Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2022, Vol. 16 Issue (5): 709-719   https://doi.org/10.1007/s11705-021-2078-2
  本期目录
Fabrication of high-performance pervaporation composite membrane for alkaline wastewater reclamation
Guiqin Bai1, Jianzhong Xia2(), Bing Cao1, Rui Zhang1, Junquan Meng1, Pei Li1()
1. College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
2. Institute for Advance Study, Shenzhen University, Shenzhen 518060, China
 全文: PDF(1441 KB)   HTML
Abstract

Pervaporation desalination has a unique advantage to recycle concentrated salt solutions. The merit can be applied to treat alkaline wastewater if the membrane has superior alkali-resistance. In this paper, we used polyethylene microfiltration membrane as the substrate and deposited a glutaraldehyde crosslinked sodium carboxymethylcellulose layer by spray-coating. Pervaporation flux of the composite membrane reached 35 ± 2 kg·m–2·h–1 with a sodium chloride rejection of 99.9% ± 0.1% when separating a 3.5 wt-% sodium chloride solution at 70 °C. The desalination performance was stable after soaking the membrane in a 20 wt-% NaOH solution at room temperature for 9 d and in a 10 wt-% NaOH solution at 60 °C for 80 h. Moreover, the membrane was stable in 4 wt-% sulfuric acid and a 500 mg·L−1 sodium hypochlorite solution. In a process of concentrating a NaOH solution from 5 to 10 wt-% at 60 °C, an average water flux of 23 kg·m–2·h–1 with a NaOH rejection over 99.98% was obtained.

Key wordspervaporation    alkaline solution concentration    polyethylene membrane    acid resistance    chlorine tolerance
收稿日期: 2021-02-21      出版日期: 2022-03-28
Corresponding Author(s): Jianzhong Xia,Pei Li   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2022, 16(5): 709-719.
Guiqin Bai, Jianzhong Xia, Bing Cao, Rui Zhang, Junquan Meng, Pei Li. Fabrication of high-performance pervaporation composite membrane for alkaline wastewater reclamation. Front. Chem. Sci. Eng., 2022, 16(5): 709-719.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-021-2078-2
https://academic.hep.com.cn/fcse/CN/Y2022/V16/I5/709
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Membrane type Material NaOH concentration/% Alkali test
method
Membrane flux/(L?m–2?h–1?bar–1) Rejection/%
RO [44] PA 0.04 Immersing 5.28 99.06
NF [45] PVA-CMC-Na 1.96 Immersing 17.96 38.2
NF[46] PVA-APES 4.0 Immersing 13.5 53.6
UF [47] Polyphenylsulfone 0.38 Immersing 0.675
MF [48] PPS 3.85 Immersing 154.95
Pervaporation [49] PVA-FS/PVDF 0.38 Immersing 34 b) 99.9
Pervaporation (This study) CMC-Na/GA-PE 20 Immersing (25 °C) 35 b) 99.9?±?0.1
Pervaporation (This study) CMC-Na/GA-PE 10 Circulation (60 °C)
Tab.1  
Fig.9  
Fig.10  
1 M L Mathew, A Gopalakrishnan, C T Aravindakumar, U K Aravind. Low-cost multilayered green fiber for the treatment of textile industry waste water. Journal of Hazardous Materials, 2019, 365: 297–305
https://doi.org/10.1016/j.jhazmat.2018.11.014
2 V Buscio, V López Grimau, M D Álvarez, C Gutiérrez Bouzán. Reducing the environmental impact of textile industry by reusing residual salts and water: ECUVal system. Chemical Engineering Journal, 2019, 373: 161–170
https://doi.org/10.1016/j.cej.2019.04.146
3 C Jia, C Chen, Y Kuang, K Fu, Y Wang, Y Yao, S Kronthal, E Hitz, J Song, F Xu, et al.. From wood to textiles: top-down assembly of aligned cellulose nanofibers. Advanced Materials, 2018, 30(30): 1801347
https://doi.org/10.1002/adma.201801347
4 S Mirmohamadsadeghi, K Karimi, R Azarbaijani, L Parsa Yeganeh, I Angelidaki, A S Nizami, R Bhat, K Dashora, V K Vijay, M Aghbashlo, et al.. Pretreatment of lignocelluloses for enhanced biogas production: a review on influencing mechanisms and the importance of microbial diversity. Renewable & Sustainable Energy Reviews, 2021, 135: 110173
https://doi.org/10.1016/j.rser.2020.110173
5 S Al Amshawee, M Y B M Yunus, A A M Azoddein, D G Hassell, I H Dakhil, H A Hasan. Electrodialysis desalination for water and wastewater: a review. Chemical Engineering Journal, 2020, 380: 122231
https://doi.org/10.1016/j.cej.2019.122231
6 J Hao, Y Wu, J Ran, B Wu, T Xu. A simple and green preparation of PV A-based cation exchange hybrid membranes for alkali recovery. Journal of Membrane Science, 2013, 433: 10–16
https://doi.org/10.1016/j.memsci.2013.01.014
7 M Padaki, R Surya Murali, M S Abdullah, N Misdan, A Moslehyani, M A Kassim, N Hilal, A F Ismail. Membrane technology enhancement in oil-water separation: a review. Desalination, 2015, 357: 197–207
https://doi.org/10.1016/j.desal.2014.11.023
8 S He, X Jiang, S Li, F Ran, J Long, L Shao. Intermediate thermal manipulation of polymers of intrinsic microporous (PIMs) membranes for gas separations. AIChE Journal. American Institute of Chemical Engineers, 2020, 66(10): 16543
https://doi.org/10.1002/aic.16543
9 F Yang, H Sadam, Y Zhang, J Xia, X Yang, J Long, L Songwei, L Shao. A de novo sacrificial-MOF strategy to construct enhanced-flux nanofiltration membranes for efficient dye removal. Chemical Engineering Science, 2020, 225: 115845
https://doi.org/10.1016/j.ces.2020.115845
10 Y Zhang, X Cheng, X Jiang, J J Urban, C H Lau, S Liu, L Shao. Robust natural nanocomposites realizing unprecedented ultrafast precise molecular separations. Materials Today, 2020, 36: 40–47
https://doi.org/10.1016/j.mattod.2020.02.002
11 J J Wang, H C Yang, M B Wu, X Zhang, Z K Xu. Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(31): 16289–16295
https://doi.org/10.1039/C7TA00501F
12 R Verbeke, V Gómez, I F J Vankelecom. Chlorine-resistance of reverse osmosis (RO) polyamide membranes. Progress in Polymer Science, 2017, 72: 1–15
https://doi.org/10.1016/j.progpolymsci.2017.05.003
13 Y M Xu, S Japip, T S Chung. UiO-66-NH2 incorporated dual-layer hollow fibers made by immiscibility induced phase separation (I2PS) process for ethanol dehydration via pervaporation. Journal of Membrane Science, 2020, 595: 117571
https://doi.org/10.1016/j.memsci.2019.117571
14 B Liang, Q Li, B Cao, P Li. Water permeance, permeability and desalination properties of the sulfonic acid functionalized composite pervaporation membranes. Desalination, 2018, 433: 132–140
https://doi.org/10.1016/j.desal.2018.01.028
15 Y Xue, C H Lau, B Cao, P Li. Elucidating the impact of polymer crosslinking and fixed carrier on enhanced water transport during desalination using pervaporation membranes. Journal of Membrane Science, 2019, 575: 135–146
https://doi.org/10.1016/j.memsci.2019.01.012
16 R Zhang, X Xu, B Cao, P Li. Fabrication of high-performance PVA/PAN composite pervaporation membranes crosslinked by PMDA for wastewater desalination. Petroleum Science, 2018, 15(1): 146–156
https://doi.org/10.1007/s12182-017-0204-z
17 Q Li, B Cao, P Li. Fabrication of high performance pervaporation desalination composite membranes by optimizing the support layer structures. Industrial & Engineering Chemistry Research, 2018, 57(32): 11178–11185
https://doi.org/10.1021/acs.iecr.8b02505
18 J Meng, P Li, B Cao. High-flux direct-contact pervaporation membranes for desalination. ACS Applied Materials & Interfaces, 2019, 11(31): 28461–28468
https://doi.org/10.1021/acsami.9b08078
19 N Haleem, M Arshad, M Shahid, M A Tahir. Synthesis of carboxymethyl cellulose from waste of cotton ginning industry. Carbohydrate Polymers, 2014, 113: 249–255
https://doi.org/10.1016/j.carbpol.2014.07.023
20 D S Lakshmi, N Trivedi, C R K Reddy. Synthesis and characterization of seaweed cellulose derived carboxymethyl cellulose. Carbohydrate Polymers, 2017, 157: 1604–1610
https://doi.org/10.1016/j.carbpol.2016.11.042
21 C V Prasad, H Sudhakar, B Y Swamy, G V Reddy, C L N Reddy, C Suryanarayana, M N Prabhakar, M C S Subha, K C Rao. Miscibility studies of sodium carboxymethylcellulose/poly(vinyl alcohol) blend membranes for pervaporation dehydration of isopropyl alcohol. Journal of Applied Polymer Science, 2011, 120(4): 2271–2281
https://doi.org/10.1002/app.33418
22 Y H Zhang, C Yu, Z H Lu, S C Yu. Modification of polysulfone ultrafiltration membrane by sequential deposition of cross-linked poly(vinyl alcohol) (PVA) and sodium carboxymethyl cellulose (CMCNa) for nanofiltration. Desalination and Water Treatment, 2016, 57(38): 17658–17669
https://doi.org/10.1080/19443994.2015.1087343
23 F S Gao. Study on novel negative charged composite nanofiltration membrane from chitin/CMC macromolecule. Dissertation for the Master Degree. Qingdao: Ocean University of China, 2007, 1–74
24 Z R Zheng, Z Y Gu, R T Huo, Z S Luo. Superhydrophobic poly(vinylidene fluoride) film fabricated by alkali treatment enhancing chemical bath deposition. Applied Surface Science, 2010, 256(7): 2061–2065
https://doi.org/10.1016/j.apsusc.2009.09.048
25 G J Ross, J F Watts, M P Hill, P Morrissey. Surface modification of poly(vinylidene fluoride) by alkaline treatment. Part 2. Process modification by the use of phase transfer catalysts. Polymer, 2001, 42(2): 403–413
https://doi.org/10.1016/S0032-3861(00)00328-1
26 Q Yin, Q Zhang, Z L Cui, W X Li, W H Xing. Alkali resisting polyphenylsulfone ultrafiltration membrane with tailored microstructure. Polymer, 2017, 124: 128–138
https://doi.org/10.1016/j.polymer.2017.07.055
27 J Zuo, S Bonyadi, T Chung. Exploring the potential of commercial polyethylene membranes for desalination by membrane distillation. Journal of Membrane Science, 2016, 497: 239–247
https://doi.org/10.1016/j.memsci.2015.09.038
28 J M Li, Z K Xu, Z M Liu, W F Yuan, H Xiang, S Y Wang, Y Y Xu. Microporous polypropylene and polyethylene hollow fiber membranes. Part 3. Experimental studies on membrane distillation for desalination. Desalination, 2003, 155(2): 153–156
https://doi.org/10.1016/S0011-9164(03)00292-3
29 J Zuo, S Bonyadi, T S Chung. Exploring the potential of commercial polyethylene membranes for desalination by membrane distillation. Journal of Membrane Science, 2016, 497: 239–247
https://doi.org/10.1016/j.memsci.2015.09.038
30 S H Park, S J Kwon, M G Shin, M S Park, J S Lee, C H Park, H Park, J H Lee. Polyethylene-supported high performance reverse osmosis membranes with enhanced mechanical and chemical durability. Desalination, 2018, 436: 28–38
https://doi.org/10.1016/j.desal.2018.02.007
31 S J Kwon, S H Park, M S Park, J S Lee, J Lee. Highly permeable and mechanically durable forward osmosis membranes prepared using polyethylene lithium ion battery separators. Journal of Membrane Science, 2017, 544: 213–220
https://doi.org/10.1016/j.memsci.2017.09.022
32 S J Kwon, S H Park, M G Shin, M S Park, K Park, S Hong, H Park, Y I Park, J Lee. Fabrication of high performance and durable forward osmosis membranes using mussel-inspired polydopamine-modified polyethylene supports. Journal of Membrane Science, 2019, 584: 89–99
https://doi.org/10.1016/j.memsci.2019.04.074
33 M S Li, Z P Zhao, M X Wang. Green hydrophilic modification of PE hollow fiber membranes in a module scale via long-distance and dynamic low-temperature H2O plasma flow. Applied Surface Science, 2016, 386: 187–195
https://doi.org/10.1016/j.apsusc.2016.06.021
34 L Sheng, L Song, H Gong, J Pan, Y Bai, S Song, G Liu, T Wang, X Huang, J He. Polyethylene separator grafting with polar monomer for enhancing the lithium-ion transport property. Journal of Power Sources, 2020, 479: 228812
https://doi.org/10.1016/j.jpowsour.2020.228812
35 G K Belmonte, G Charles, M C Strumia, D E Weibel. Permanent hydrophilic modification of polypropylene and poly(vinyl alcohol) films by vacuum ultraviolet radiation. Applied Surface Science, 2016, 382: 93–100
https://doi.org/10.1016/j.apsusc.2016.04.091
36 J Meng, C H Lau, Y Xue, R Zhang, B Cao, P Li. Compatibilizing hydrophilic and hydrophobic polymers via spray coating for desalination. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(17): 8462–8468
https://doi.org/10.1039/D0TA00871K
37 X Yun Long, J Huang, C Lau, B Cao, P Li. Tailoring the molecular structure of crosslinked polymers for pervaporation desalination. Nature Communications, 2020, 11(1): 1461
https://doi.org/10.1038/s41467-020-15038-w
38 A Vetere. Empirical method to correlate and to predict the vapor-liquid equilibrium and liquid-liquid equilibrium of binary amorpous polymer solutions. Industrial & Engineering Chemistry Research, 1998, 37(7): 2864–2872
https://doi.org/10.1021/ie9708891
39 A Amiri, Z Triplett, A Moreira, N Brezinka, M Alcock, C A Ulven. Standard density measurement method development for flax fiber. Industrial Crops and Products, 2017, 96: 196–202
https://doi.org/10.1016/j.indcrop.2016.11.060
40 M H V Mulder, C A Smolders. On the mechanism of separation of ethanol/water mixtures by pervaporation I. Calculations of concentration profiles. Journal of Membrane Science, 1984, 17(3): 289–307
https://doi.org/10.1016/S0376-7388(00)83220-2
41 S Yu, X Zhang, G Tan, L Tian, D Liu, Y Liu, X Yang, W Pan. A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery. Carbohydrate Polymers, 2017, 155: 208–217
https://doi.org/10.1016/j.carbpol.2016.08.073
42 B Das, D Ray, R De. Influence of sodium carboxymethylcellulose on the aggregation behavior of aqueous 1-hexadecyl-3-methylimidazolium chloride solutions. Carbohydrate Polymers, 2014, 113: 208–216
https://doi.org/10.1016/j.carbpol.2014.07.002
43 L L Shao, Q F An, Y L Ji, Q Zhao, X S Wang, B K Zhu, C J Gao. Preparation and characterization of sulfated carboxymethyl cellulose nanofiltration membranes with improved water permeability. Desalination, 2014, 338: 74–83
https://doi.org/10.1016/j.desal.2014.01.025
44 Y Liu, W Yan, Z Wang, H Wang, S Zhao, J Wang, P Zhang, X Cao. 1-Methylimidazole as a novel additive for reverse osmosis membrane with high flux-rejection combinations and good stability. Journal of Membrane Science, 2020, 599: 117830
https://doi.org/10.1016/j.memsci.2020.117830
45 Y Zhang, C Yu, Z Lu, S Yu. Modification of polysulfone ultrafiltration membrane by sequential deposition of cross-linked poly(vinyl alcohol) (PVA) and sodium carboxymethyl cellulose (CMCNa) for nanofiltration. Desalination and Water Treatment, 2016, 57(38): 17658–17669
https://doi.org/10.1080/19443994.2015.1087343
46 Y Zhang, M Guo, H Yan, G Pan, J Xu, Y Shi, Y Liu. Novel organic-norganic hybrid composite membranes for nanofiltration of acid and alkaline media. RSC Advances, 2014, 4(101): 57522–57528
https://doi.org/10.1039/C4RA09090J
47 Q Yin, Q Zhang, Z Cui, W Li, W Xing. Alkali resisting polyphenylsulfone ultrafiltration membrane with tailored microstructure. Polymer, 2017, 124: 128–138
https://doi.org/10.1016/j.polymer.2017.07.055
48 Y Gao, Z Li, B Cheng, K Su. Superhydrophilic poly(p-phenylene sulfide) membrane preparation with acid/alkali solution resistance and its usage in oil/water separation. Separation and Purification Technology, 2018, 192: 262–270
https://doi.org/10.1016/j.seppur.2017.09.065
49 P Zhao, Y Xue, R Zhang, B Cao, P Li. Fabrication of pervaporation desalination membranes with excellent chemical resistance for chemical washing. Journal of Membrane Science, 2020, 611: 118367
https://doi.org/10.1016/j.memsci.2020.118367
50 A Charfi, H Jang, J Kim. Membrane fouling by sodium alginate in high salinity conditions to simulate biofouling during seawater desalination. Bioresource Technology, 2017, 240: 106–114
https://doi.org/10.1016/j.biortech.2017.02.086
51 G Naidu, S Jeong, S J Kim, I S Kim, S Vigneswaran. Organic fouling behavior in direct contact membrane distillation. Desalination, 2014, 347: 230–239
https://doi.org/10.1016/j.desal.2014.05.045
[1] FCE-20124-OF-BG_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed