Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2022, Vol. 16 Issue (3): 397-407   https://doi.org/10.1007/s11705-021-2076-4
  本期目录
The cooperation effect of Ni and Pt in the hydrogenation of acetic acid
Deng Pan1, Jiahua Zhou1, Bo Peng2(), Shengping Wang1, Yujun Zhao1(), Xinbin Ma1
1. Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
2. SINOPEC Research Institute of Petroleum Processing (RIPP), Beijing 100083, China
 全文: PDF(2439 KB)   HTML
Abstract

The catalytic hydrogenation of carboxylic acid to alcohols is one of the important strategies for the conversion of biomass. Herein, a series of Ni-doped PtSn catalysts were prepared, characterized and studied in the hydrogenation of acetic acid. The Ni dopant has a strong interaction with Pt, which promotes the hydrogen adsorption, providing an activated hydrogen-rich environment for the hydrogenation. Meanwhile, the presence of Ni also improves the Pt dispersion, giving more accessible active sites for hydrogen activation. The cooperation of Pt and Ni significantly promotes the catalytic activity of the hydrogenation of acetic acid to ethanol. As a result, the catalyst with 0.1% Ni exhibits the best reaction activity, and its space time yield is twice as that of the PtSn/SiO2 catalyst. It provides a meaningful instruction on the catalyst design for the carboxylic acid hydrogenation.

Key wordsacetic acid    ethanol    hydrogenation    Pt    Ni    cooperation effect
收稿日期: 2021-02-21      出版日期: 2022-02-24
Corresponding Author(s): Bo Peng,Yujun Zhao   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2022, 16(3): 397-407.
Deng Pan, Jiahua Zhou, Bo Peng, Shengping Wang, Yujun Zhao, Xinbin Ma. The cooperation effect of Ni and Pt in the hydrogenation of acetic acid. Front. Chem. Sci. Eng., 2022, 16(3): 397-407.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-021-2076-4
https://academic.hep.com.cn/fcse/CN/Y2022/V16/I3/397
Fig.1  
Catalyst Content a)
(wt-%)
SBET
/(m2·g–1)
Dpore
/nm
Vpore
/(cm3·g–1)
Db)
/nm
Pt dispersion c)
/%
Lewis acid sites d)
/(μmol·g–1)
L/Pt
/(mol·mol–1)
Pt Sn Ni
PtSn 0.47 1.11 407 3.8 0.33 2.27 55 12.99 1.08
0.1Ni-PtSn-IW 0.43 1.22 0.10 406 3.7 0.39 1.50 83 14.38 1.05
0.3Ni-PtSn-IW 0.50 1.19 0.26 353 3.3 0.19 2.71 53 24.69 2.29
0.5Ni-PtSn-IW 0.53 1.25 0.45 343 3.2 0.15 3.05 47 26.88 2.67
0.5Ni1Sn-IW 1.29 0.43 500 5.5 0.28
1Ni1Sn-IW 1.31 0.92 468 4.3 0.20
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 J Goldemberg. Ethanol for a sustainable energy future. Science, 2007, 315(5813): 808–810
https://doi.org/10.1126/science.1137013
2 R Pestman, R M Koster, E Boellaard, A M van der Kraan, V Ponec. Identification of the active sites in the selective hydrogenation of acetic acid to acetaldehyde on iron oxide catalysts. Journal of Catalysis, 1998, 174(2): 142–152
https://doi.org/10.1006/jcat.1998.1957
3 H G Manyar, C Paun, R Pilus, D W Rooney, J M Thompson, C Hardacre. Highly selective and efficient hydrogenation of carboxylic acids to alcohols using titania supported Pt catalysts. Chemical Communications, 2010, 46(34): 6279–6281
https://doi.org/10.1039/c0cc01365j
4 X H Li, M Antonietti. Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: functional Mott-Schottky heterojunctions for catalysis. Chemical Society Reviews, 2013, 42(16): 6593–6604
https://doi.org/10.1039/c3cs60067j
5 A Dhakshinamoorthy, H Garcia. Catalysis by metal nanoparticles embedded on metal-organic frameworks. Chemical Society Reviews, 2012, 41(15): 5262–5284
https://doi.org/10.1039/c2cs35047e
6 H Yan, H Cheng, H Yi, Y Lin, T Yao, C Wang, J Li, S Wei, J Lu. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. Journal of the American Chemical Society, 2015, 137(33): 10484–10487
https://doi.org/10.1021/jacs.5b06485
7 G Vile, D Albani, M Nachtegaal, Z Chen, D Dontsova, M Antonietti, N Lopez, J Perez-Ramirez. A stable single-site palladium catalyst for hydrogenations. Angewandte Chemie International Edition, 2015, 54(38): 11265–11269
https://doi.org/10.1002/anie.201505073
8 J Lin, B Qiao, N Li, L Li, X Sun, J Liu, X Wang, T Zhang. Little do more: a highly effective Pt1/FeOx single-atom catalyst for the reduction of NO by H2. Chemical Communications, 2015, 51(37): 7911–7914
https://doi.org/10.1039/C5CC00714C
9 W Li, L Ye, J Chen, X Duan, H Lin, Y Yuan. FeSBA-15-supported ruthenium catalyst for the selective hydrogenolysis of carboxylic acids to alcoholic chemicals. Catalysis Today, 2015, 251: 53–59
https://doi.org/10.1016/j.cattod.2014.10.044
10 V Pallassana, M Neurock. Reaction paths in the hydrogenolysis of acetic acid to ethanol over Pd(111), Re(0001), and PdRe alloys. Journal of Catalysis, 2002, 209(2): 289–305
https://doi.org/10.1006/jcat.2002.3585
11 W Rachmady, M A Vannice. Acetic acid reduction by H2 on bimetallic Pt-Fe catalysts. Journal of Catalysis, 2002, 209(1): 87–98
https://doi.org/10.1006/jcat.2002.3623
12 S Zhang, X Duan, L Ye, H Lin, Z Xie, Y Yuan. Production of ethanol by gas phase hydrogenation of acetic acid over carbon nanotube-supported Pt-Sn nanoparticles. Catalysis Today, 2013, 215: 260–266
https://doi.org/10.1016/j.cattod.2013.05.002
13 K Zhang, H T Zhang, H F Ma, W Y Ying, D Y Fang. Effect of Sn addition in gas phase hydrogenation of acetic acid on alumina supported PtSn catalysts. Catalysis Letters, 2014, 144(4): 691–701
https://doi.org/10.1007/s10562-014-1210-z
14 G Xu, J Zhang, S Wang, Y Zhao, X Ma. A well fabricated PtSn/SiO2 catalyst with enhanced synergy between Pt and Sn for acetic acid hydrogenation to ethanol. RSC Advances, 2016, 6(56): 51005–51013
https://doi.org/10.1039/C6RA09199G
15 J H Zhou, Y J Zhao, J Zhang, Y Wang, O Y Gutierrez, S N Wang, Z X Li, P Jin, S P Wang, X B Ma, et al.. A nitrogen-doped PtSn nanocatalyst supported on hollow silica spheres for acetic acid hydrogenation. Chemical Communications, 2018, 54(64): 8818–8821
https://doi.org/10.1039/C8CC03649G
16 G Xu, J Zhang, S Wang, Y Zhao, X Ma. Effect of thermal pretreatment on the surface structure of PtSn/SiO2 catalyst and its performance in acetic acid hydrogenation. Frontiers of Chemical Science and Engineering, 2016, 10(3): 417–424
https://doi.org/10.1007/s11705-016-1583-1
17 W Rachmady, M A Vannice. Acetic acid reduction to acetaldehyde over iron catalysts I. Kinetic behavior. Journal of Catalysis, 2002, 208(1): 158–169
https://doi.org/10.1006/jcat.2002.3560
18 M Zhou, H Zhang, H Ma, W Ying. The catalytic properties of K modified PtSn/Al2O3 catalyst for acetic acid hydrogenation to ethanol. Fuel Processing Technology, 2016, 144: 115–123
https://doi.org/10.1016/j.fuproc.2015.12.022
19 G J Siri, G R Bertolini, M L Casella, O A Ferretti. PtSn/γ-Al2O3 isobutane dehydrogenation catalysts: the effect of alkaline metals addition. Materials Letters, 2005, 59(18): 2319–2324
https://doi.org/10.1016/j.matlet.2005.03.013
20 Z Wang, G Li, X Liu, Y Huang, A Wang, W Chu, X Wang, N Li. Aqueous phase hydrogenation of acetic acid to ethanol over Ir-MoOx/SiO2 catalyst. Catalysis Communications, 2014, 43: 38–41
https://doi.org/10.1016/j.catcom.2013.09.007
21 S M Kim, P M Abdala, T Margossian, D Hosseini, L Foppa, A Armutlulu, W van Beek, A Comas-Vives, C Coperet, C Mueller. Cooperativity and dynamics increase the performance of NiFe dry reforming catalysts. Journal of the American Chemical Society, 2017, 139(5): 1937–1949
https://doi.org/10.1021/jacs.6b11487
22 Q Han, M U Rehman, J Wang, A Rykov, O Y Gutierrez, Y Zhao, S Wang, X Ma, J A Lercher. The synergistic effect between Ni sites and Ni-Fe alloy sites on hydrodeoxygenation of lignin-derived phenols. Applied Catalysis B: Environmental, 2019, 253: 348–358
https://doi.org/10.1016/j.apcatb.2019.04.065
23 Y Ruan, Y Zhao, Y Lu, D Guo, Y Zhao, S Wang, X Ma. Mesoporous LaAl0.25Ni0.75O3 perovskite catalyst using SBA-15 as templating agent for methane dry reforming. Microporous and Mesoporous Materials, 2020, 303: 1–9
https://doi.org/10.1016/j.micromeso.2020.110278
24 Y Lu, D Guo, Y Ruan, Y Zhao, S Wang, X Ma. Facile one-pot synthesis of Ni@HSS as a novel yolk-shell structure catalyst for dry reforming of methane. Journal of CO2 Utilization, 2018, 24: 190–199
25 M Xiang, J Zou, D Li, W Li, Y Sun, X She. Nickel and potassium co-modified β-Mo2C catalyst for CO conversion. Journal of Natural Gas Chemistry, 2009, 18(2): 183–186
https://doi.org/10.1016/S1003-9953(08)60103-6
26 M Xiang, D Li, W Li, B Zhong, Y Sun. Potassium and nickel doped β-Mo2C catalysts for mixed alcohols synthesis via syngas. Catalysis Communications, 2007, 8(3): 513–518
https://doi.org/10.1016/j.catcom.2006.07.028
27 S Han, Y Liu, J Li, R Li, F Yuan, Y Zhu. Improvement effect of Ni to Pd-Ni/SBA-15 catalyst for selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. Catalysts, 2018, 8(5): 200
https://doi.org/10.3390/catal8050200
28 J Zhang, L Kong, Y Chen, H Huang, H Zhang, Y Yao, Y Xu, Y Xu, S Wang, X Ma, Y Zhao. Enhanced synergy between Cu0 and Cu+ on nickel doped copper catalyst for gaseous acetic acid hydrogenation. Frontiers of Chemical Science and Engineering, 2021, 15(3): 666–678
https://doi.org/10.1007/s11705-020-1982-1
29 Q Q Wang, J Qu, Y Liu, C X Gui, S M Hao, Y Yu, Z Z Yu. Growth of nickel silicate nanoplates on reduced graphene oxide as layered nanocomposites for highly reversible lithium storage. Nanoscale, 2015, 7(40): 16805–16811
https://doi.org/10.1039/C5NR05719A
30 M Schreier, J R Regalbuto. A fundamental study of Pt tetraammine impregnation of silica 1. The electrostatic nature of platinum adsorption. Journal of Catalysis, 2004, 225(1): 190–202
https://doi.org/10.1016/j.jcat.2004.03.034
31 J T Miller, M Schreier, A J Kropf, J R Regalbuto. A fundamental study of platinum tetraammine impregnation of silica 2. The effect of method of preparation, loading, and calcination temperature on (reduced) particle size. Journal of Catalysis, 2004, 225(1): 203–212
https://doi.org/10.1016/j.jcat.2004.04.007
32 S Boonpai, S Wannakao, K Suriye, V Marquez, J Panpranot, B Jongsomjit, P Praserthdam, A T Bell. Influence of surface Sn species and hydrogen interactions on the OH group formation over spherical silica-supported tin oxide catalysts. Reaction Chemistry & Engineering, 2020, 5(9): 1814–1823
https://doi.org/10.1039/D0RE00178C
33 N Kamiuchi, K Taguchi, T Matsui, R Kikuchi, K Eguchi. Sintering and redispersion of platinum catalysts supported on tin oxide. Applied Catalysis B: Environmental, 2009, 89(1–2): 65–72
https://doi.org/10.1016/j.apcatb.2008.11.026
34 J Rynkowski, D Rajski, I Szyszka, J R Grzechowiak. Effect of platinum on the hydrogenation activity of nickel catalysts. Catalysis Today, 2004, 90(1–2): 159–166
https://doi.org/10.1016/j.cattod.2004.04.022
35 C Zhang, W Lv, Q Yang, Y Liu. Graphene supported nano particles of Pt-Ni for CO oxidation. Applied Surface Science, 2012, 258(20): 7795–7800
https://doi.org/10.1016/j.apsusc.2012.03.131
36 E G Mahoney, J M Pusel, S M Stagg-Williams, S. Faraji The effects of Pt addition to supported Ni catalysts on dry (CO2) reforming of methane to syngas. Journal of CO2 Utilization, 2014, 6: 40–44
37 K Taniya, H Jinno, M Kishida, Y Ichihashi, S Nishiyama. Preparation of Sn-modified silica-coated Pt catalysts: a new Pt-Sn bimetallic model catalyst for selective hydrogenation of crotonaldehyde. Journal of Catalysis, 2012, 288: 84–91
https://doi.org/10.1016/j.jcat.2012.01.006
38 R Alcala, M Mavrikakis, J A Dumesic. DFT studies for cleavage of C–C and C–O bonds in surface species derived from ethanol on Pt(111). Journal of Catalysis, 2003, 218(1): 178–190
https://doi.org/10.1016/S0021-9517(03)00090-3
39 Y Takeda, Y Nakagawa, K Tomishige. Selective hydrogenation of higher saturated carboxylic acids to alcohols using a ReOx-Pd/SiO2 catalyst. Catalysis Science & Technology, 2012, 2(11): 2221–2223
https://doi.org/10.1039/c2cy20302b
40 X Zhao, K Wu, W Liao, Y Wang, X Hou, M Jin, Z Suo, H Ge. Improvement of low temperature activity and stability of Ni catalysts with addition of Pt for hydrogen production via steam reforming of ethylene glycol. Green Energy & Environment, 2019, 4(3): 300–310
https://doi.org/10.1016/j.gee.2018.11.002
41 M Pudukudy, Z Yaakob, Q Jia, M S Takriff. Catalytic decomposition of undiluted methane into hydrogen and carbon nanotubes over Pt promoted Ni/CeO2 catalysts. New Journal of Chemistry, 2018, 42(18): 14843–14856
https://doi.org/10.1039/C8NJ02842G
42 S A Abbas, S H Kim, M I Iqbal, S Muhammad, W S Yoon, K D Jung. Synergistic effect of nano-Pt and Ni spine for HER in alkaline solution: hydrogen spillover from nano-Pt to Ni spine. Scientific Reports, 2018, 8(1): 8
https://doi.org/10.1038/s41598-018-21396-9
43 J G Tellez-Romero, R Cuevas-Garcia, J Ramirez, P Castillo-Villalon, R Contreras-Barbara, M C Salcedo-Luna, R I Puente-Lee. Simultaneous naphthalene and thiophene hydrogenation over Ni(X)-Pt/HMOR catalysts. Catalysis Today, 2015, 250: 12–20
https://doi.org/10.1016/j.cattod.2014.08.032
44 X F Wang, X H Liang, P Geng, Q B Li. Recent advances in selective hydrogenation of cinnamaldehyde over supported metal-based catalysts. ACS Catalysis, 2020, 10(4): 2395–2412
https://doi.org/10.1021/acscatal.9b05031
45 X F Yang, A Q Wang, B T Qiao, J Li, J Y Liu, T Zhang. Single-atom catalysts: a new frontier in heterogeneous catalysis. Accounts of Chemical Research, 2013, 46(8): 1740–1748
https://doi.org/10.1021/ar300361m
46 J Zhang, C Zheng, M Zhang, Y Qiu, Q Xu, W C Cheong, W Chen, L Zheng, L Gu, Z Hu, et al.. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Research, 2020, 13(11): 3082–3087
https://doi.org/10.1007/s12274-020-2977-4
47 Z D Zhang, M Zhou, Y J Chen, S J Liu, H F Wang, J Zhang, S F Ji, D S Wang, Y D Li. Pd single-atom monolithic catalyst: functional 3D structure and unique chemical selectivity in hydrogenation reaction. Science China Materials, 2021, 64, 1919–1929
48 Z Ren, M N Younis, C Li, Z Li, X Yang, G Wang. Highly active Ce, Y, La-modified Cu/SiO2 catalysts for hydrogenation of methyl acetate to ethanol. RSC Advances, 2020, 10(10): 5590–5603
https://doi.org/10.1039/C9RA08780J
49 X Dong, J Lei, Y Chen, H Jiang, M Zhang. Selective hydrogenation of acetic acid to ethanol on Cu-In catalyst supported by SBA-15. Applied Catalysis B: Environmental, 2019, 244: 448–458
https://doi.org/10.1016/j.apcatb.2018.11.062
50 R Beerthuis, J W de Rijk, J M S Deeley, G J Sunley, K P de Jong, P E de Jongh. Particle size effects in copper-catalyzed hydrogenation of ethyl acetate. Journal of Catalysis, 2020, 388: 30–37
https://doi.org/10.1016/j.jcat.2020.05.006
[1] supplementary material Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed