Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2022, Vol. 16 Issue (1): 112-120   https://doi.org/10.1007/s11705-021-2075-5
  本期目录
Novel lysosome-targeted anticancer fluorescent agents used in zebrafish and nude mouse tumour imaging
Xiuli Chen1,2, Feng Liu1, Bin Chen3, Haiying Wu2, Kun Li1, Yongmei Xie1, Weihong Kuang4(), Zhihui Li1,3()
1. Department of Thyroid Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
2. Department of Obstetrics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
3. Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, Rare Diseases Center, West China Hospital of Sichuan University, Chengdu 610041, China
4. Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
 全文: PDF(4102 KB)   HTML
Abstract

The design of three novel fatty nitrogen mustard-based anticancer agents with fluorophores incorporated into the alkene structure (CXL 118, CXL121, and CXL122) is described in this report. The results indicated that these compounds are selectively located in lysosomes and exhibit effective antitumour activity. Notably, these compounds can directly serve as both reporting and imaging agents in vitro and in vivo without the need to add other fluorescent tagging agents.

Key wordsfluorescent drug    lysosomal    anticancer    zebrafish    nude-mouse tumour imaging
收稿日期: 2020-12-31      出版日期: 2021-12-27
Corresponding Author(s): Weihong Kuang,Zhihui Li   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2022, 16(1): 112-120.
Xiuli Chen, Feng Liu, Bin Chen, Haiying Wu, Kun Li, Yongmei Xie, Weihong Kuang, Zhihui Li. Novel lysosome-targeted anticancer fluorescent agents used in zebrafish and nude mouse tumour imaging. Front. Chem. Sci. Eng., 2022, 16(1): 112-120.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-021-2075-5
https://academic.hep.com.cn/fcse/CN/Y2022/V16/I1/112
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Cell line IC50/(μmol·L−1) a)
A549 DU145 HeLa BCPAP
CXL118 5.78±1.5 7.18±1.1 8.64±1.3 >20
CXL121 2.06±1.1 10.28±1.3 17.35±1.2 >20
CXL122 1.55±1.3 7.87±1.1 6.72±1.4 >40
Bis(2-chloroethyl)amine 2.78±1.2 8.94±1.4 11.63±1.3 >30
Tab.1  
Fig.5  
Fig.6  
Fig.7  
1 Y Liu, J Zhou, L Wang, X Hu, X Liu, M Liu, Z Cao, D Shangguan, W Tan. A cyanine dye to probe mitophagy: simultaneous detection of mitochondria and autolysosomes in live cells. Journal of the American Chemical Society, 2016, 138(38): 12368–12374
https://doi.org/10.1021/jacs.6b04048
2 J P Luzio, P R Pryor, N A Bright. Lysosomes: fusion and function. Nature Reviews. Molecular Cell Biology, 2007, 8(8): 622–632
https://doi.org/10.1038/nrm2217
3 H Zhang, J Liu, C Liu, P Yu, M Sun, X Yan, J P Guo, W Guo. Imaging lysosomal highly reactive oxygen species and lighting up cancer cells and tumors enabled by a Si-rhodamine-based near-infrared fluorescent probe. Biomaterials, 2017, 133: 60–69
https://doi.org/10.1016/j.biomaterials.2017.04.023
4 M Li, J Fan, H Li, J Du, S Long, X Peng. A ratiometric fluorescence probe for lysosomal polarity. Biomaterials, 2018, 164: 98–105
https://doi.org/10.1016/j.biomaterials.2018.02.044
5 M Maiuri, E Tasdemir, A Criollo, E Morselli, J Vicencio, R Carnuccio, G Kroemer. Control of autophagy by oncogenes and tumor suppressor genes. Cell Death and Differentiation, 2009, 16(1): 87–93
https://doi.org/10.1038/cdd.2008.131
6 M M Mohamed, B F Sloane. Cysteine cathepsins: multifunctional enzymes in cancer. Nature Reviews. Cancer, 2006, 6(10): 764–775
https://doi.org/10.1038/nrc1949
7 B Soreghan, S N Thomas, A J Yang. Aberrant sphingomyelin/ceramide metabolic-induced neuronal endosomal/lysosomal dysfunction: potential pathological consequences in age-related neurodegeneration. Advanced Drug Delivery Reviews, 2003, 55(11): 1515–1524
https://doi.org/10.1016/j.addr.2003.07.007
8 H Mizukami, Y Mi, R Wada, M Kono, T Yamashita, Y Liu, N Werth, R Sandhoff, K Sandhoff, R L Proia. Systemic inflammation in glucocerebrosidase-deficient mice with minimal glucosylceramide storage. Journal of Clinical Investigation, 2002, 109(9): 1215–1221
https://doi.org/10.1172/JCI0214530
9 J Reiser, B Adair, T Reinheckel. Specialized roles for cysteine cathepsins in health and disease. Journal of Clinical Investigation, 2010, 120(10): 3421–3431
https://doi.org/10.1172/JCI42918
10 O Vasiljeva, T Reinheckel, C Peters, D Turk, V Turk, B Turk. Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Current Pharmaceutical Design, 2007, 13(4): 387–403
https://doi.org/10.2174/138161207780162962
11 R Miao, M Li, Q Zhang, C Yang, X Wang. An ECM-to-nucleus signalling pathway activates lysosomes for C. elegans larval development. Developmental Cell, 2020, 52(1): 21–37
https://doi.org/10.1016/j.devcel.2019.10.020
12 K Fujimaki, R Li, H Chen, K D Croce, H H Zhang, J Xing, F Bai, G Yao. Graded regulation of cellular quiescence depth between proliferation and senescence by a lysosomal dimmer switch. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(45): 22624–22634
https://doi.org/10.1073/pnas.1915905116
13 R Hu, B Chen, Z Wang, A Qin, Z Zhao, X Lou, B Z Tang. Intriguing “chameleon” fluorescent bioprobes for the visualization of lipid droplet-lysosome interplay. Biomaterials, 2019, 203: 43–51
https://doi.org/10.1016/j.biomaterials.2019.03.002
14 J Fan, H Dong, M Hu, J Wang, H Zhang, H Zhu, W Sun, X Peng. Fluorescence imaging lysosomal changes during cell division and apoptosis observed using Nile blue based near-infrared emission. Chemical Communications, 2013, 50(7): 882–884
https://doi.org/10.1039/C3CC48043G
15 G Kroemer, M Jäättelä. Lysosomes and autophagy in cell death control. Nature Reviews. Cancer, 2005, 5(11): 886–897
https://doi.org/10.1038/nrc1738
16 J W Chen, W Pan, M P D’souza, J T August. Lysosome-associated membrane proteins: characterization of LAMP-1 of macrophage P388 and mouse embryo 3T3 cultured cells. Archives of Biochemistry and Biophysics, 1985, 239(2): 574–586
https://doi.org/10.1016/0003-9861(85)90727-1
17 N W Werneburg, M E Guicciardi, S F Bronk, S H Kaufmann, G J Gores. Tumor necrosis factor-related apoptosis-inducing ligand activates a lysosomal pathway of apoptosis that is regulated by bcl-2 proteins. Journal of Biological Chemistry, 2007, 282(39): 28960–28970
https://doi.org/10.1074/jbc.M705671200
18 Q Hu, M B Bally, T D Madden. Subcellular trafficking of antisense oligonucleotides and down-regulation of bcl-2 gene expression in human melanoma cells using a fusogenic liposome delivery system. Nucleic Acids Research, 2002, 30(16): 3632–3641
https://doi.org/10.1093/nar/gkf448
19 K Hanaki, A Momo, T Oku, A Komoto, S Maenosono, Y Yamaguchi, K Yamamoto. Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochemical and Biophysical Research Communications, 2003, 302(3): 496–501
https://doi.org/10.1016/S0006-291X(03)00211-0
20 R S Hotchkiss, A Strasser, J E McDunn, P E Swanson. Cell death. New England Journal of Medicine, 2009, 361(16): 1570–1583
https://doi.org/10.1056/NEJMra0901217
21 G Kroemer, W S El-Deiry, P Golstein, M E Peter, D Vaux, P Vandenabeele, B Zhivotovsky, M V Blagosklonny, W Malorni, R A Knight, et al.. Classification of cell death: recommendations of the nomenclature committee on cell death. Cell Death and Differentiation, 2005, 12(S2): 1463–1467
https://doi.org/10.1038/sj.cdd.4401724
22 L Galluzzi, M Maiuri, I Vitale, H Zischka, M Castedo, L Zitvogel, G Kroemer. Cell death modalities: classification and pathophysiological implications. Cell Death and Differentiation, 2007, 14(7): 1237–1243
https://doi.org/10.1038/sj.cdd.4402148
23 K C Walls, A P Ghosh, A V Franklin, B J Klocke, M Ballestas, J J Shacka, J Zhang, K A Roth. Lysosome dysfunction triggers Atg7-dependent neural apoptosis. Journal of Biological Chemistry, 2010, 285(14): 10497–10507
https://doi.org/10.1074/jbc.M110.103747
24 P Codogno, A J Meijer. Atg5: more than an autophagy factor. Nature Cell Biology, 2006, 8(10): 1045–1047
https://doi.org/10.1038/ncb1006-1045
25 T Yu, F Guo, Y Yu, T Sun, D Ma, J Han, Y Qian, I Kryczek, D Sun, N Nagarsheth, et al.. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell, 2017, 170(3): 548–563
https://doi.org/10.1016/j.cell.2017.07.008
26 R K Amaravadi, C B Thompson. The roles of therapy-induced autophagy and necrosis in cancer treatment. Clinical Cancer Research, 2007, 13(24): 7271–7279
https://doi.org/10.1158/1078-0432.CCR-07-1595
27 J Marx. Autophagy: is it cancer’s friend or foe? Science, 2006, 312(5777): 1160–1161
https://doi.org/10.1126/science.312.5777.1160
28 S Giralt, P F Thall, I Khouri, X Wang, I Braunschweig, C Ippolitti, D Claxton, M Donato, J Bruton, A Cohen, et al.. Melphalan and purine analog-containing preparative regimens: reduced-intensity conditioning for patients with hematologic malignancies undergoing allogeneic progenitor cell transplantation. Blood, 2001, 97(3): 631–637
https://doi.org/10.1182/blood.V97.3.631
29 P J Pedersen, M S Christensen, T Ruysschaert, L Linderoth, T L Andresen, F Melander, O G Mouritsen, R Madsen, M H Clausen. Synthesis and biophysical characterization of chlorambucil anticancer ether lipid prodrugs. Journal of Medicinal Chemistry, 2009, 52(10): 3408–3415
https://doi.org/10.1021/jm900091h
30 W Li, S Nie, Y Chen, Y Wang, C Li, M Xie. Enhancement of cyclophosphamide-induced antitumor effect by a novel polysaccharide from Ganoderma atrum in sarcoma 180-bearing mice. Journal of Agricultural and Food Chemistry, 2011, 59(8): 3707–3716
https://doi.org/10.1021/jf1049497
31 W Chen, K Balakrishnan, Y Kuang, Y Han, M Fu, V Gandhi, X Peng. Reactive oxygen species (ROS) inducible DNA cross-linking agents and their effect on cancer cells and normal lymphocytes. Journal of Medicinal Chemistry, 2014, 57(11): 4498–4510
https://doi.org/10.1021/jm401349g
32 P Verwilst, J Han, J Lee, S Mun, H G Kang, J S Kim. Reconsidering azobenzene as a component of small-molecule hypoxia-mediated cancer drugs: a theranostic case study. Biomaterials, 2017, 115: 104–114
https://doi.org/10.1016/j.biomaterials.2016.11.023
33 D Detroja, T L Chen, Y W Lin, T Y Yen, M H Wu, T H Tsai, K Mehariya, R Kakadiya, T C Lee, A Shah. Novel N-mustard-benzimidazoles/benzothiazoles, synthesis and anticancer evaluation. Anti-cancer Agents in Medicinal Chemistry, 2017, 17: 1741–1755
34 B Diethelm-Varela, Y Ai, D Liang, F Xue. Nitrogen mustards as anticancer chemotherapies: historic perspective, current developments and future trends. Current Topics in Medicinal Chemistry, 2019, 19(9): 691–712
https://doi.org/10.2174/1568026619666190401100519
35 R K Singh, D N Prasad, T R Bhardwaj. Hybrid pharmacophore-based drug design, synthesis, and antiproliferative activity of 1,4-dihydropyridines-linked alkylating anticancer agents. Medicinal Chemistry Research, 2015, 24(4): 1534–1545
https://doi.org/10.1007/s00044-014-1236-1
36 X Chen, H Chen, C Lu, C Yang, X Yu, K Li, Y Xie. Novel mitochondria-targeted, nitrogen mustard-based DNA alkylation agents with near infrared fluorescence emission. Talanta, 2016, 161: 888–893
https://doi.org/10.1016/j.talanta.2016.08.051
37 X Chen, W Peng, S Huang, C Yang, M Hu, S Yang, S Yang, Y Xie, H Chen, N Lei, Y Luo, K Li. Novel mitochondria-targeted and fluorescent DNA alkylation agents with highly selective activity against cancer cells. Dyes and Pigments, 2019, 170: 107610
https://doi.org/10.1016/j.dyepig.2019.107610
38 L Tang, P He, X Yan, J Sun, K Zhong, S Hou, Y Bian. A mitochondria-targetable fluorescent probe for ratiometric detection of SO2 derivatives and its application in live cell imaging. Sensors and Actuators. B, Chemical, 2017, 247: 421–427
https://doi.org/10.1016/j.snb.2017.03.032
39 Q Zhou, K Li, Y H Liu, L L Li, K K Yu, H Zhang, X Q Yu. Fluorescent Wittig reagent as a novel ratiometric probe for the quantification of 5-formyluracil and its application in cell imaging. Chemical Communications, 2018, 54(97): 13722–13725
https://doi.org/10.1039/C8CC07541G
40 M Y Wu, K Li, C Y Li, J T Hou, X Q Yu. A water-soluble near-infrared probe for colorimetric and ratiometric sensing of SO2 derivatives in living cells. Chemical Communications, 2014, 50(2): 183–185
https://doi.org/10.1039/C3CC46468G
41 Y Liu, K Li, M Y Wu, Y H Liu, Y M Xie, X Q Yu. A mitochondria-targeted colorimetric and ratiometric fluorescent probe for biological SO2 derivatives in living cells. Chemical Communications, 2015, 51(50): 10236–10239
https://doi.org/10.1039/C5CC03055B
42 D P Li, Z Y Wang, X J Cao, J Cui, X Wang, H Z Cui, J Y Miao, B X Zhao. A mitochondria-targeted fluorescent probe for ratiometric detection of endogenous sulfur dioxide derivatives in cancer cells. Chemical Communications, 2016, 52(13): 2760–2763
https://doi.org/10.1039/C5CC09092J
43 C A Puckett, J K Barton. Methods to explore cellular uptake of ruthenium complexes. Journal of the American Chemical Society, 2007, 129(1): 46–47
https://doi.org/10.1021/ja0677564
44 Y Li, L Tao, Z Zuo, Y Zhou, X Qian, Y Lin, H Jie, C Liu, Z Li, H Zhang, et al.. ZY0511, a novel, potent and selective LSD1 inhibitor, exhibits anticancer activity against solid tumors via the DDIT4/mTOR pathway. Cancer Letters, 2019, 454: 179–190
https://doi.org/10.1016/j.canlet.2019.03.052
45 S K Ko, X Chen, J Yoon, I Shin. Zebrafish as a good vertebrate model for molecular imaging using fluorescent probes. Chemical Society Reviews, 2011, 40(5): 2120–2130
https://doi.org/10.1039/c0cs00118j
46 N Deniz Koç, R Yüce. A light-and electron microscopic study of primordial germ cells in the zebra fish (Danio rerio). Biological Research, 2012, 45(4): 331–336
https://doi.org/10.4067/S0716-97602012000400001
47 Y F Kang, Y H Li, Y W Fang, Y Xu, X M Wei, X B Yin. Carbon quantum dots for zebrafish fluorescence imaging. Scientific Reports, 2005, 5(1): 11835
https://doi.org/10.1038/srep11835
48 D Liang, Y Zhang, Z Wu, Y J Chen, X Yang, M Sun, R Ni, J Bian, D Huang. A near infrared singlet oxygen probe and its applications in in vivo imaging and measurement of singlet oxygen quenching activity of flavonoids. Sensors and Actuators. B, Chemical, 2018, 266: 645–654
https://doi.org/10.1016/j.snb.2018.03.024
49 F Ding, Y Zhan, X Lu, Y Sun. Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging. Chemical Science (Cambridge), 2018, 9(19): 4370–4380
https://doi.org/10.1039/C8SC01153B
50 X Han, R Wang, X Song, F Yu, L Chen. Evaluation selenocysteine protective effect in carbon disulfide induced hepatitis with a mitochondrial targeting ratiometric near-infrared fluorescent probe. Analytical Chemistry, 2018, 90(13): 8108–8115
https://doi.org/10.1021/acs.analchem.8b01306
51 M Hu, C Yang, Y Luo, F Chen, F Yang, S Yang, H Chen, Z Cheng, K Li, Y Xie. A hypoxia-specific and mitochondria-targeted anticancer theranostic agent with high selectivity for cancer cells. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2018, 6(16): 2413–2416
https://doi.org/10.1039/C8TB00546J
52 X Qu, F Yuan, Z He, Y Mai, J Gao, X Li, D Yang, Y Cao, X Li, Z Yuan. A rhodamine-based single-molecular theranostic agent for multiple-functionality tumor therapy. Dyes and Pigments, 2019, 166: 72–83
https://doi.org/10.1016/j.dyepig.2019.03.009
[1] supplementary material Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed