Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2022, Vol. 16 Issue (1): 34-63   https://doi.org/10.1007/s11705-021-2050-1
  本期目录
Recent advances of small-molecule fluorescent probes for detecting biological hydrogen sulfide
Lei Zhou1, Yu Chen1, Baihao Shao2, Juan Cheng2, Xin Li1,2()
1. Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
2. College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
 全文: PDF(4312 KB)   HTML
Abstract

H2S is well-known as a colorless, acidic gas, with a notoriously rotten-egg smell. It was recently revealed that H2S is also an endogenous signaling molecule that has important biological functions, however, most of its physiology and pathology remains elusive. Therefore, the enthusiasm for H2S research remains. Fluorescence imaging technology is an important tool for H2S biology research. The development of fluorescence imaging technology has realized the study of H2S in subcellular organelles, facilitated by the development of fluorescent probes. The probes reviewed in this paper were categorized according to their chemical mechanism of sensing and were divided into three groups: H2S reducibility-based probes, H2S nucleophilicity-based probes, and metal sulfide precipitation-based probes. The structure of the probes, their sensing mechanism, and imaging results have been discussed in detail. Moreover, we also introduced some probes for hydrogen polysulfides.

Key wordshydrogen sulfide    fluorescent probe    reducibility    nucleophilicity    copper sulfide precipitate    hydrogen polysulfides
收稿日期: 2020-12-30      出版日期: 2021-12-27
Corresponding Author(s): Xin Li   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2022, 16(1): 34-63.
Lei Zhou, Yu Chen, Baihao Shao, Juan Cheng, Xin Li. Recent advances of small-molecule fluorescent probes for detecting biological hydrogen sulfide. Front. Chem. Sci. Eng., 2022, 16(1): 34-63.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-021-2050-1
https://academic.hep.com.cn/fcse/CN/Y2022/V16/I1/34
Probe Selectivity Ex/Em/nm Reported change
in fluorescence
Limit of detection
(LOD)
Biological system
H2S reducibility-based probes
1 (DDP-1) H2S/H2Sn 360/452,542 100 nmol·L−1
24 nmol·L−1
HeLa cells
2 (Flu-N3) H2S 470/538 50-fold 0.031 μmol·L−1 HepG-2 cells and nude mice
3 (RPC-1) H2S/HClO 360/445
545/580
192.1 nmol·L−1
19.8 nmol·L−1
HeLa cells, HepG-2 cells, RAW264.7 cells and drug-induced liver injury mice
4 (Lyso-HA-HS) H2S/HOCl 380/448
550/580
490-fold 3.4 × 10–7 mol·L−1
7.3 × 10–8 mol·L−1
HepG-2 cells and RAW264.7 cells
5 (Mito-HS) H2S 345/540 21-fold HeLa cells and BALB/C nude mice with xenograft breast cancer tumor
6 (Lyso-HS) H2S 345/540 15-fold HeLa cells and BALB/C nude mice with xenograft breast cancer tumor
7 (MT-HS) H2S 440/540 40-fold 1.65 µmol·L−1 HeLa cells and fresh rat liver slices
8 (Na-H2S-ER) H2S 440/545 45-fold 7.77 × 10–6 mol·L−1 HeLa cells, living liver tissue slices and zebrafish
9 (ASNHN-N3) H2S 454/545 0.75 µmol·L−1 HeLa cells, RAW264.7 cells, the fresh liver tissues and heart arteries
10 (BN-H2S) H2S 440/544 71 nmol·L−1 HeLa cells and NIH 3T3 cells
11 (CouN3-BC) H2S 405/450 35-fold HeLa cells
12 H2S 370/490 0.67 µmol·L−1 HEK293A cells
13–14 H2S
15 (Mito-HS) H2S 380/450 ~43-fold 24.3 nmol·L−1 HeLa cells, MDA-MB-231 cells, DU145 cells and 3T3-L1 cells
16 (Lyso-C) H2S 355/458 >20-fold 47 nmol·L−1 HepG-2 cells
17 (1-H2S) H2S 580/635 7-fold ~4.7 × 10–5 mol·L−1 HeLa cells, zebrafish and fresh liver tissue slices of Kunming mice
18 (AC-N3) H2S 360/500 18 nmol·L−1 HeLa cells
19 (QME-N3) RSH/H2S 350/– MCF-7 cells
20 (TPC-N3) H2S –/498 HepG-2 cells and fresh liver and muscle slices of liver cirrhosis induction mice
21 (Lyso-HS) H2S 365/505 95-fold 214.5 nmol·L−1 A549 cells, HepG-2 cells and rat renal tubular epithelial cells
22 (QL-Gal-N3) H2S 365/521 102-fold 126 nmol·L−1 HeLa, A549 cells and HepG-2 cells
23 (Gol-H2S) H2S 405/515 0.11 µmol·L−1 HeLa, EK293A cells and SMMC-7721 cells
24 (Diketopyrrolopyrrole, DPP-NO2) H2S 506/550 800-fold 5.2 nmol·L−1 HeLa cells
25 H2S 485/522 2.55 µmol·L−1 HepG-2 cells
26 (azo1)
27 (azo2) H2S 468/517 103-fold 5 µmol·L−1 Fresh male Sprague-Dawley (SD) rat blood plasma and tissues
28 (azo3) H2S 468/517 148-fold 500 nmol·L−1 Fresh male SD rat blood plasma and tissues
29–32
33 (PHS1) H2S 393/486 8.87 nmol·L−1 HeLa cells
H2S nucleophilicity-based probes
34 190 nmol·L−1 (buffer) 380 nmol·L−1 (serum)
35 (Cy-Cl) H2S 760/795 HeLa cells
36 (CyCl-1) HS 0.16 µmol·L−1 Living mice
37 (CyCl-2) HS 0.37 µmol·L−1 Living mice
38 (BH-HS) H2S 450/535 57-fold 1.7 × 10–6 mol·L−1 HeLa cells
39 (CPC) H2S 410/474, 582 56-fold 40 nmol·L−1 HeLa cells
40 (TP-PMVC) H2S 405/550 3.2 µmol·L−1 A549 cells
41 (CP-H2S) H2S 355/454, 573 252.7-fold 2.2 × 10–7 mol·L−1 SMMC-7721 hepatoma cells
42 (Mi) H2S 520/596 15 nmol·L−1 HeLa cells
43 (CyT) H2S 575/595, 655 7.33 nmol·L−1 HeLa cells
44 (Indo-TPE-Indo) H2S 488/560, 710 0.19 µmol·L−1 HeLa, MCF-7 and HUVEC cells
45 (TP-MIVC) RNA/H2S 488/625
405/550
12-fold 1.0 × 10–6 mol·L−1
3.2 × 10–6 mol·L−1
HeLa cells, zebrafish, normal mice and tumor mice
46 (CTN) H2S 370/424 200-fold 90 nmol·L−1 HeLa cells
47 (Near-infrared (NIR)-HS) H2S 670/723 50-fold 38 nmol·L−1 MCF-7 cells and living mice
48 (TPE-3) H2S 452/550 0.09 µmol·L−1 HeLa cells, zebrafish
49 (TP-NIR-HS) H2S 800/675 83 nmol·L−1 A375 cells and nude rat liver frozen slices
50 (2-CHO-OH) H2S 550/655 32-fold 8.3 × 10–8 mol·L−1 HeLa cells
51 (NDCM-2) H2S 490/655 160-fold 58.797 nmol·L−1 MCF-7 cells, the kidney tissue slices and living Kunming mice
52 (NIPY-DNP, 2,4-dinitrophenyl) H2S 340/505 273-fold 0.36 µmol·L−1 A549 cells
53 (TMSDNPOB) H2S 574/592 30-fold 1.27 µmol·L−1 HeLa cells and raw 264.7 macrophage cells
54 (LC-H2S) H2S 571/664 27-fold 4.05 µmol·L−1 HeLa cells
55 (A) H2S 440/537 49 nmol·L−1 LoVo cells and SW480 cells
56 (DMC) H2S 384/547 0.069 µmol·L−1 HeLa cells
57 (Cda-DNP) H2S 405/450 120-fold 0.18 µmol·L−1 HeLa cells, A549 cells, HFL1 cells, and zebrafish
58 (NR-NO2) H2S 675/710 L929 cells, HeLa cells, HCT-116 cells and BALB/c nude mice
59 (Mito-NIR-SH) H2S 670/720 14-fold 89.3 nmol·L−1 HeLa cells
60 (DMOEPB) H2S
61 (DMONPB) H2S 543/625 1.3 µmol·L−1 RAW264.7 macrophages and HeLa cells and liver tissues of Kunming mice
62 H2S 570/623 HCT-116 and CT-26 cells
63 H2S 590/680 115-fold 11 nmol·L−1 HCT16, HT29, A549, H1944, MCF-7, MDA-MB-468, MDA-MB-231, PANC1, HeLa, HepG-2 cells and Kunming living mice
64 (QCy7-HS) H2S 580/715 25-fold 1 µmol·L−1 HeLa, HepG-2 cells and female BALB/c mice
65 (Z1) H2S 480/537 0.15 µmol·L−1 Ec1 cells
66 (L) H2S 496/607 1.05 × 10–5 mol·L−1 MCF-7 cells
67 H2S, Cys/homocysteine (Hcy), GSH 415/465
415/465
415/465
0.10 µmol·L−1
0.08 µmol·L−1
0.06 µmol·L−1
HeLa cells
68 H2S 382/550 HeLa cells
69 H2S 382/455 150 nmol·L−1 HeLa cells
70 H2S 502/530 65-fold 0.057 µmol·L−1 HEK293A cells
71 H2S 530/589 4.5-fold 0.58 µmol·L−1 HEK293A cells
72 H2S 565/585 19-fold 0.36 µmol·L−1 HEK293A cells and zebrafish
73 H2S 405/480 45-fold 9 µmol·L−1 HEK293 cells and HeLa cells
74 H2S 405/496 200-fold 0.9 µmol·L−1 HEK293A cells, A549 cells and zebrafish
75 H2S 394/486 45-fold 56 nmol·L−1 HEK293 cells
76 (Endoplasmic reticulum (ER)-CN) H2S 383/490 6.5-fold 4.9 µmol·L−1 HeLa cells
77 H2S 395/532 68-fold 2.46 µmol·L−1 HeLa cells
78 H2S 346/516 25-fold 20 nmol·L−1 A431 cells
79 (BDP-N1) H2S 540/587 150-fold 0.06 µmol·L−1 A549 cells and zebrafish
80 (BDP-N2) H2S 625/587 170-fold 0.08 µmol·L−1 A549 cells and zebrafish
81 H2S/GSH Cys/Hcy 620/685
460/540
253-fold/448-fold 70 µmol·L−1/0.38 µmol·L−1
52 nmol·L−1/38 nmol·L−1
HeLa cells and living mice
82 H2S 539/565 160-fold 4.80 × 10–8 mol·L–1 HeLa cells
83 (NIR-H2S) H2S 730/830 68-fold 2.7 × 10–7 mol·L−1 MCF-7 cells, athymic nude mice and Kunming mice
84 (L) H2S 780/468 29-fold 24 nmol·L−1 HeLa cells
85 (RHP) H2S 410/550, 475 4-fold A549 cells
86 (RHP-2) H2S 415/467, 532 27-fold 270 nmol·L−1 MCF-7 cells and mouse hippocampus
87 H2S 465/520 80-fold 0.15 µmol·L−1 HeLa cells
88 (NS1) H2S 365/539, 444 1.7 × 10–6 mol·L−1 MCF-7 cells
89 (MeRho-TCA) H2S 476/520 65-fold
90 (LR-H2S) H2S 410/541, 475 (one-photon)
840/541,475 (two-photo)
80-fold 0.70 µmol·L−1 SGC-7901 cells
91 (PyN3) H2S 410/455 158 nmol·L−1 MCF-7 cells, HeLa cells, zebrafish
92 (NIR-Az) H2S 680/720 200-fold 0.26 µmol·L−1 HeLa cells, RAW 264.7 murine macrophages and BALB/c nude mice
93 (Mito-VS) H2S 370/510 7-fold 0.17 µmol·L−1 HeLa cells
94 (BDP-N3) H2S 475/515 10-fold 2.05 µmol·L−1 HepG-2 cells
95 (Mito-N3) H2S 680/736 20 nmol·L−1 MCF-7 cells and BALB/c(nu/nu) mice
96 H2S 485/610 5.7 nmol·L−1 HeLa cells
97 (MF-N3) H2S 530/560 16-fold 0.09 µmol·L−1 HepG-2 cells
98 (HF-PBA) H2S/biothiols 345/520, 400 75 nmol·L−1 HeLa cells
99 (HS-1) H2S 350/403, 519 0.020±0.001 mmol·L−1 A549 cells
100 (DCM-PBA) H2S 560/680 1.1 nmol·L−1 HeLa cells
101 (Cy-PBA) H2S 675/725 21 nmol·L−1 A549 cells and nude mice
102 H2S 380/495, 525 91 nmol·L−1 HeLa cells
103 H2S 560/633 25-fold 8.37 µmol·L−1 Hi5 insect cells and Caenorhabditis elegans
104 (DCN-S) H2S 420/550, 580 5.7-fold 88 nmol·L−1 HeLa cells
105 (HBTSeSe) H2S 380/460 47-fold 0.19 µmol·L−1 RAW264.7 cells
106 (SFP-1) H2S 300/391 HeLa cells
107 (SFP-2) H2S 465/510 16-fold HeLa cells
108 (ZS1) H2S 520/561 62-fold 2.5 µmol·L−1 RAW 264.7 macrophage cells
109 (P1) H2S 378/524 HeLa cells
110 (P2) H2S 370/450
111 (P3) H2S 375/500 50 nmol·L−1 HeLa cells
112 (P5) H2S 485/638 0.9 µmol·L−1 HeLa cells
113 (RB-PE-1) H2S 560/590 HeLa cells
114 (RB-PE-2) H2S 560/590 HeLa cells
115 (RB-PE-3) H2S 560/590 HeLa cells
116 (FEPO-1) H2S 455/522 14 µmol·L−1 HeLa cells and zebrafish
117 (FLVN-OCN) H2S 415/525 0.25 µmol·L−1 A-549 cells
118 (ZX-NIR) H2S 520/600
650/700
37 nmol·L−1 HCT116 cells, HepG-2 tumor-bearing mouse model and HCT116 tumor-bearing mice
119 (Coumarin-tetrazine (Tz)) H2S 375/456 16-fold
120 (boradiazaindacene (BODIPY)-Tz-I) H2S 580/660 22.7-fold 0.68 µmol·L−1 3T3 fibroblast cells
121 (BODIPY-Tz-II) H2S 580/660 31-fold 0.66 µmol·L−1 3T3 fibroblast cells
122 H2S 18.2 µmol·L−1
123 (PTZ-P1) H2S –/488 25-fold
124 (PTZ-P2) H2S
125 (PTZ-P3) H2S 330/480, 540
126 (PTZ-P4) H2S 580/638 HeLa cells and Caenorhabditis elegans
H2S metal sulfide-based fluorescent probes
127 H2S 470/517 420 nmol·L−1
128 Cu2+/H2S 410/505 1.3 × 10–7 mol·L−1 HeLa cells
129 H2S 456/612 0.25 µmol·L−1
130 (CuHCD) S2– and HNO 484/595
484/595
0.7 µmol·L−1
23 µmol·L−1
131 (TACN) H2S
132 (Cyclam) H2S
133 (Hsip-1) H2S 491/516 50-fold HeLa cells
134 (TMCyclen) H2S
135 H2S 680/765 80 nmol·L−1 RAW264.7 cells and HEK 293 cells
136 H2S 600/680 MCF-7 cells
137 H2S 446/605 ~130-fold 21.6 nmol·L−1
138 [Cu(MaT-cyclen)2] H2S 375/430 205 nmol·L−1 HeLa cells and zebrafish
139 H2S –/794 27-fold 280 nmol·L−1
140 (L1Cu) H2S 495/534 HeLa cells and L929 mouse fibroblast cell lines
141 (L1) H2S 494/523 25-30-fold 1.7 µmol·L−1 HepG-2 cells
142 (L1-Cu) H2S 495/557 HeLa cells
143 (L2)
144 (L) Cu2+/H2S 310/373,495 9.12 × 10–7 mol·L−1
145 (NJ1) Cu2+/H2S 360/492 HeLa cells
146 (NL) Cu2+/H2S 430/519 0.17 µmol·L−1 MDA-MB-231 cells
147 Cu2+/HS 340/480 25-fold 2.24 µmol·L−1 HepG-2 cells
148 Cu2+/H2S 345/540
149 Cu2+/H2S 405/540 47 nmol·L−1 NIH/3T3 cells
150 (TAB-3)
151 (CAH-Cu2+) H2S 350/425 31-fold 65 nmol·L−1
152 (L-Cu) H2S 495/525 31 nmol·L−1 HeLa cells and zebrafish
153 (DPD-Cu2+) Cu2+/S2– 440/510
440/510
0.73 nmol·L−1
0.87 nmol·L−1
A549 cells
154 (Cu-1) HS 543/600 14-fold HeLa cells
155 (Cu(BB)2) H2S 384/590 0.11 µmol·L−1
156 (aggregation-induced emission (AIE)-S) Cu2+/H2S 350/533 HeLa cells
157 (6-CdII) H2S 550/599, 619 HeLa cells
158 H2S 365/500 ~13-fold 30 nmol·L−1
Fluorescent probes for H2Sn
159 (Cy-Sn) H2Sn 680/720 2.2 × 10–8 mol·L−1 RAW264.7 cells and living mice
160 (KB1) H2Sn 535/682 >30-fold 8.2 nmol·L−1 MCF-7 cells
161 (RPHS1) H2Sn 395/482, 655 5.8-fold 43 nmol·L−1 HeLa cells
162 H2Sn 397/534 328-fold 26 nmol·L−1 A549 cells and zebrafish
163 (PZC-Sn) H2Sn 480/620 1 nmol·L−1 RAW 264.7 cells and zebrafish
164 (Re-SS) H2Sn 550/589 24 nmol·L−1 RAW 246.7 cells
165 (BDP-PHS) H2Sn 525/574, 618 57 nmol·L−1 HeLa cells
166 (JCCF) H2Sn 480/543 52-fold 98.3 nmol·L−1 MCF-7 cells and zebrafish
167 H2Sn 360/502 18-fold 5.0 × 10–7 mol·L−1 HepG-2 cells
168 H2Sn
H2S
410/468, 606
410/519, 606
194-fold
37-fold
21 nmol·L−1
34 nmol·L−1
RAW264.7 cells, living mice liver tissue and zebrafish
169 (NIPY-NF) H2Sn 340/520 69-fold 84 nmol·L−1 A549 cells
170 (Lyso-NRT-HP) H2Sn 405/548 10 nmol·L−1 HeLa cells and the freezing kidney slices
171 (BCy-FN) H2Sn 653/727 46 nmol·L−1 RAW264.7 cells, ZF4 cells, zebrafish larvae and BALB/c mice
172 H2Sn 680/708 44-fold 35 nmol·L−1 HeLa cells, RAW264.7 cells and BALB/c mice
173 (τ-Probe) H2Sn 2 nmol·L−1 HeLa cells and zebrafish
174 (MB-Sn) H2Sn 530/584 26.01 nmol·L−1 RAW 264.7 cells
175 (HQO-PSP) H2Sn 520/633 86-fold 95.2 nmol·L−1 A549 cells and mouse lung tissues
176 (SPS-M1) H2Sn 372/430, 506 0.1 µmol·L−1 HeLa cells, transgenic mice expressing human A53 T α-syn, SH-SY5Y cells and fresh mice brain slices
177 (PP-PS) H2Sn 300/478 20.3-fold 1 nmol·L−1 A549 cells, mouse tumor tissues and inflamed mouse models
Tab.1  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
1 L A Barr, J W Calvert. Discoveries of hydrogen sulfide as a novel cardiovascular therapeutic. Circulation Journal, 2014, 78(9): 2111–2118
https://doi.org/10.1253/circj.CJ-14-0728
2 V Brancaleone, E Mitidieri, R J Flower, G Cirino, M Perretti. Annexin A1 mediates hydrogen sulfide properties in the control of inflammation. Journal of Pharmacology and Experimental Therapeutics, 2014, 351(1): 96–104
https://doi.org/10.1124/jpet.114.217034
3 W L Chen, Y Y Niu, W Z Jiang, H L Tang, C Zhang, Q M Xia, X Q Tang. Neuroprotective effects of hydrogen sulfide and the underlying signaling pathways. Reviews in the Neurosciences, 2015, 26(2): 129–142
https://doi.org/10.1515/revneuro-2014-0051
4 R Hosoki, N Matsuki, H Kimura. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochemical and Biophysical Research Communications, 1997, 237(3): 527–531
https://doi.org/10.1006/bbrc.1997.6878
5 R S Abdelrahman, M S El-Awady, M A Nader, E M Ammar. Hydrogen sulfide ameliorates cardiovascular dysfunction induced by cecal ligation and puncture in rats. Human and Experimental Toxicology, 2015, 34(10): 953–964
https://doi.org/10.1177/0960327114564794
6 S H Cheung, W K Kwok, K F To, J Y Lau. Anti-atherogenic effect of hydrogen sulfide by over-expression of cystathionine γ-lyase (CSE) gene. PLoS One, 2014, 9(11): e113038
https://doi.org/10.1371/journal.pone.0113038
7 Z Liu, Y Han, L Li, H Lu, G Meng, X Li, M Shirhan, M T Peh, L Xie, S Zhou, et al. The hydrogen sulfide donor, GYY4137, exhibits anti-atherosclerotic activity in high fat fed apolipoprotein E(-/-) mice. British Journal of Pharmacology, 2013, 169(8): 1795–1809
https://doi.org/10.1111/bph.12246
8 S K Jain, L Huning, D Micinski. Hydrogen sulfide upregulates glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, and glutathione and inhibits interleukin-1beta secretion in monocytes exposed to high glucose levels. Metabolic Syndrome and Related Disorders, 2014, 12(5): 299–302
https://doi.org/10.1089/met.2014.0022
9 D Sieghart, M Liszt, A Wanivenhaus, H Broll, H Kiener, B Klosch, G Steiner. Hydrogen sulphide decreases IL-1β-induced activation of fibroblast-like synoviocytes from patients with osteoarthritis. Journal of Cellular and Molecular Medicine, 2015, 19(1): 187–197
https://doi.org/10.1111/jcmm.12405
10 D Giuliani, A Ottani, D Zaffe, M Galantucci, F Strinati, R Lodi, S Guarini. Hydrogen sulfide slows down progression of experimental Alzheimer’s disease by targeting multiple pathophysiological mechanisms. Neurobiology of Learning and Memory, 2013, 104: 82–91
https://doi.org/10.1016/j.nlm.2013.05.006
11 M Wang, J Zhu, Y Pan, J Dong, L Zhang, X Zhang, L Zhang. Hydrogen sulfide functions as a neuromodulator to regulate striatal neurotransmission in a mouse model of Parkinson’s disease. Journal of Neuroscience Research, 2015, 93(3): 487–494
https://doi.org/10.1002/jnr.23504
12 M Magierowski, K Jasnos, S Kwiecien, D Drozdowicz, M Surmiak, M Strzalka, B A Ptak, J L Wallace, T Brzozowski. Endogenous prostaglandins and afferent sensory nerves in gastroprotective effect of hydrogen sulfide against stress-induced gastric lesions. PLoS One, 2015, 10(3): e0118972
https://doi.org/10.1371/journal.pone.0118972
13 B N DeRatt, M A Ralat, O Kabil, Y Y Chi, R Banerjee, J F III Gregory. Vitamin B-6 restriction reduces the production of hydrogen sulfide and its biomarkers by the transsulfuration pathway in cultured human hepatoma cells. Journal of Nutrition, 2014, 144(10): 1501–1508
https://doi.org/10.3945/jn.114.196808
14 H Kimura. Production and physiological effects of hydrogen sulfide. Antioxidants & Redox Signaling, 2014, 20(5): 783–793
https://doi.org/10.1089/ars.2013.5309
15 M Whiteman, P K Moore. Hydrogen sulfide and the vasculature: a novel vasculoprotective entity and regulator of nitric oxide bioavailability? Journal of Cellular and Molecular Medicine, 2009, 13(3): 488–507
https://doi.org/10.1111/j.1582-4934.2009.00645.x
16 V S Lin, C J Chang. Fluorescent probes for sensing and imaging biological hydrogen sulfide. Current Opinion in Chemical Biology, 2012, 16(5-6): 595–601
https://doi.org/10.1016/j.cbpa.2012.07.014
17 F Yu, X Han, L Chen. Fluorescent probes for hydrogen sulfide detection and bioimaging. Chemical Communications, 2014, 50(82): 12234–12249
https://doi.org/10.1039/C4CC03312D
18 Z Guo, G Chen, G Zeng, Z Li, A Chen, J Wang, L Jiang. Fluorescence chemosensors for hydrogen sulfide detection in biological systems. Analyst (London), 2015, 140(6): 1772–1786
https://doi.org/10.1039/C4AN01909A
19 V S Lin, W Chen, M Xian, C J Chang. Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems. Chemical Society Reviews, 2015, 44(14): 4596–4618
https://doi.org/10.1039/C4CS00298A
20 L Yi, Z Xi. Thiolysis of NBD-based dyes for colorimetric and fluorescence detection of H2S and biothiols: design and biological applications. Organic & Biomolecular Chemistry, 2017, 15(18): 3828–3839
https://doi.org/10.1039/C7OB00332C
21 A R Lippert, E J New, C J Chang. Reaction-based fluorescent probes for selective imaging of hydrogen sulfide in living cells. Journal of the American Chemical Society, 2011, 133(26): 10078–10080
https://doi.org/10.1021/ja203661j
22 W Chen, A Pacheco, Y Takano, J J Day, K Hanaoka, M Xian. A single fluorescent probe to visualize hydrogen sulfide and hydrogen polysulfides with different fluorescence signals. Angewandte Chemie International Edition, 2016, 128(34): 10147–10150
https://doi.org/10.1002/ange.201604892
23 Q Zhao, F Huo, J Kang, Y Zhang, C Yin. A novel FRET-based fluorescent probe for the selective detection of hydrogen sulfide (H2S) and its application for bioimaging. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2018, 6(30): 4903–4908
https://doi.org/10.1039/C8TB01070F
24 X Jiao, Y Xiao, Y Li, M Liang, X Xie, X Wang, B Tang. Evaluating drug-induced liver injury and its remission via discrimination and imaging of HClO and H2S with a two-photon fluorescent probe. Analytical Chemistry, 2018, 90(12): 7510–7516
https://doi.org/10.1021/acs.analchem.8b01106
25 M Ren, Z Li, B Deng, L Wang, W Lin. Single fluorescent probe separately and continuously visualize H2S and HClO in lysosomes with different fluorescence signals. Analytical Chemistry, 2019, 91(4): 2932–2938
https://doi.org/10.1021/acs.analchem.8b05116
26 Z Wu, D Liang, X Tang. Visualizing hydrogen sulfide in mitochondria and lysosome of living cells and in tumors of living mice with positively charged fluorescent chemosensors. Analytical Chemistry, 2016, 88(18): 9213–9218
https://doi.org/10.1021/acs.analchem.6b02459
27 B Deng, M Ren, J Y Wang, K Zhou, W Lin. A mitochondrial-targeted two-photon fluorescent probe for imaging hydrogen sulfide in the living cells and mouse liver tissues. Sensors and Actuators. B, Chemical, 2017, 248: 50–56
https://doi.org/10.1016/j.snb.2017.03.135
28 Y Tang, A Xu, Y Ma, G Xu, S Gao, W Lin. A turn-on endoplasmic reticulum-targeted two-photon fluorescent probe for hydrogen sulfide and bio-imaging applications in living cells, tissues, and zebrafish. Scientific Reports, 2017, 7(1): 1–9
https://doi.org/10.1038/s41598-017-13325-z
29 Y J Fu, H W Yao, X Y Zhu, X F Guo, H Wang. A cell surface specific two-photon fluorescent probe for monitoring intercellular transmission of hydrogen sulfide. Analytica Chimica Acta, 2017, 994: 1–9
https://doi.org/10.1016/j.aca.2017.09.030
30 X Song, B Dong, X Kong, C Wang, N Zhang, W Lin. A cancer cell-specific two-photon fluorescent probe for imaging hydrogen sulfide in living cells. RSC Advances, 2017, 7(26): 15817–15822
https://doi.org/10.1039/C7RA01479A
31 J Chen, M Zhao, X Jiang, A Sizovs, M C Wang, C R Provost, J Huang, J Wang. Genetically anchored fluorescent probes for subcellular specific imaging of hydrogen sulfide. Analyst (London), 2016, 141(4): 1209–1213
https://doi.org/10.1039/C5AN02497H
32 Z Zhu, Y Li, C Wei, X Wen, Z Xi, L Yi. Multi-fluorinated azido coumarins for rapid and selective detection of biological H2S in living cells. Chemistry, an Asian Journal, 2016, 11(1): 68–71
https://doi.org/10.1002/asia.201500940
33 N Velusamy, A Binoy, K N Bobba, D Nedungadi, N Mishra, S Bhuniya. A bioorthogonal fluorescent probe for mitochondrial hydrogen sulfide: new strategy for cancer cell labeling. Chemical Communications, 2017, 53(62): 8802–8805
https://doi.org/10.1039/C7CC05339H
34 Q L Xie, W Liu, X J Liu, F Ouyang, Y Q Kuang, J H Jiang. An azidocoumarin-based fluorescent probe for imaging lysosomal hydrogen sulfide in living cells. Analytical Methods, 2017, 9(19): 2859–2864
https://doi.org/10.1039/C7AY00862G
35 K Liu, C Liu, H Shang, M Ren, W Lin. A novel red light emissive two-photon fluorescent probe for hydrogen sulfide (H2S) in nucleolus region and its application for H2S detection in zebrafish and live mice. Sensors and Actuators. B, Chemical, 2018, 256: 342–350
https://doi.org/10.1016/j.snb.2017.09.146
36 Z Qiao, H Zhang, K Wang, Y Zhang. A highly sensitive and responsive fluorescent probe based on 6-azide-chroman dye for detection and imaging of hydrogen sulfide in cells. Talanta, 2019, 195: 850–856
https://doi.org/10.1016/j.talanta.2018.12.014
37 C G Dai, X L Liu, X J Du, Y Zhang, Q H Song. Two-input fluorescent probe for thiols and hydrogen sulfide chemosensing and live cell imaging. ACS Sensors, 2016, 1(7): 888–895
https://doi.org/10.1021/acssensors.6b00291
38 T B Ren, W Xu, Q L Zhang, X X Zhang, S Y Wen, H B Yi, L Yuan, X B Zhang. Enhancing the anti-solvatochromic two-photon fluorescence for cirrhosis imaging by forming a hydrogen-bond network. Angewandte Chemie International Edition, 2018, 57(25): 7473–7477
https://doi.org/10.1002/anie.201800293
39 Y Dou, X Gu, S Ying, S Zhu, S Yu, W Shen, Q Zhu. A novel lysosome-targeted fluorogenic probe based on 5-triazole-quinoline for the rapid detection of hydrogen sulfide in living cells. Organic & Biomolecular Chemistry, 2018, 16(5): 712–716
https://doi.org/10.1039/C7OB02881D
40 D Shen, J Liu, L Sheng, Y Lv, G Wu, P Wang, K Du. Design, synthesis and evaluation of a novel fluorescent probe to accurately detect H2S in hepatocytes and natural waters. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2020, 228: 117690
https://doi.org/10.1016/j.saa.2019.117690
41 H Zhu, C Liang, X Cai, H Zhang, C Liu, P Jia, Z Li, Y Yu, X Zhang, W Sheng, B Zhu. Rational design of a targetable fluorescent probe for visualizing H2S production under Golgi stress response elicited by monensin. Analytical Chemistry, 2020, 92(2): 1883–1889
https://doi.org/10.1021/acs.analchem.9b04009
42 T S Bailey, M D Pluth. Chemiluminescent detection of enzymatically produced hydrogen sulfide: substrate hydrogen bonding influences selectivity for H2S over biological thiols. Journal of the American Chemical Society, 2013, 135(44): 16697–16704
https://doi.org/10.1021/ja408909h
43 L Wang, X Chen, D Cao. A nitroolefin functionalized DPP fluorescent probe for the selective detection of hydrogen sulfide. New Journal of Chemistry, 2017, 41(9): 3367–3373
https://doi.org/10.1039/C6NJ03432B
44 N Zhou, C Yin, J Chao, Y Zhang, F Huo. An isoxazole-accelerated nitro oxidation type fluorescent detection and imaging for hydrogen sulfide in cells. Sensors and Actuators. B, Chemical, 2019, 287: 131–137
https://doi.org/10.1016/j.snb.2019.02.041
45 X Li, J Cheng, Y Gong, B Yang, Y Hu. Mapping hydrogen sulfide in rats with a novel azo-based fluorescent probe. Biosensors & Bioelectronics, 2015, 65: 302–306
https://doi.org/10.1016/j.bios.2014.10.009
46 B Chen, J Huang, H Geng, L Xuan, T Xu, X Li, Y Han. A new ESIPT-based fluorescent probe for highly selective and sensitive detection of hydrogen sulfide and its application in live-cell imaging. New Journal of Chemistry, 2017, 41(3): 1119–1123
https://doi.org/10.1039/C6NJ03355E
47 A R Lippert. Designing reaction-based fluorescent probes for selective hydrogen sulfide detection. Journal of Inorganic Biochemistry, 2014, 133: 136–142
https://doi.org/10.1016/j.jinorgbio.2013.10.010
48 L A Montoya, T F Pearce, R J Hansen, L N Zakharov, M D Pluth. Development of selective colorimetric probes for hydrogen sulfide based on nucleophilic aromatic substitution. Journal of Organic Chemistry, 2013, 78(13): 6550–6557
https://doi.org/10.1021/jo4008095
49 X Wu, J Shi, L Yang, J Han, S Han. A near-infrared fluorescence dye for sensitive detection of hydrogen sulfide in serum. Bioorganic & Medicinal Chemistry Letters, 2014, 24(1): 314–316
https://doi.org/10.1016/j.bmcl.2013.11.016
50 X Li, Y Tang, J Li, X Hu, C Yin, Z Yang, Q Wang, Z Wu, X Lu, W Wang, W Huang, Q Fan. A small-molecule probe for ratiometric photoacoustic imaging of hydrogen sulfide in living mice. Chemical Communications, 2019, 55(42): 5934–5937
https://doi.org/10.1039/C9CC02224D
51 M Ren, B Deng, X Kong, K Zhou, K Liu, G Xu, W Lin. A TICT-based fluorescent probe for rapid and specific detection of hydrogen sulfide and its bio-imaging applications. Chemical Communications, 2016, 52(38): 6415–6418
https://doi.org/10.1039/C6CC00966B
52 X Feng, T Zhang, J T Liu, J Y Miao, B X Zhao. A new ratiometric fluorescent probe for rapid, sensitive and selective detection of endogenous hydrogen sulfide in mitochondria. Chemical Communications, 2016, 52(15): 3131–3134
https://doi.org/10.1039/C5CC09267A
53 Y Liu, F Meng, L He, K Liu, W Lin. A dual-site two-photon fluorescent probe for visualizing lysosomes and tracking lysosomal hydrogen sulfide with two different sets of fluorescence signals in the living cells and mouse liver tissues. Chemical Communications, 2016, 52(43): 7016–7019
https://doi.org/10.1039/C6CC02368A
54 L He, X Yang, Y Liu, W L Weiying Lin. Colorimetric and ratiometric fluorescent probe for hydrogen sulfide using a coumarin-pyronine FRET dyad with a large emission shift. Analytical Methods, 2016, 8(45): 8022–8027
https://doi.org/10.1039/C6AY02537D
55 Y Li, B Gu, W Su, X Duan, H Xu, Z Huang, H Li, S Yao. A simple and efficient fluorescent probe for the rapid detection of H2S in living cells and on agar gels. Analytical Methods, 2017, 9(22): 3290–3295
https://doi.org/10.1039/C7AY00499K
56 J Ma, F Li, Q Li, Y Li, C Yan, X Lu, Y Guo. Naked-eye and ratiometric fluorescence probe for fast and sensitive detection of hydrogen sulfide and its application in bioimaging. New Journal of Chemistry, 2018, 42(23): 19272–19278
https://doi.org/10.1039/C8NJ04208J
57 Y Ma, H Wang, S Su, Y Chen, Y Li, X Wang, Z Wang. A red mitochondria-targeted AIEgen for visualizing H2S in living cells and tumours. Analyst (London), 2019, 144(10): 3381–3388
https://doi.org/10.1039/C9AN00393B
58 Y Liu, J Niu, W Wang, Y Ma, W Lin. Simultaneous imaging of ribonucleic acid and hydrogen sulfide in living systems with distinct fluorescence signals using a single fluorescent probe. Advancement of Science, 2018, 5(7): 1700966
https://doi.org/10.1002/advs.201700966
59 J Cui, T Zhang, Y Q Sun, D P Li, J T Liu, B X Zhao. A highly sensitive and selective fluorescent probe for H2S detection with large fluorescence enhancement. Sensors and Actuators. B, Chemical, 2016, 232: 705–711
https://doi.org/10.1016/j.snb.2016.04.025
60 L Zhang, X E Zheng, F Zou, Y Shang, W Meng, E Lai, Z Xu, Y Liu, J Zhao. A highly selective and sensitive near-infrared fluorescent probe for imaging of hydrogen sulphide in living cells and mice. Scientific Reports, 2016, 6(1): 18868
https://doi.org/10.1038/srep18868
61 P Zhang, X Nie, M Gao, F Zeng, A Qin, S Wu, B Z Tang. A highly selective fluorescent nanoprobe based on AIE and ESIPT for imaging hydrogen sulfide in live cells and zebrafish. Materials Chemistry Frontiers, 2017, 1(5): 838–845
https://doi.org/10.1039/C6QM00223D
62 L Zhou, D Lu, Q Wang, S Liu, Q Lin, H Sun. Molecular engineering of a mitochondrial-targeting two-photon in and near-infrared out fluorescent probe for gaseous signal molecules H2S in deep tissue bioimaging. Biosensors & Bioelectronics, 2017, 91: 699–705
https://doi.org/10.1016/j.bios.2016.12.055
63 B Gu, W Su, L Huang, C Wu, X Duan, Y Li, H Xu, Z Huang, H Li, S Yao. Real-time tracking and selective visualization of exogenous and endogenous hydrogen sulfide by a near-infrared fluorescent probe. Sensors and Actuators. B, Chemical, 2018, 255: 2347–2355
https://doi.org/10.1016/j.snb.2017.09.045
64 M Qian, L Zhang, Z Pu, J Xia, L Chen, Y Xia, H Cui, J Wang, X Peng. A NIR fluorescent probe for the detection and visualization of hydrogen sulfide using the aldehyde group assisted thiolysis of dinitrophenyl ether strategy. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2018, 6(47): 7916–7925
https://doi.org/10.1039/C8TB02218F
65 S Chen, H Li, P Hou. A novel imidazo[1,5-α]pyridine-based fluorescent probe with a large Stokes shift for imaging hydrogen sulfide. Sensors and Actuators. B, Chemical, 2018, 256: 1086–1092
https://doi.org/10.1016/j.snb.2017.10.052
66 Y Ji, L J Xia, L Chen, X F Guo, H Wang, H J Zhang. A novel BODIPY-based fluorescent probe for selective detection of hydrogen sulfide in living cells and tissues. Talanta, 2018, 181: 104–111
https://doi.org/10.1016/j.talanta.2017.12.067
67 Y T Li, X J Zhao, Y R Jiang, B Q Yang. A novel long-wavelength fluorescent probe for selective detection of hydrogen sulfide in living cells. New Journal of Chemistry, 2018, 42(24): 19478–19484
https://doi.org/10.1039/C8NJ04241A
68 J Liu, X Chen, Y Zhang, G Gao, X Zhang, S Hou, Y Hou. A novel 3-hydroxychromone fluorescent probe for hydrogen sulfide based on an excited-state intramolecular proton transfer mechanism. New Journal of Chemistry, 2018, 42(15): 12918–12923
https://doi.org/10.1039/C8NJ01626G
69 C Wu, X Hu, B Gu, P Yin, W Su, Y Li, Q Lu, Y Zhang, H Li. A lysosome-targeting colorimetric and fluorescent dual signal probe for sensitive detection and bioimaging of hydrogen sulfide. Analytical Methods, 2018, 10(6): 604–610
https://doi.org/10.1039/C7AY02492D
70 L Yang, J Zhao, X Yu, R Zhang, G Han, R Liu, Z Liu, T Zhao, M Y Han, Z Zhang. Dynamic mapping of spontaneously produced H2S in the entire cell space and in live animals using a rationally designed molecular switch. Analyst (London), 2018, 143(8): 1881–1889
https://doi.org/10.1039/C7AN01802A
71 L Sun, Y Wu, J Chen, J Zhong, F Zeng, S Wu. A turn-on optoacoustic probe for imaging metformin-induced upregulation of hepatic hydrogen sulfide and subsequent liver injury. Theranostics, 2019, 9(1): 77–89
https://doi.org/10.7150/thno.30080
72 X J Zhao, Y T Li, Y R Jiang, B Q Yang, C Liu, Z H Liu. A novel “turn-on” mitochondria-targeting near-infrared fluorescent probe for H2S detection and in living cells imaging. Talanta, 2019, 197: 326–333
https://doi.org/10.1016/j.talanta.2019.01.042
73 X Y Zhu, H Wu, X F Guo, H Wang. Novel BODIPY-based fluorescent probes with large stokes shift for imaging hydrogen sulfide. Dyes and Pigments, 2019, 165: 400–407
https://doi.org/10.1016/j.dyepig.2019.02.050
74 T Fang, X D Jiang, C Sun, Q Li. BODIPY-based naked-eye fluorescent on-off probe with high selectivity for H2S based on thiolysis of dinitrophenyl ether. Sensors and Actuators. B, Chemical, 2019, 290: 551–557
https://doi.org/10.1016/j.snb.2019.03.141
75 D Su, D Cheng, Y Lv, X Ren, Q Wu, L Yuan. A unique off-on near-infrared QCy7-derived probe for selective detection and imaging of hydrogen sulfide in cells and in vivo. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2020, 226: 117635
https://doi.org/10.1016/j.saa.2019.117635
76 X Lin, X Lu, J Zhou, H Ren, X Dong, W Zhao, Z Chen. Instantaneous fluorescent probe for the specific detection of H2S. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2019, 213: 416–422
https://doi.org/10.1016/j.saa.2019.01.085
77 Y Zhang, B Zhang, Z Li, L Wang, X Ren, Y Ye. Endoplasmic reticulum targeted fluorescent probe for the detection of hydrogen sulfide based on a twist-blockage strategy. Organic & Biomolecular Chemistry, 2019, 17(38): 8778–8783
https://doi.org/10.1039/C9OB01750J
78 K Zhong, S Zhou, X Yan, X Li, S Hou, L Cheng, X Gao, Y Li, L Tang. A simple H2S fluorescent probe with long wavelength emission: application in water, wine, living cells and detection of H2S gas. Dyes and Pigments, 2020, 174: 108049
https://doi.org/10.1016/j.dyepig.2019.108049
79 S Ding, G Feng. Smart probe for rapid and simultaneous detection and discrimination of hydrogen sulfide, cysteine/homocysteine, and glutathione. Sensors and Actuators. B, Chemical, 2016, 235: 691–697
https://doi.org/10.1016/j.snb.2016.05.146
80 S Ding, W Feng, G Feng. Rapid and highly selective detection of H2S by nitrobenzofurazan (NBD) ether-based fluorescent probes with an aldehyde group. Sensors and Actuators. B, Chemical, 2017, 238: 619–625
https://doi.org/10.1016/j.snb.2016.07.117
81 R Wang, Z Li, C Zhang, Y Li, G Xu, Q Z Zhang, L Y Li, L Yi, Z Xi. Fast-response turn-on fluorescent probes based on thiolysis of NBD amine for H2S bioimaging. ChemBioChem, 2016, 17(10): 962–968
https://doi.org/10.1002/cbic.201600060
82 J B Grimm, B P English, J Chen, J P Slaughter, Z Zhang, A Revyakin, R Patel, J J Macklin, D Normanno, R H Singer, et al. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nature Methods, 2015, 12(3): 244–250
https://doi.org/10.1038/nmeth.3256
83 I Ismail, D Wang, D Wang, C Niu, H Huang, L Yi, Z Xi. A mitochondria-targeted red-emitting probe for imaging hydrogen sulfide in living cells and zebrafish. Organic & Biomolecular Chemistry, 2019, 17(13): 3389–3395
https://doi.org/10.1039/C8OB03219J
84 C Wei, L Wei, Z Xi, L Yi. A FRET-based fluorescent probe for imaging H2S in living cells. Tetrahedron Letters, 2013, 54(50): 6937–6939
https://doi.org/10.1016/j.tetlet.2013.10.049
85 I Ismail, D Wang, Z Wang, D Wang, C Zhang, L Yi, Z Xi. A julolidine-fused coumarin-NBD dyad for highly selective and sensitive detection of H2S in biological samples. Dyes and Pigments, 2019, 163: 700–706
https://doi.org/10.1016/j.dyepig.2018.12.064
86 Y Huang, C Zhang, Z Xi, L Yi. Synthesis and characterizations of a highly sensitive and selective fluorescent probe for hydrogen sulfide. Tetrahedron Letters, 2016, 57(10): 1187–1191
https://doi.org/10.1016/j.tetlet.2016.02.017
87 H Zhang, J Chen, H Xiong, Y Zhang, W Chen, J Sheng, X Song. An endoplasmic reticulum-targetable fluorescent probe for highly selective detection of hydrogen sulfide. Organic & Biomolecular Chemistry, 2019, 17(6): 1436–1441
https://doi.org/10.1039/C8OB02998A
88 Y L Pak, J Li, K C Ko, G Kim, J Y Lee, J Yoon. Mitochondria-targeted reaction-based fluorescent probe for hydrogen sulfide. Analytical Chemistry, 2016, 88(10): 5476–5481
https://doi.org/10.1021/acs.analchem.6b00956
89 P Hou, H Li, S Chen. A highly selective and sensitive 3-hydroxyflavone-based colorimetric and fluorescent probe for hydrogen sulfide with a large Stokes shift. Tetrahedron, 2016, 72(24): 3531–3534
https://doi.org/10.1016/j.tet.2016.04.079
90 J Kang, F Huo, P Ning, X Meng, J Chao, C Yin. Two red-emission single and double ‘arms’ fluorescent materials stemed from ‘one-pot’ reaction for hydrogen sulfide vivo imaging. Sensors and Actuators. B, Chemical, 2017, 250: 342–350
https://doi.org/10.1016/j.snb.2017.04.180
91 J Zhang, X Ji, J Zhou, Z Chen, X Dong, W Zhao. Pyridinium substituted BODIPY as NIR fluorescent probe for simultaneous sensing of hydrogen sulphide/glutathione and cysteine/homocysteine. Sensors and Actuators. B, Chemical, 2018, 257: 1076–1082
https://doi.org/10.1016/j.snb.2017.10.133
92 Y Wang, X Lv, W Guo. A reaction-based and highly selective fluorescent probe for hydrogen sulfide. Dyes and Pigments, 2017, 139: 482–486
https://doi.org/10.1016/j.dyepig.2016.12.051
93 J Xiong, L Xia, Q Huang, J Huang, Y Gu, P Wang. Cyanine-based NIR fluorescent probe for monitoring H2S and imaging in living cells and in vivo. Talanta, 2018, 184: 109–114
https://doi.org/10.1016/j.talanta.2018.03.006
94 Y Tang, G F Jiang. A novel two-photon fluorescent probe for hydrogen sulfide in living cells using an acedan-NBD amine dyad based on FRET process with high selectivity and sensitivity. New Journal of Chemistry, 2017, 41(14): 6769–6774
https://doi.org/10.1039/C7NJ01080J
95 L Cui, Y Zhong, W Zhu, Y Xu, Q Du, X Wang, X Qian, Y Xiao. A new prodrug-derived ratiometric fluorescent probe for hypoxia: high selectivity of nitroreductase and imaging in tumor cell. Organic Letters, 2011, 13(5): 928–931
https://doi.org/10.1021/ol102975t
96 L Zhang, W Q Meng, L Lu, Y S Xue, C Li, F Zou, Y Liu, J Zhao. Selective detection of endogenous H2S in living cells and the mouse hippocampus using a ratiometric fluorescent probe. Scientific Reports, 2015, 4(1): 5870
https://doi.org/10.1038/srep05870
97 H Zhang, Y Xie, P Wang, G Chen, R Liu, Y W Lam, Y Hu, Q Zhu, H Sun. An iminocoumarin benzothiazole-based fluorescent probe for imaging hydrogen sulfide in living cells. Talanta, 2015, 135: 149–154
https://doi.org/10.1016/j.talanta.2014.12.044
98 J Wang, Y Chen, C Yang, T Wei, Y Han, M Xia. An ICT-based colorimetric and ratiometric fluorescent probe for hydrogen sulfide and its application in live cell imaging. RSC Advances, 2016, 6(39): 33031–33035
https://doi.org/10.1039/C6RA01242F
99 A K Steiger, S Pardue, C G Kevil, M D Pluth. Self-Immolative thiocarbamates provide access to triggered H2S donors and analyte replacement fluorescent probes. Journal of the American Chemical Society, 2016, 138(23): 7256–7259
https://doi.org/10.1021/jacs.6b03780
100 W Feng, Z Mao, L Liu, Z Liu. A ratiometric two-photon fluorescent probe for imaging hydrogen sulfide in lysosomes. Talanta, 2017, 167: 134–142
https://doi.org/10.1016/j.talanta.2017.02.012
101 N Thirumalaivasan, P Venkatesan, S P Wu. Highly selective turn-on probe for H2S with imaging applications in vitro and in vivo. New Journal of Chemistry, 2017, 41(22): 13510–13515
https://doi.org/10.1039/C7NJ02869E
102 C S Park, T H Ha, S A Choi, D N Nguyen, S Noh, O S Kwon, C S Lee, H Yoon. A near-infrared “turn-on” fluorescent probe with a self-immolative linker for the in vivo quantitative detection and imaging of hydrogen sulfide. Biosensors & Bioelectronics, 2017, 89: 919–926
https://doi.org/10.1016/j.bios.2016.09.093
103 S J Li, Y F Li, H W Liu, D Y Zhou, W L Jiang, J Ou Yang, C Y Li. A dual-response fluorescent probe for the detection of viscosity and H2S and its application in studying their cross-talk influence in mitochondria. Analytical Chemistry, 2018, 90(15): 9418–9425
https://doi.org/10.1021/acs.analchem.8b02068
104 Q Zhao, C Yin, J Kang, Y Wen, F Huo. A viscosity sensitive azide-pyridine BODIPY-based fluorescent dye for imaging of hydrogen sulfide in living cells. Dyes and Pigments, 2018, 159: 166–172
https://doi.org/10.1016/j.dyepig.2018.06.029
105 T Zhou, Y Yang, K Zhou, M Jin, M Han, W Li, C Yin. Efficiently mitochondrial targeting fluorescent imaging of H2S in vivo based on a conjugate-lengthened cyanine NIR fluorescent probe. Sensors and Actuators. B, Chemical, 2019, 301: 127116
https://doi.org/10.1016/j.snb.2019.127116
106 L Yang, Y Su, Z Sha, Y Geng, F Qi, X Song. A red-emitting fluorescent probe for hydrogen sulfide in living cells with a large stokes shift. Organic & Biomolecular Chemistry, 2018, 16(7): 1150–1156
https://doi.org/10.1039/C7OB02641B
107 L Zhu, W Liao, H Chang, X Liu, S Miao. A novel fluorescent probe for detection of hydrogen sulfide and its bioimaging applications in living cells. ChemistrySelect, 2020, 5(2): 829–833
https://doi.org/10.1002/slct.201903451
108 D P Li, J F Zhang, J Cui, X F Ma, J T Liu, J Y Miao, B X Zhao. A ratiometric fluorescent probe for fast detection of hydrogen sulfide and recognition of biological thiols. Sensors and Actuators. B, Chemical, 2016, 234: 231–238
https://doi.org/10.1016/j.snb.2016.04.164
109 J Kang, F Huo, C Yin. A novel ratiometric fluorescent H2S probe based on tandem nucleophilic substitution/cyclization reaction and its bioimaging. Dyes and Pigments, 2017, 146: 287–292
https://doi.org/10.1016/j.dyepig.2017.07.016
110 J Men, X Yang, H Zhang, J Zhou. A near-infrared fluorescent probe based on nucleophilic substitution-cyclization for selective detection of hydrogen sulfide and bioimaging. Dyes and Pigments, 2018, 153: 206–212
https://doi.org/10.1016/j.dyepig.2017.12.036
111 X Zhang, R Sun, G Duan, Z Zhou, Y Luo, W Li, L Zhang, Y Gu, X Zha. A highly sensitive near-infrared fluorescent probe for the detection of hydrogen sulfide and its application in living cells and mice. New Journal of Chemistry, 2018, 42(24): 19795–19800
https://doi.org/10.1039/C8NJ04824J
112 T Cao, Z Teng, D Gong, J Qian, W Liu, K Iqbal, W Qin, H Guo. A ratiometric fluorescent probe for detection of endogenous and exogenous hydrogen sulfide in living cells. Talanta, 2019, 198: 185–192
https://doi.org/10.1016/j.talanta.2019.02.017
113 H Wang, D Yang, R Tan, Z J Zhou, R Xu, J F Zhang, Y Zhou. A cyanine-based colorimetric and fluorescence probe for detection of hydrogen sulfide in vivo. Sensors and Actuators. B, Chemical, 2017, 247: 883–888
https://doi.org/10.1016/j.snb.2017.03.030
114 J Wang, Y Wen, F Huo, C Yin. A highly sensitive fluorescent probe for hydrogen sulfide based on dicyanoisophorone and its imaging in living cells. Sensors and Actuators. B, Chemical, 2019, 294: 141–147
https://doi.org/10.1016/j.snb.2019.05.038
115 H Guan, A Zhang, P Li, L Xia, F Guo. ESIPT fluorescence probe based on double-switch recognition mechanism for selective and rapid detection of hydrogen sulfide in living cells. ACS Omega, 2019, 4(5): 9113–9119
https://doi.org/10.1021/acsomega.9b00934
116 Y Qian, J Karpus, O Kabil, S Y Zhang, H L Zhu, R Banerjee, J Zhao, C He. Selective fluorescent probes for live-cell monitoring of sulphide. Nature Communications, 2011, 2(1): 495
https://doi.org/10.1038/ncomms1506
117 X Li, S Zhang, J Cao, N Xie, T Liu, B Yang, Q He, Y Hu. An ICT-based fluorescent switch-on probe for hydrogen sulfide in living cells. Chemical Communications, 2013, 49(77): 8656–8658
https://doi.org/10.1039/c3cc44539a
118 S Singha, D Kim, H Moon, T Wang, K H Kim, Y H Shin, J Jung, E Seo, S J Lee, K H Ahn. Toward a selective, sensitive, fast-responsive, and biocompatible two-photon probe for hydrogen sulfide in live cells. Analytical Chemistry, 2015, 87(2): 1188–1195
https://doi.org/10.1021/ac503806w
119 H G Ryu, S Singha, Y W Jun, Y J Reo, K H Ahn. Two-photon fluorescent probe for hydrogen sulfide based on a red-emitting benzocoumarin dye. Tetrahedron Letters, 2018, 59(1): 49–53
https://doi.org/10.1016/j.tetlet.2017.11.050
120 X Chen, S Wu, J Han, S Han. Rhodamine-propargylic esters for detection of mitochondrial hydrogen sulfide in living cells. Bioorganic & Medicinal Chemistry Letters, 2013, 23(19): 5295–5299
https://doi.org/10.1016/j.bmcl.2013.07.072
121 P Sathyadevi, Y J Chen, S C Wu, Y H Chen, Y M Wang. Reaction-based epoxide fluorescent probe for in vivo visualization of hydrogen sulfide. Biosensors & Bioelectronics, 2015, 68: 681–687
https://doi.org/10.1016/j.bios.2015.01.070
122 E Karakus, M Ucuncu, M Emrullahoglu. Electrophilic cyanate as a recognition motif for reactive sulfur species: selective fluorescence detection of H2S. Analytical Chemistry, 2016, 88(1): 1039–1043
https://doi.org/10.1021/acs.analchem.5b04163
123 G Xu, Q Yan, X Lv, Y Zhu, K Xin, B Shi, R Wang, J Chen, W Gao, P Shi, C Fan, C Zhao, H Tian. Imaging of colorectal cancers using activatable nanoprobes with second near-infrared window emission. Angewandte Chemie International Edition, 2018, 57(14): 3626–3630
https://doi.org/10.1002/anie.201712528
124 Z Zhao, L Cao, T Zhang, R Hu, S Wang, S Li, Y Li, G Yang. Novel reaction-based fluorescence probes for the detection of hydrogen sulfide in living cells. ChemistrySelect, 2016, 1(11): 2581–2585
https://doi.org/10.1002/slct.201600382
125 R Kaushik, A Ghosh, A Singh, D A Jose. Colorimetric sensor for the detection of H2S and its application in molecular half-subtractor. Analytica Chimica Acta, 2018, 1040: 177–186
https://doi.org/10.1016/j.aca.2018.08.028
126 C Wang, X Cheng, J Tan, Z Ding, W Wang, D Yuan, G Li, H Zhang, X Zhang. Reductive cleavage of C=C bonds as a new strategy for turn-on dual fluorescence in effective sensing of H2S. Chemical Science (Cambridge), 2018, 9(44): 8369–8374
https://doi.org/10.1039/C8SC03430C
127 M G Choi, S Cha, H Lee, H L Jeon, S K Chang. Sulfide-selective chemosignaling by a Cu2+ complex of dipicolylamine appended fluorescein. Chemical Communications, 2009, (47): 7390–7392
https://doi.org/10.1039/b916476f
128 J T Hou, B Y Liu, K Li, K K Yu, M B Wu, X Q Yu. Two birds with one stone: multifunctional and highly selective fluorescent probe for distinguishing Zn2+ from Cd2+ and selective recognition of sulfide anion. Talanta, 2013, 116: 434–440
https://doi.org/10.1016/j.talanta.2013.07.020
129 X Yue, Z Zhu, M Zhang, Z Ye. Reaction-based turn-on electrochemiluminescent sensor with a ruthenium(II) complex for selective detection of extracellular hydrogen sulfide in rat brain. Analytical Chemistry, 2015, 87(3): 1839–1845
https://doi.org/10.1021/ac503875j
130 H J Lv, R F Ma, X T Zhang, M H Li, Y T Wang, S Wang, G W Xing. Surfactant-modulated discriminative sensing of HNO and H2S with a Cu2+-complex-based fluorescent probe. Tetrahedron, 2016, 72(35): 5495–5501
https://doi.org/10.1016/j.tet.2016.07.039
131 K Sasakura, K Hanaoka, N Shibuya, Y Mikami, Y Kimura, T Komatsu, T Ueno, T Terai, H Kimura, T Nagano. Development of a highly selective fluorescence probe for hydrogen sulfide. Journal of the American Chemical Society, 2011, 133(45): 18003–18005
https://doi.org/10.1021/ja207851s
132 H Wu, S Krishnakumar, J Yu, D Liang, H Qi, Z W Lee, L W Deng, D Huang. Highly selective and sensitive near-infrared-fluorescent probes for the detection of cellular hydrogen sulfide and the imaging of H2S in mice. Chemistry, an Asian Journal, 2014, 9(12): 3604–3611
https://doi.org/10.1002/asia.201402860
133 Z Ye, X An, B Song, W Zhang, Z Dai, J Yuan. A novel dinuclear ruthenium(II)-copper(II) complex-based luminescent probe for hydrogen sulfide. Dalton Transactions (Cambridge, England), 2014, 43(34): 13055–13060
https://doi.org/10.1039/C4DT01333F
134 S Palanisamy, L Y Lee, Y L Wang, Y J Chen, C Y Chen, Y M Wang. A water soluble and fast response fluorescent turn-on copper complex probe for H2S detection in zebra fish. Talanta, 2016, 147: 445–452
https://doi.org/10.1016/j.talanta.2015.10.019
135 X Cao, W Lin, L He. A near-infrared fluorescence turn-on sensor for sulfide anions. Organic Letters, 2011, 13(17): 4716–4719
https://doi.org/10.1021/ol201932c
136 F Hou, L Huang, P Xi, J Cheng, X Zhao, G Xie, Y Shi, F Cheng, X Yao, D Bai, Z Zeng. A retrievable and highly selective fluorescent probe for monitoring sulfide and imaging in living cells. Inorganic Chemistry, 2012, 51(4): 2454–2460
https://doi.org/10.1021/ic2024082
137 F Hou, J Cheng, P Xi, F Chen, L Huang, G Xie, Y Shi, H Liu, D Bai, Z Zeng. Recognition of copper and hydrogen sulfide in vitro using a fluorescein derivative indicator. Dalton Transactions (Cambridge, England), 2012, 41(19): 5799–5804
https://doi.org/10.1039/c2dt12462a
138 C Kar, M D Adhikari, A Ramesh, G Das. NIR- and FRET-based sensing of Cu2+ and S2– in physiological conditions and in live cells. Inorganic Chemistry, 2013, 52(2): 743–752
https://doi.org/10.1021/ic301872q
139 L Tang, X Dai, M Cai, J Zhao, P Zhou, Z Huang. Relay recognition of Cu2+ and S2‒ in water by a simple 2-(2′-aminophenyl)benzimidazole derivatized fluorescent sensor through modulating ESIPT. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2014, 122: 656–660
https://doi.org/10.1016/j.saa.2013.11.091
140 Y Qian, J Lin, T Liu, H Zhu. Living cells imaging for copper and hydrogen sulfide by a selective “on-off-on” fluorescent probe. Talanta, 2015, 132: 727–732
https://doi.org/10.1016/j.talanta.2014.10.034
141 Q Meng, Y Shi, C Wang, H Jia, X Gao, R Zhang, Y Wang, Z Zhang. NBD-based fluorescent chemosensor for the selective quantification of copper and sulfide in an aqueous solution and living cells. Organic & Biomolecular Chemistry, 2015, 13(10): 2918–2926
https://doi.org/10.1039/C4OB02178A
142 Z Hai, Y Bao, Q Miao, X Yi, G Liang. Pyridine-biquinoline-metal complexes for sensing pyrophosphate and hydrogen sulfide in aqueous buffer and in cells. Analytical Chemistry, 2015, 87(5): 2678–2684
https://doi.org/10.1021/ac504536q
143 J Liu, X Guo, R Hu, X Liu, S Wang, S Li, Y Li, G Yang. Molecular engineering of aqueous soluble triarylboron-compound-based two-photon fluorescent probe for mitochondria H2S with analyte-anduced finite aggregation and excellent membrane permeability. Analytical Chemistry, 2016, 88(1): 1052–1057
https://doi.org/10.1021/acs.analchem.5b04248
144 L Yang, J Wang, L Yang, C Zhang, R Zhang, Z Zhang, B Liu, C Jiang. Fluorescent paper sensor fabricated by carbazole-based probes for dual visual detection of Cu2+ and gaseous H2S. RSC Advances, 2016, 6(61): 56384–56391
https://doi.org/10.1039/C6RA10293J
145 P Wang, J Wu, C Di, R Zhou, H Zhang, P Su, C Xu, P Zhou, Y Ge, D Liu, W Liu, Y Tang. A novel peptide-based fluorescence chemosensor for selective imaging of hydrogen sulfide both in living cells and zebrafish. Biosensors & Bioelectronics, 2017, 92: 602–609
https://doi.org/10.1016/j.bios.2016.10.050
146 D Rajasekaran, K Venkatachalam, V Periasamy. “On-off-on” pyrene-based fluorescent chemosensor for the selective recognition of Cu2+ and S2– ions and its utilization in live cell imaging. Applied Organometallic Chemistry, 2020, 34(3): e5342
https://doi.org/10.1002/aoc.5342
147 X Qu, C Li, H Chen, J Mack, Z Guo, Z Shen. A red fluorescent turn-on probe for hydrogen sulfide and its application in living cells. Chemical Communications, 2013, 49(68): 7510–7512
https://doi.org/10.1039/c3cc44128h
148 M Sun, H Yu, H Li, H Xu, D Huang, S Wang. Fluorescence signaling of hydrogen sulfide in broad pH range using a copper complex based on BINOL-benzimidazole ligands. Inorganic Chemistry, 2015, 54(8): 3766–3772
https://doi.org/10.1021/ic502888j
149 X Li, C Yang, K Wu, Y Hu, Y Han, S H Liang. A highly specific probe for sensing hydrogen sulfide in live cells based on copper-initiated fluorogen with aggregation-induced emission characteristics. Theranostics, 2014, 4(12): 1233–1238
https://doi.org/10.7150/thno.10330
150 R Kawagoe, I Takashima, K Usui, A Kanegae, Y Ozawa, A Ojida. Rational design of a ratiometric fluorescent probe based on arene-metal-ion contact for endogenous hydrogen sulfide detection in living cells. ChemBioChem, 2015, 16(11): 1608–1615
https://doi.org/10.1002/cbic.201500249
151 F Ma, M Sun, K Zhang, H Yu, Z Wang, S Wang. A turn-on fluorescent probe for selective and sensitive detection of hydrogen sulfide. Analytica Chimica Acta, 2015, 879: 104–110
https://doi.org/10.1016/j.aca.2015.03.040
152 N Gupta, S I Reja, V Bhalla, M Kumar. Fluorescent probes for hydrogen polysulfides (H2Sn, n>1): from design rationale to applications. Organic & Biomolecular Chemistry, 2017, 15(32): 6692–6701
https://doi.org/10.1039/C7OB01615H
153 C Liu, W Chen, W Shi, B Peng, Y Zhao, H Ma, M Xian. Rational design and bioimaging applications of highly selective fluorescence probes for hydrogen polysulfides. Journal of the American Chemical Society, 2014, 136(20): 7257–7260
https://doi.org/10.1021/ja502968x
154 J Ma, J Fan, H Li, Q Yao, F Xu, J Wang, X Peng. A NIR fluorescent chemodosimeter for imaging endogenous hydrogen polysulfides via the CSE enzymatic pathway. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2017, 5(14): 2574–2579
https://doi.org/10.1039/C7TB00098G
155 K B Li, F Z Chen, Q H Yin, S Zhang, W Shi, D M Han. A colorimetric and near-infrared fluorescent probe for hydrogen polysulfides and its application in living cells. Sensors and Actuators. B, Chemical, 2018, 254: 222–226
https://doi.org/10.1016/j.snb.2017.07.079
156 L Zhao, Q Sun, C Sun, C Zhang, W Duan, S Gong, Z Liu. An isophorone-based far-red emitting ratiometric fluorescent probe for selective sensing and imaging of polysulfides. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2018, 6(43): 7015–7020
https://doi.org/10.1039/C8TB01813H
157 P Hou, J Wang, S Fu, L Liu, S Chen. A new turn-on fluorescent probe with ultra-large fluorescence enhancement for detection of hydrogen polysulfides based on dual quenching strategy. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2019, 213: 342–346
https://doi.org/10.1016/j.saa.2019.01.081
158 W Li, S Zhou, L Zhang, Z Yang, H Chen, W Chen, J Qin, X Shen, S Zhao. A red emitting fluorescent probe for sensitively monitoring hydrogen polysulfides in living cells and zebrafish. Sensors and Actuators. B, Chemical, 2019, 284: 30–35
https://doi.org/10.1016/j.snb.2018.12.106
159 J Liu, Z Yin. A resorufin-based fluorescent probe for imaging polysulfides in living cells. Analyst (London), 2019, 144(10): 3221–3225
https://doi.org/10.1039/C9AN00377K
160 C Zhang, Q Sun, L Zhao, S Gong, Z Liu. A BODIPY-based ratiometric probe for sensing and imaging hydrogen polysulfides in living cells. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2019, 223: 117295
https://doi.org/10.1016/j.saa.2019.117295
161 Q Fang, X Yue, S Han, B Wang, X Song. A rapid and sensitive fluorescent probe for detecting hydrogen polysulfides in living cells and zebra fish. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2020, 224: 117410
https://doi.org/10.1016/j.saa.2019.117410
162 C Wang, J Xu, Q Ma, Y Bai, M Tian, J Sun, Z Zhang. A highly selective fluorescent probe for hydrogen polysulfides in living cells based on a naphthalene derivative. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2020, 227: 117579
https://doi.org/10.1016/j.saa.2019.117579
163 X Zhao, F He, Y Dai, F Ma, Z Qi. A single fluorescent probe for one- and two-photon imaging hydrogen sulfide and hydrogen polysulfides with different fluorescence signals. Dyes and Pigments, 2020, 172: 107818
https://doi.org/10.1016/j.dyepig.2019.107818
164 Y Ren, L Zhang, Z Zhou, Y Luo, S Wang, S Yuan, Y Gu, Y Xu, X Zha. A new lysosome-targetable fluorescent probe with a large Stokes shift for detection of endogenous hydrogen polysulfides in living cells. Analytica Chimica Acta, 2019, 1056: 117–124
https://doi.org/10.1016/j.aca.2018.12.051
165 Q Han, X Liu, X Wang, R Yin, H Jiang, J Ru, W Liu. Rational design of a lysosomal-targeted ratiometric two-photon fluorescent probe for imaging hydrogen polysulfides in live cells. Dyes and Pigments, 2020, 173: 107877
https://doi.org/10.1016/j.dyepig.2019.107877
166 X Zhang, L Zhang, M Gao, Y Wang, L Chen. A near-infrared fluorescent probe for observing thionitrous acid-mediated hydrogen polysulfides formation and fluctuation in cells and in vivo under hypoxia stress. Journal of Hazardous Materials, 2020, 396: 122673
https://doi.org/10.1016/j.jhazmat.2020.122673
167 Y Fang, W Chen, W Shi, H Li, M Xian, H Ma. A near-infrared fluorescence off-on probe for sensitive imaging of hydrogen polysulfides in living cells and mice in vivo. Chemical Communications, 2017, 53(62): 8759–8762
https://doi.org/10.1039/C7CC04093H
168 F Yang, H Gao, S S Li, R B An, X Y Sun, B Kang, J J Xu, H Y Chen. A fluorescent tau-probe: quantitative imaging of ultra-trace endogenous hydrogen polysulfide in cells and in vivo. Chemical Science (Cambridge), 2018, 9(25): 5556–5563
https://doi.org/10.1039/C8SC01879K
169 A A Hoskere, S Sreedharan, F Ali, C G Smythe, J A Thomas, A Das. Polysulfide-triggered fluorescent indicator suitable for super-resolution microscopy and application in imaging. Chemical Communications, 2018, 54(30): 3735–3738
https://doi.org/10.1039/C8CC01332B
170 H J Choi, C S Lim, M K Cho, J S Kang, S J Park, S M Park, H M Kim. A two-photon ratiometric probe for hydrogen polysulfide (H2Sn): increase in mitochondrial H2Sn production in a Parkinson’s disease model. Sensors and Actuators. B, Chemical, 2019, 283: 810–819
https://doi.org/10.1016/j.snb.2018.12.087
171 L Liang, W Li, J Zheng, R Li, H Chen, Z Yuan. A new lysosome-targetable fluorescent probe for detection of endogenous hydrogen polysulfides in living cells and inflamed mouse model. Biomaterials Science, 2020, 8(1): 224–231
https://doi.org/10.1039/C9BM01616C
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed