Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2021, Vol. 15 Issue (5): 1111-1124   https://doi.org/10.1007/s11705-020-2031-9
  本期目录
The synergic effects of highly selective bimetallic Pt-Pd/SAPO-41 catalysts for the n-hexadecane hydroisomerization
Guozhi Jia, Chunmu Guo, Wei Wang(), Xuefeng Bai, Xiaomeng Wei, Xiaofang Su, Tong Li, Linfei Xiao, Wei Wu()
National Center for International Research on Catalytic Technology, Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, China
 全文: PDF(2036 KB)   HTML
Abstract

The hydroisomerization of n-hexadecane over Pt-Pd bimetallic catalysts is an effective way to produce clean fuel oil. This work reports a useful preparation method of bimetallic bifunctional catalysts by a co-impregnation or sequential impregnation process. Furthermore, monometallic catalysts with loading either Pt or Pd are also prepared for comparison. The effects of the metal species and impregnation order on the characteristics and catalytic performance of the catalysts are investigated. The catalytic test results indicate that the maximum iso-hexadecane yield over different catalysts increases as follows: Pt/silicoaluminophosphate SAPO-41<Pd/SAPO-41<Pt*-Pd/SAPO-41 (prepared by sequential impregnation)<Pt-Pd/SAPO-41 (prepared by co-impregnation). Owing to the synergic effects between Pt and Pd, the Pt-Pd/SAPO-41 catalyst prepared by the co-impregnation method demonstrates the effective promotion of (de)hydrogenation activity. Therefore, this catalyst exhibits the highest iso-hexadecane yield of 89.4% when the n-hexadecane conversion is 96.3%. Additionally, the Pt-Pd/SAPO-41 catalyst also presents the highest catalytic activity and best stability even after 150 h long-term tests.

Key wordsSAPO-41 molecular sieve    Pt-Pd bimetallic site    bifunctional catalysts    n-hexadecane    hydroisomerization
收稿日期: 2020-08-27      出版日期: 2021-08-30
Corresponding Author(s): Wei Wang,Wei Wu   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2021, 15(5): 1111-1124.
Guozhi Jia, Chunmu Guo, Wei Wang, Xuefeng Bai, Xiaomeng Wei, Xiaofang Su, Tong Li, Linfei Xiao, Wei Wu. The synergic effects of highly selective bimetallic Pt-Pd/SAPO-41 catalysts for the n-hexadecane hydroisomerization. Front. Chem. Sci. Eng., 2021, 15(5): 1111-1124.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-020-2031-9
https://academic.hep.com.cn/fcse/CN/Y2021/V15/I5/1111
Fig.1  
Fig.2  
Samples Surface area/(m2·g–1) Pore volume/(cm3·g–1)
BETa) Microporeb) External Totalc) Microporeb) Mesopored)
SAPO-41 251 228 23 0.132 0.081 0.051
Pt/SAPO-41 210 165 45 0.155 0.072 0.083
Pd/SAPO-41 182 146 36 0.121 0.061 0.060
Pt*-Pd/SAPO-41 173 140 33 0.114 0.056 0.058
Pt-Pd/SAPO-41 153 128 25 0.099 0.047 0.052
Tab.1  
Fig.3  
Fig.4  
Fig.5  
Samples Brønsted acid sites/(mmol·g–1)a) dMe-TEM/nmb) CMe/(mmol·g–1)c) CMe/CH+d)
Strong Total
SAPO-41 56.2 89.4
Pt/SAPO-41 25.5 43.3 5.2 5.7 0.13
Pd/SAPO-41 20.1 38.5 3.8 11.0 0.29
Pt*-Pd/SAPO-41 19.6 38.1 3.6 13.8 0.36
Pt-Pd/SAPO-41 18.6 35.1 2.7 17.7 0.50
Tab.2  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 A Avinash, A Murugesan. Prediction capabilities of mathematical models in producing a renewable fuel from waste cooking oil for sustainable energy and clean environment. Fuel, 2018, 216: 322–329
https://doi.org/10.1016/j.fuel.2017.12.029
2 C Peng, Y Du, X Feng, Y Hu, X Fang. Research and development of hydrocracking catalysts and technologies in China. Frontiers of Chemical Science and Engineering, 2018, 12(4): 867–877
https://doi.org/10.1007/s11705-018-1768-x
3 J A Martens, D Verboekend, K Thomas, G Vanbutsele, J P Gilson, J Perez Ramirez. Hydroisomerization of emerging renewable hydrocarbons using hierarchical Pt/H-ZSM-22 catalyst. ChemSusChem, 2013, 6(3): 421–425
https://doi.org/10.1002/cssc.201200888
4 X Liu, B Deng, J Fu, Z Xu, J Liu, M Li, Q Li, Z Ma, R Feng. The effect of air/fuel composition on the HC emissions for a twin-spark motorcycle gasoline engine: a wide condition range study. Chemical Engineering Journal, 2019, 355: 170–180
https://doi.org/10.1016/j.cej.2018.08.097
5 Z Wang, Y Zhang, E C Neyts, X Cao, X Zhang, B W L Jang, C J Liu. Catalyst preparation with plasmas: How does it work? ACS Catalysis, 2018, 8(3): 2093–2110
https://doi.org/10.1021/acscatal.7b03723
6 K Chen, D Cheng, C Peng, D Wang, J Zhang. Green catalytic engineering: a powerful tool for sustainable development in chemical industry. Frontiers of Chemical Science and Engineering, 2018, 12(4): 835–837
https://doi.org/10.1007/s11705-018-1756-1
7 L Li, Z Yao, S You, C Wang, C Chong, X Wang. Optimal design of negative emission hybrid renewable energy systems with biochar production. Applied Energy, 2019, 243: 233–249
https://doi.org/10.1016/j.apenergy.2019.03.183
8 L Santamaria, G Lopez, A Arregi, M Amutio, M Artetxe, J Bilbao, M Olazar. Stability of different Ni supported catalysts in the in-line steam reforming of biomass fast pyrolysis volatiles. Applied Catalysis B: Environmental, 2019, 242: 109–120
https://doi.org/10.1016/j.apcatb.2018.09.081
9 X Song, X Bai, W Wu, O V Kikhtyanin, A Zhao, L Xiao, X Su, J Zhang, X Wei. The effect of palladium loading on the catalytic performance of Pd/SAPO-11 for n-decane hydroisomerization. Molecular Catalysis, 2017, 433: 84–90
https://doi.org/10.1016/j.mcat.2016.12.017
10 G Corro, A Flores, F Pacheco-Aguirre, U Pal, F Banuelos, A Ramirez, A Zehe. Biodiesel and fossil-fuel diesel soot oxidation activities of Ag/CeO2 catalyst. Fuel, 2019, 250: 17–26
https://doi.org/10.1016/j.fuel.2019.03.043
11 X Ou, C Wu, K Shi, C Hardacre, J Zhang, Y Jiao, X Fan. Structured ZSM-5/SiC foam catalysts for bio-oils upgrading. Applied Catalysis A, General, 2020, 599: 117626
https://doi.org/10.1016/j.apcata.2020.117626
12 M Mantovani, D Mandelli, M Gonçalves, W A Carvalho. Fructose dehydration promoted by acidic catalysts obtained from biodiesel waste. Chemical Engineering Journal, 2018, 348: 860–869
https://doi.org/10.1016/j.cej.2018.05.059
13 D Singh, D Sharma, S L Soni, S Sharma, D Kumari. Chemical compositions, properties, and standards for different generation biodiesels: a review. Fuel, 2019, 253: 60–71
https://doi.org/10.1016/j.fuel.2019.04.174
14 W Wang, C Liu, W Wu. Bifunctional catalysts for the hydroisomerization of n-alkanes: the effects of metal-acid balance and textural structure. Catalysis Science & Technology, 2019, 9(16): 4162–4187
https://doi.org/10.1039/C9CY00499H
15 P Li, K Sakuragi, H Makino. Extraction techniques in sustainable biofuel production: a concise review. Fuel Processing Technology, 2019, 193: 295–303
https://doi.org/10.1016/j.fuproc.2019.05.009
16 K Jaroszewska, M Fedyna, J Trawczynski. Hydroisomerization of long-chain n-alkanes over Pt/AlSBA-15+ zeolite bimodal catalysts. Applied Catalysis B: Environmental, 2019, 255: 117756
https://doi.org/10.1016/j.apcatb.2019.117756
17 P S Mendes, F M Mota, J M Silva, M F Ribeiro, A Daudin, C Bouchy. A systematic study on mixtures of Pt/zeolite as hydroisomerization catalysts. Catalysis Science & Technology, 2017, 7(5): 1095–1107
https://doi.org/10.1039/C6CY02642G
18 F Zhang, Y Liu, Q Sun, Z Dai, H Gies, Q Wu, S Pan, C Bian, Z Tian, X Meng, Y Zhang, X Zou, X Yi, A Zheng, L Wang, F S Xiao. Design and preparation of efficient hydroisomerization catalysts by the formation of stable SAPO-11 molecular sieve nanosheets with 10–20 nm thickness and partially blocked acidic sites. Chemical Communications (Cambridge), 2017, 53(36): 4942–4945
https://doi.org/10.1039/C7CC01519D
19 T Li, W Wang, Z Feng, X Bai, X Su, L Yang, G Jia, C Guo, W Wu. The hydroisomerization of n-hexane over highly selective Pd/ZSM-22 bifunctional catalysts: the improvements of metal-acid balance by room temperature electron reduction method. Fuel, 2020, 272: 117717
https://doi.org/10.1016/j.fuel.2020.117717
20 O Xu, H Su, X Jin, J Chu. Kinetic model for hydroisomerization reaction of C8-aromatics. Frontiers of Chemical Science and Engineering, 2008, 2(1): 10–16
21 B Smit, T L M Maesen. Towards a molecular understanding of shape selectivity. Nature, 2008, 451(7179): 671–678
https://doi.org/10.1038/nature06552
22 Y Xu, S Cui. A novel fluid catalytic cracking process for maximizing iso-paraffins: from fundamentals to commercialization. Frontiers of Chemical Science and Engineering, 2018, 12(1): 9–23
https://doi.org/10.1007/s11705-017-1696-1
23 P Meriaudeau, V A Tuan, V T Nghiem, S Y Lai, L N Hung, C Naccache. SAPO-11, SAPO-31, and SAPO-41 molecular sieves: synthesis, characterization, and catalytic properties in n-octane hydroisomerization. Journal of Catalysis, 1997, 169(1): 55–66
https://doi.org/10.1006/jcat.1997.1647
24 K C Park, S K Ihm. Comparison of Pt/zeolite catalysts for n-hexadecane hydroisomerization. Applied Catalysis A, General, 2000, 203(2): 201–209
https://doi.org/10.1016/S0926-860X(00)00490-7
25 V T Nghiem, G Sapaly, P Meriaudeau, C Naccache. Monodimensional tubular medium pore molecular sieves for selective hydroisomerisation of long chain alkanes: n-octane reaction on ZSM and SAPO type catalysts. Topics in Catalysis, 2000, 14(1/4): 131–138
https://doi.org/10.1023/A:1009071403372
26 T Yue, W Liu, L Li, X Zhao, K Zhu, X Zhou, W Yang. Crystallization of ATO silicoaluminophosphates nanocrystalline spheroids using a phase-transfer synthetic strategy for n-heptane hydroisomerization. Journal of Catalysis, 2018, 364: 308–327
https://doi.org/10.1016/j.jcat.2018.06.003
27 L Ge, G Yu, X Chen, W Li, W Xue, M Qiu, Y Sun. Effects of particle size on bifunctional Pt/SAPO-11 catalysts in the hydroisomerization of n-dodecane. New Journal of Chemistry, 2020, 44(7): 2996–3003
https://doi.org/10.1039/C9NJ06215G
28 X Wei, O V Kikhtyanin, V N Parmon, W Wu, X Bai, J Zhang, L Xiao, X Su, Y Zhang. Synergetic effect between the metal and acid sites of Pd/SAPO-41 bifunctional catalysts in n-hexadecane hydroisomerization. Journal of Porous Materials, 2017, 25(1): 235–247
https://doi.org/10.1007/s10934-017-0437-7
29 M Y Kim, K Lee, M Choi. Cooperative effects of secondary mesoporosity and acid site location in Pt/SAPO-11 on n-dodecane hydroisomerization selectivity. Journal of Catalysis, 2014, 319: 232–238
https://doi.org/10.1016/j.jcat.2014.09.001
30 Z Yang, Y Liu, Y Li, L Zeng, Z Liu, X Liu, C Liu. Effect of preparation method on the bimetallic NiCu/SAPO-11 catalysts for the hydroisomerization of n-octane. Journal of Energy Chemistry, 2019, 28: 23–30
https://doi.org/10.1016/j.jechem.2017.10.003
31 J Kim, S W Han, J C Kim, R Ryoo. Supporting nickel to replace platinum on zeolite nanosponges for catalytic hydroisomerization of ndodecane. ACS Catalysis, 2018, 8(11): 10545–10554
https://doi.org/10.1021/acscatal.8b03301
32 Z Yang, Y Liu, D Liu, X Meng, C Liu. Hydroisomerization of n-octane over bimetallic Ni-Cu/SAPO-11 catalysts. Applied Catalysis A, General, 2017, 543: 274–282
https://doi.org/10.1016/j.apcata.2017.06.028
33 S Parmar, K K Pant, M John, K Kumar, S M Pai, B L Newalkar. Hydroisomerization of n-hexadecane over Pt/ZSM-22 framework: effect of divalent cation exchange. Journal of Molecular Catalysis A Chemical, 2015, 404: 47–56
https://doi.org/10.1016/j.molcata.2015.04.012
34 S P Elangovan, C Bischof, M Hartmann. Isomerization and hydrocracking of n-decane over Pt-Pd/AlMCM-41 catalysts. Studies in Surface Science and Catalysis, 2002, 142: 911–918
https://doi.org/10.1016/S0167-2991(02)80118-5
35 H Song, N Wang, H Song, F Li. La-Ni modified S2O82–/ZrO2-Al2O3 catalyst in n-pentane hydroisomerization. Catalysis Communications, 2015, 59: 61–64
https://doi.org/10.1016/j.catcom.2014.09.037
36 J K Lee, H K Rhee. Sulfur tolerance of zeolite beta-supported Pd-Pt catalysts for the isomerization of n-hexane. Journal of Catalysis, 1998, 177(2): 208–216
https://doi.org/10.1006/jcat.1998.2100
37 F Bauer, K Ficht, M Bertmer, W D Einicke, T Kuchling, R Glaser. Hydroisomerization of long-chain paraffins over nano-sized bimetallic Pt-Pd/H-beta catalysts. Catalysis Science & Technology, 2014, 4(11): 4045–4054
https://doi.org/10.1039/C4CY00561A
38 R Roldan, A M Beale, M Sanchez Sanchez, F J Romero Salguero, C Jimenez Sanchidrian, J P Gomez, G Sankar. Effect of the impregnation order on the nature of metal particles of bi-functional Pt/Pd-supported zeolite beta materials and on their catalytic activity for the hydroisomerization of alkanes. Journal of Catalysis, 2008, 254(1): 12–26
https://doi.org/10.1016/j.jcat.2007.10.022
39 F Schmidt, C Hoffmann, F Giordanino, S Bordiga, P Simon, W Carrillo Cabrera, S Kaskel. Coke location in microporous and hierarchical ZSM-5 and the impact on the MTH reaction. Journal of Catalysis, 2013, 307: 238–245
https://doi.org/10.1016/j.jcat.2013.07.020
40 J Liu, S Zou, L Xiao, J Fan. Well-dispersed bimetallic nanoparticles confined in mesoporous metal oxides and their optimized catalytic activity for nitrobenzene hydrogenation. Catalysis Science & Technology, 2014, 4(2): 441–446
https://doi.org/10.1039/C3CY00689A
41 X Yang, Q Yang, J Xu, C S Lee. Bimetallic PtPd nanoparticles on nafion-graphene film as catalyst for ethanol electro-oxidation. Journal of Materials Chemistry, 2012, 22(16): 8057–8062
https://doi.org/10.1039/c2jm16916a
42 Y Zhang, W Wang, X Jiang, X Su, O V Kikhtyanin, W Wu. Hydroisomerization of n-hexadecane over a Pd-Ni2P/SAPO-31 bifunctional catalyst: synergistic effects of bimetallic active sites. Catalysis Science & Technology, 2018, 8(3): 817–828
https://doi.org/10.1039/C7CY02106B
43 K Cheng, L I van der Wal, H Yoshida, J Oenema, J Harmel, Z Zhang, G Sunley, J Zečević, K P de Jong. Impact of the spatial organization of bifunctional metal-zeolite catalysts on the hydroisomerization of light alkanes. Angewandte Chemie International Edition, 2020, 59(9): 3592–3600
https://doi.org/10.1002/anie.201915080
44 F Ren, H Wang, C Zhai, M Zhu, R Yue, Y Du, P Yang, J Xu, W Lu. Clean method for the synthesis of reduced graphene oxide-supported PtPd alloys with high electrocatalytic activity for ethanol oxidation in alkaline medium. ACS Applied Materials & Interfaces, 2014, 6(5): 3607–3614
https://doi.org/10.1021/am405846h
45 A de Lucas, P Sánchez, F Dorado, M J Ramos, J L Valverde. Effect of the metal loading in the hydroisomerization of n-octane over beta agglomerated zeolite based catalysts. Applied Catalysis A, General, 2005, 294(2): 215–225
https://doi.org/10.1016/j.apcata.2005.07.035
46 M Y Smirnova, O V Kikhtyanin, M Y Smirnov, A V Kalinkin, A I Titkov, A B Ayupov, D Y Ermakov. Effect of calcination temperature on the properties of Pt/SAPO-31 catalyst in one-stage transformation of sunflower oil to green diesel. Applied Catalysis A, General, 2015, 505: 524–531
https://doi.org/10.1016/j.apcata.2015.06.019
47 P Dai, X Zhao, D Xu, C Wang, X Tao, X Liu, J Gao. Preparation, characterization, and properties of Pt/Al2O3/cordierite monolith catalyst for hydrogen generation from hydrolysis of sodium borohydride in a flow reactor. International Journal of Hydrogen Energy, 2019, 44(53): 28463–28470
https://doi.org/10.1016/j.ijhydene.2019.02.013
48 G Fu, K Wu, J Lin, Y Tang, Y Chen, Y Zhou, T Lu. One-pot water-based synthesis of PtPd alloy nanoflowers and their superior electrocatalytic activity for the oxygen reduction reaction and remarkable methanol-tolerant ability in acid media. Journal of Physical Chemistry C, 2013, 117(19): 9826–9834
https://doi.org/10.1021/jp400502y
49 M Radlik, A Małolepszy, K Matus, A Srebowata, W Juszczyk, P Dłuzewski, Z Karpinski. Alkane isomerization on highly reduced Pd/Al2O3 catalysts. The crucial role of Pd-Al species. Catalysis Communications, 2019, 123: 17–22
https://doi.org/10.1016/j.catcom.2019.02.002
50 W Wang, Z Wang, J Wang, C Zhong, C Liu. Highly active and stable Pt-Pd alloy catalysts synthesized by room-temperature electron reduction for oxygen reduction reaction. Advancement of Science, 2017, 4(4): 1600486
https://doi.org/10.1002/advs.201600486
51 F Alvarez, F R Ribeiro, G Perot, C Thomazeau, M Guisnet. Hydroisomerization and hydrocracking of alkanes 7. Influence of the balance between acid and hydrogenating functions on the transformation of n-decane on PtHY catalysts. Journal of Catalysis, 1996, 162(2): 179–189
https://doi.org/10.1006/jcat.1996.0275
52 A Amir, Y Pouilloux, J Patarin, N Bats, C Bouchy, T J Daou, L Pinard. Impact of extreme downsizing of *BEA-type zeolite crystals on n-hexadecane hydroisomerization. New Journal of Chemistry, 2016, 40(5): 4335–4343
https://doi.org/10.1039/C5NJ02837J
53 T Hengsawad, C Srimingkwanchai, S Butnark, D E Resasco, S Jongpatiwut. Effect of metal-acid balance on hydroprocessed renewable jet fuel synthesis from hydrocracking and hydroisomerization of biohydrogenated diesel over Pt-supported catalysts. Industrial & Engineering Chemistry Research, 2018, 57(5): 1429–1440
https://doi.org/10.1021/acs.iecr.7b04711
54 F Regali, L F Liotta, A M Venezia, M Boutonnet, S Jaras. Hydroconversion of n-hexadecane on Pt/silica-alumina catalysts: effect of metal loading and support acidity on bifunctional and hydrogenolytic activity. Applied Catalysis A, General, 2014, 469: 328–339
https://doi.org/10.1016/j.apcata.2013.09.048
55 J Weitkamp. Catalytic hydrocracking-mechanisms and versatility of the process. ChemCatChem, 2012, 4(3): 292–306
https://doi.org/10.1002/cctc.201100315
[1] FCE-20089-OF-JG_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed