, S Kang, L Qin, W Wang, T Zhang, S Song, S Komarneni. Self-assembled gels of Fe-chitosan/montmorillonite nanosheets: Dye degradation by the synergistic effect of adsorption and photo-Fenton reaction. Chemical Engineering Journal, 2020, 379: 122322
https://doi.org/10.1016/j.cej.2019.122322
5 P Samanta, P Chandra, A V Desai, S K Ghosh. Chemically stable microporous hyper-cross-linked polymer (HCP): an efficient selective cationic dye scavenger from an aqueous medium. Materials Chemistry Frontiers, 2017, 1(7): 1384–1388
https://doi.org/10.1039/C6QM00362A
6 A K Verma, R R Dash, P Bhunia. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 2012, 93(1): 154–168
https://doi.org/10.1016/j.jenvman.2011.09.012
7 K Dutta, S Mukhopadhyay, S Bhattacharjee, B Chaudhuri. Chemical oxidation of methylene blue using a Fenton-like reaction. Journal of Hazardous Materials, 2001, 84(1): 57–71
https://doi.org/10.1016/S0304-3894(01)00202-3
8 G Zeng, Y He, Y Zhan, L Zhang, Y Pan, C Zhang, Z Yu. Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal. Journal of Hazardous Materials, 2016, 317: 60–72
https://doi.org/10.1016/j.jhazmat.2016.05.049
9 H Fan, J Gu, H Meng, A Knebel, J Caro. High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration. Angewandte Chemie International Edition, 2018, 57(15): 4083–4087
https://doi.org/10.1002/anie.201712816
10 A Liu, C C Wang, C Z Wang, H F Fu, W Peng, Y L Cao, H Y Chu, A F Du. Selective adsorption activities toward organic dyes and antibacterial performance of silver-based coordination polymers. Journal of Colloid and Interface Science, 2018, 512: 730–739
https://doi.org/10.1016/j.jcis.2017.10.099
11 T Dou, L Zang, Y Zhang, Z Sun, L Sun, C Wang. Hybrid g-C3N4 nanosheet/carbon paper membranes for the photocatalytic degradation of methylene blue. Materials Letters, 2019, 244: 151–154
https://doi.org/10.1016/j.matlet.2019.02.066
12 E Brillas, C A Martínez-Huitle. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 2015, 166-167: 603–643
https://doi.org/10.1016/j.apcatb.2014.11.016
13 J Li, S Yuan, J Zhu, B Van der Bruggen. High-flux, antibacterial composite membranes via polydopamine-assisted PEI-TiO2/Ag modification for dye removal. Chemical Engineering Journal, 2019, 373: 275–284
https://doi.org/10.1016/j.cej.2019.05.048
14 B Li, M Meng, Y Cui, Y Wu, Y Zhang, H Dong, Z Zhu, Y Feng, C Wu. Changing conventional blending photocatalytic membranes (BPMs): focus on improving photocatalytic performance of Fe3O4/g-C3N4/PVDF membranes through magnetically induced freezing casting method. Chemical Engineering Journal, 2019, 365: 405–414
https://doi.org/10.1016/j.cej.2019.02.042
15 J Zhu, J Wang, J Hou, Y Zhang, J Liu, B Van der Bruggen. Graphene-based antimicrobial polymeric membranes: a review. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(15): 6776–6793
https://doi.org/10.1039/C7TA00009J
16 T Wang, Z Wang, P Wang, Y Tang. An integration of photo-Fenton and membrane process for water treatment by a PVDF@CuFe2O4 catalytic membrane. Journal of Membrane Science, 2019, 572: 419–427
https://doi.org/10.1016/j.memsci.2018.11.031
17 C S Ong, P S Goh, W J Lau, N Misdan, A F Ismail. Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: a review. Desalination, 2016, 393: 2–15
https://doi.org/10.1016/j.desal.2016.01.007
18 V Kochkodan, N Hilal. A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination, 2015, 356: 187–207
https://doi.org/10.1016/j.desal.2014.09.015
19 C P Athanasekou, N G Moustakas, S Morales-Torres, L M Pastrana-Martínez, J L Figueiredo, J L Faria, A M T Silva, J M Dona-Rodriguez, G E Romanos, P Falaras. Ceramic photocatalytic membranes for water filtration under UV and visible light. Applied Catalysis B: Environmental, 2015, 178: 12–19
https://doi.org/10.1016/j.apcatb.2014.11.021
20 S Mozia, D Darowna, A Orecki, R Wróbel, K Wilpiszewska, A W Morawski. Microscopic studies on TiO2 fouling of MF/UF polyethersulfone membranes in a photocatalytic membrane reactor. Journal of Membrane Science, 2014, 470: 356–368
https://doi.org/10.1016/j.memsci.2014.07.049
21 Y Gao, M Hu, B Mi. Membrane surface modification with TiO2-graphene oxide for enhanced photocatalytic performance. Journal of Membrane Science, 2014, 455: 349–356
https://doi.org/10.1016/j.memsci.2014.01.011
22 I Horovitz, D Avisar, M A Baker, R Grilli, L Lozzi, D Di Camillo, H Mamane. Carbamazepine degradation using a N-doped TiO2 coated photocatalytic membrane reactor: influence of physical parameters. Journal of Hazardous Materials, 2016, 310: 98–107
https://doi.org/10.1016/j.jhazmat.2016.02.008
23 H Rawindran, J W Lim, P S Goh, M N Subramaniam, A F Ismail, N M Radi bin Nik M Daud, M Rezaei-Dasht Arzhandi. Simultaneous separation and degradation of surfactants laden in produced water using PVDF/TiO2 photocatalytic membrane. Journal of Cleaner Production, 2019, 221: 490–501
https://doi.org/10.1016/j.jclepro.2019.02.230
24 C Hu, M S Wang, C H Chen, Y R Chen, P H Huang, K L Tung. Phosphorus-doped g-C3N4 integrated photocatalytic membrane reactor for wastewater treatment. Journal of Membrane Science, 2019, 580: 1–11
https://doi.org/10.1016/j.memsci.2019.03.012
25 L Qu, G Zhu, J Ji, T P Yadav, Y Chen, G Yang, H Xu, H Li. Recyclable visible light-driven O-g-C3N4/graphene oxide/N-carbon nanotube membrane for efficient removal of organic pollutants. ACS Applied Materials & Interfaces, 2018, 10(49): 42427–42435
https://doi.org/10.1021/acsami.8b15905
26 A Qin, X Li, X Zhao, D Liu, C He. Engineering a highly hydrophilic PVDF membrane via binding TiO2 nanoparticles and a PVA layer onto a membrane surface. ACS Applied Materials & Interfaces, 2015, 7(16): 8427–8436
https://doi.org/10.1021/acsami.5b00978
27 W Li, B Li, M Meng, Y Cui, Y Wu, Y Zhang, H Dong, Y Feng. Bimetallic Au/Ag decorated TiO2 nanocomposite membrane for enhanced photocatalytic degradation of tetracycline and bactericidal efficiency. Applied Surface Science, 2019, 487: 1008–1017
https://doi.org/10.1016/j.apsusc.2019.05.162
28 J Tian, P Hao, N Wei, H Cui, H Liu. 3D Bi2MoO6 nanosheet/TiO2 nanobelt heterostructure: enhanced photocatalytic activities and photoelectochemistry performance. ACS Catalysis, 2015, 5(8): 4530–4536
https://doi.org/10.1021/acscatal.5b00560
29 B Liu, L M Liu, X F Lang, H Y Wang, X W Lou, E S Aydil. Doping high-surface-area mesoporous TiO2 microspheres with carbonate for visible light hydrogen production. Energy & Environmental Science, 2014, 7(8): 2592–2597
https://doi.org/10.1039/C4EE00472H
30 W Kong, S Wang, D Wu, C Chen, Y Luo, Y Pei, B Tian, J Zhang. Fabrication of 3D sponge@AgBr-AgCl/Ag and tubular photo-reactor for continuous waste water purification under sunlight irradiation. ACS Sustainable Chemistry & Engineering, 2019, 7(16): 14051–14063
https://doi.org/10.1021/acssuschemeng.9b02575
31 P Wang, B Huang, X Zhang, X Qin, Y Dai, Z Wang, Z Lou. Highly efficient visible light plasmonic photocatalysts Ag@Ag(Cl,Br) and Ag@AgCl-AgI. ChemCatChem, 2011, 3(2): 360–364
https://doi.org/10.1002/cctc.201000380
32 S S Madaeni, N Ghaemi. Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation. Journal of Membrane Science, 2007, 303(1): 221–233
https://doi.org/10.1016/j.memsci.2007.07.017
33 Y X Wang, S Ma, M N Huang, H Yang, Z L Xu, Z Xu. Ag NPs coated PVDF@TiO2 nanofiber membrane prepared by epitaxial growth on TiO2 inter-layer for 4-NP reduction application. Separation and Purification Technology, 2019, 227: 115700
https://doi.org/10.1016/j.seppur.2019.115700
34 H S Lee, S J Im, J H Kim, H J Kim, J P Kim, B R Min. Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination, 2008, 219(1): 48–56
https://doi.org/10.1016/j.desal.2007.06.003
35 Y X Wang, Y J Li, H Yang, Z L Xu. Super-wetting, photoactive TiO2 coating on amino-silane modified PAN nanofiber membranes for high efficient oil-water emulsion separation application. Journal of Membrane Science, 2019, 580: 40–48
https://doi.org/10.1016/j.memsci.2019.02.062
36 X Zhang, M Wang, C H Ji, X R Xu, X H Ma, Z L Xu. Multilayer assembled CS-PSS/ceramic hollow fiber membranes for pervaporation dehydration. Separation and Purification Technology, 2018, 203: 84–92
https://doi.org/10.1016/j.seppur.2018.04.006
37 Y Qin, Y X Wang, H Yang, Z L Xu. ETA-m-PAN and its composite membrane with high performance prepared by in situ modification/NIPS principle. Macromolecular Materials and Engineering, 2019, 304(4): 1800745
https://doi.org/10.1002/mame.201800745
38 J Dai, Y Sun, Z Liu. Efficient degradation of tetracycline in aqueous solution by Ag/AgBr catalyst under solar irradiation. Materials Research Express, 2019, 6(8): 085512
https://doi.org/10.1088/2053-1591/ab1db3
39 P Wang, B Huang, X Zhang, X Qin, H Jin, Y Dai, Z Wang, J Wei, J Zhan, S Wang, J Wang, M H Whangbo. Highly efficient visible-light plasmonic photocatalyst Ag@AgBr. Chemistry (Weinheim an der Bergstrasse, Germany), 2009, 15(8): 1821–1824
https://doi.org/10.1002/chem.200802327
40 Z W Dai, L S Wan, Z K Xu. Surface glycosylation of polyacrylonitrile ultrafiltration membrane to improve its anti-fouling performance. Journal of Membrane Science, 2008, 325(1): 479–485
https://doi.org/10.1016/j.memsci.2008.08.013
41 J Wang, W Zhang, W Li, W Xing. Preparation and characterization of chitosan-poly(vinyl alcohol)/polyvinylidene fluoride hollow fiber composite membranes for pervaporation dehydration of isopropanol. Korean Journal of Chemical Engineering, 2015, 32(7): 1369–1376
https://doi.org/10.1007/s11814-014-0328-4
42 M M Beppu, R S Vieira, C G Aimoli, C C Santana. Crosslinking of chitosan membranes using glutaraldehyde: effect on ion permeability and water absorption. Journal of Membrane Science, 2007, 301(1): 126–130
https://doi.org/10.1016/j.memsci.2007.06.015
43 R S Vieira, M M Beppu. Interaction of natural and crosslinked chitosan membranes with Hg(II) ions. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2006, 279(1): 196–207
https://doi.org/10.1016/j.colsurfa.2006.01.026
44 X Ye, Y Zhou, J Chen, Y Sun. Synthesis and infrared emissivity study of collagen-g-PMMA/Ag@TiO2 composite. Materials Chemistry and Physics, 2007, 106(2): 447–451
https://doi.org/10.1016/j.matchemphys.2007.06.056
45 R Dong, B Tian, C Zeng, T Li, T Wang, J Zhang. Ecofriendly synthesis and photocatalytic activity of uniform cubic Ag@AgCl plasmonic photocatalyst. Journal of Physical Chemistry C, 2013, 117(1): 213–220
https://doi.org/10.1021/jp311970k
46 M Zhu, P Chen, M Liu. Sunlight-driven plasmonic photocatalysts based on Ag/AgCl nanostructures synthesized via an oil-in-water medium: enhanced catalytic performance by morphology selection. Journal of Materials Chemistry, 2011, 21(41): 16413–16419
https://doi.org/10.1039/c1jm13326h
47 N K Eswar, V V Katkar, P C Ramamurthy, G Madras. Novel AgBr/Ag3PO4 decorated ceria nanoflake composites for enhanced photocatalytic activity toward dyes and bacteria under visible light. Industrial & Engineering Chemistry Research, 2015, 54(33): 8031–8042
https://doi.org/10.1021/acs.iecr.5b01993
48 R Zhang, Y Cai, X Zhu, Q Han, T Zhang, Y Liu, Y Li, A Wang. A novel photocatalytic membrane decorated with PDA/RGO/Ag3PO4 for catalytic dye decomposition. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2019, 563: 68–76
https://doi.org/10.1016/j.colsurfa.2018.11.069
49 D Zhang, F Dai, P Zhang, Z An, Y Zhao, L Chen. The photodegradation of methylene blue in water with PVDF/GO/ZnO composite membrane. Materials Science and Engineering C, 2019, 96: 684–692
https://doi.org/10.1016/j.msec.2018.11.049
50 Y Zhou, X Li, H Y Yu, G L Hu, J M Yao. Facile fabrication of controllable zinc oxide nanorod clusters on polyacrylonitrile nanofibers via repeatedly alternating immersion method. Journal of Nanoparticle Research, 2016, 18(12): 359
https://doi.org/10.1007/s11051-016-3678-5
51 J H Li, B F Yan, X S Shao, S S Wang, H Y Tian, Q Q Zhang. Influence of Ag/TiO2 nanoparticle on the surface hydrophilicity and visible-light response activity of polyvinylidene fluoride membrane. Applied Surface Science, 2015, 324: 82–89
https://doi.org/10.1016/j.apsusc.2014.10.080
52 M Zhang, Z Liu, Y Gao, L Shu. Ag modified g-C3N4 composite entrapped PES UF membrane with visible-light-driven photocatalytic antifouling performance. RSC Advances, 2017, 7(68): 42919–42928
https://doi.org/10.1039/C7RA07775K
53 M M Mahlambi, O T Mahlangu, G D Vilakati, B B Mamba. Visible light photodegradation of Rhodamine B dye by two forms of carbon-covered alumina supported TiO2/polysulfone membranes. Industrial & Engineering Chemistry Research, 2014, 53(14): 5709–5717
https://doi.org/10.1021/ie4038449
54 R Goei, Z Dong, T T Lim. High-permeability pluronic-based TiO2 hybrid photocatalytic membrane with hierarchical porosity: fabrication, characterizations and performances. Chemical Engineering Journal, 2013, 228: 1030–1039
https://doi.org/10.1016/j.cej.2013.05.068
[1] FCE-20070-OF-WY_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed