Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2022, Vol. 16 Issue (4): 498-510   https://doi.org/10.1007/s11705-021-2082-6
  本期目录
Bamboo-like N-doped carbon nanotubes encapsulating M(Co, Fe)-Ni alloy for electrochemical production of syngas with potential-independent CO/H2 ratios
Jinxiao Bo1, Mei Li1, Xinli Zhu1, Qingfeng Ge2, Jinyu Han1, Hua Wang1()
1. Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA
 全文: PDF(4238 KB)   HTML
Abstract

The electrochemical conversion of CO2-H2O into CO-H2 using renewable energy is a promising technique for clean syngas production. Low-cost electrocatalysts to produce tunable syngas with a potential-independent CO/H2 ratio are highly desired. Herein, a series of N-doped carbon nanotubes encapsulating binary alloy nanoparticles (MxNi-NCNT, M= Fe, Co) were successfully fabricated through the co-pyrolysis of melamine and metal precursors. The MxNi-NCNT samples exhibited bamboo-like nanotubular structures with a large specific surface area and high degree of graphitization. Their electrocatalytic performance for syngas production can be tuned by changing the alloy compositions and modifying the electronic structure of the carbon nanotube through the encapsulated metal nanoparticles. Consequently, syngas with a wide range of CO/H2 ratios, from 0.5:1 to 3.4:1, can be produced on MxNi-NCNT. More importantly, stable CO/H2 ratios of 2:1 and 1.5:1, corresponding to the ratio to produce biofuels by syngas fermentation, could be realized on Co1Ni-NCNT and Co2Ni-NCNT, respectively, over a potential window of –0.8 to –1.2 V versus the reversible hydrogen electrode. Our work provides an approach to develop low-cost and potential-independent electrocatalysts to effectively produce syngas with an adjustable CO/H2 ratio from electrochemical CO2 reduction.

Key wordselectrochemical reduction of CO2    syngas    N-doped carbon nanotubes    encapsulated alloy nanoparticles    CO/H2 ratio
收稿日期: 2021-04-21      出版日期: 2022-03-21
Corresponding Author(s): Hua Wang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2022, 16(4): 498-510.
Jinxiao Bo, Mei Li, Xinli Zhu, Qingfeng Ge, Jinyu Han, Hua Wang. Bamboo-like N-doped carbon nanotubes encapsulating M(Co, Fe)-Ni alloy for electrochemical production of syngas with potential-independent CO/H2 ratios. Front. Chem. Sci. Eng., 2022, 16(4): 498-510.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-021-2082-6
https://academic.hep.com.cn/fcse/CN/Y2022/V16/I4/498
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Catalysts Atomic composition/% M/Ni ratio
C a) N a) Fe b) Co b) Ni b) Co/Ni Fe/Ni
Co1Ni-NCNT 73.28 3.12 7.86 8.39 0.94
Co2Ni-NCNT 71.16 3.07 10.03 5.06 1.98
Co5Ni-NCNT 74.41 3.08 14.01 2.79 5.02
Fe1Ni-NCNT 72.07 3.16 9.61 8.47 1.13
Fe2Ni-NCNT 70.01 3.03 11.10 5.54 2.00
Fe5Ni-NCNT 70.11 3.09 14.43 2.60 5.55
Tab.1  
Fig.5  
Catalysts BET surface areas/(m2?g–1) Cdl/(mF?cm–2)
Ni-NCNT 158.0 3.0
Fe1Ni-NCNT 144.5 2.9
Co1Ni-NCNT 113.1 2.2
Co-NCNT 77.0 4.1
Fe-NCNT 49.8 1.9
Tab.2  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 T Hsieh, Y Zhang, D Xu, C Wang, M Pickarts, C Chung, L Fan, A Tong. Chemical looping gasification for producing high purity, H2-rich syngas in a cocurrent moving bed reducer with coal and methane cofeeds. Industrial & Engineering Chemistry Research, 2018, 57(7): 2461–2475
https://doi.org/10.1021/acs.iecr.7b04204
2 S Lu, Y Shi, N Meng, S Lu, Y Yu, B Zhang. Electrosynthesis of syngas via the co-reduction of CO2 and H2O. Cell Reports Physical Science, 2020, 1(11): 100237
https://doi.org/10.1016/j.xcrp.2020.100237
3 S Cui, C Yu, X Tan, H Huang, X Yao, J Qiu. Achieving multiple and tunable ratios of syngas to meet various downstream industrial processes. ACS Sustainable Chemistry & Engineering, 2020, 8(8): 3328–3335
https://doi.org/10.1021/acssuschemeng.9b07255
4 H Li, N Xiao, Y Wang, C Li, X Ye, Z Guo, X Pan, C Liu, J Bai, J Xiao, et al.. Nitrogen-doped tubular carbon foam electrodes for efficient electroreduction of CO2 to syngas with potential-independent CO/H2 ratios. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(32): 18852–18860
https://doi.org/10.1039/C9TA05904K
5 B Qin, Y Li, H Fu, H Wang, S Chen, Z Liu, F Peng. Electrochemical reduction of CO2 into tunable syngas production by regulating the crystal facets of earth-abundant Zn catalyst. ACS Applied Materials & Interfaces, 2018, 10(24): 20530–20539
https://doi.org/10.1021/acsami.8b04809
6 M Cho, J Seo, J T Song, J Lee, J Oh. Silver nanowire/carbon sheet composites for electrochemical syngas generation with tunable H2/CO ratios. ACS Omega, 2017, 2(7): 3441–3446
https://doi.org/10.1021/acsomega.7b00846
7 X Yao, Y Guo, B Liu, P Wang, J Sun, W Li, C Zhao. Syngas production from electrochemical CO2 reduction on copper oxide electrodes in aqueous solution. ChemElectroChem, 2021, 8(3): 592–602
https://doi.org/10.1002/celc.202001504
8 K Lv, C Teng, M Shi, Y Yuan, Y Zhu, J Wang, Z Kong, X Lu, Y Zhu. Hydrophobic and electronic properties of the E-MoS2 nanosheets induced by FAS for the CO2 electroreduction to syngas with a wide range of CO/H2 ratios. Advanced Functional Materials, 2018, 28(49): 1802339
https://doi.org/10.1002/adfm.201802339
9 J Wang, H Huang, J Sun, D Zhong, T Lu. Syngas production with a highly-robust nickel(II) homogeneous electrocatalyst in a water-containing system. ACS Catalysis, 2018, 8(8): 7612–7620
https://doi.org/10.1021/acscatal.8b02044
10 B Dong, S Qian, F Bu, Y Wu, L Feng, Y Teng, W Liu, Z Li. Electrochemical reduction of CO2 to CO by a heterogeneous catalyst of Fe-porphyrin-based metal-organic framework. ACS Applied Energy Materials, 2018, 1(9): 4662–4669
https://doi.org/10.1021/acsaem.8b00797
11 R Daiyan, R Chen, P Kumar, N M Bedford, J Qu, J M Cairney, X Lu, R Amal. Tunable syngas production through CO2 electroreduction on cobalt-carbon composite electrocatalyst. ACS Applied Materials & Interfaces, 2020, 12(8): 9307–9315
https://doi.org/10.1021/acsami.9b21216
12 Q He, D Liu, J H Lee, Y Liu, Z Xie, S Hwang, S Kattel, L Song, J G Chen. Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over Co and Ni single-atom catalysts. Angewandte Chemie International Edition, 2020, 59(8): 3033–3037
https://doi.org/10.1002/anie.201912719
13 N Meng, W Zhou, Y Yu, Y Liu, B Zhang. Superficial hydroxyl and amino groups synergistically active polymeric carbon nitride for CO2 electroreduction. ACS Catalysis, 2019, 9(12): 10983–10989
https://doi.org/10.1021/acscatal.9b03895
14 J Xie, X Zhao, M Wu, Q Li, Y Wang, J Yao. Metal-free fluorine-doped carbon electrocatalyst for CO2 reduction outcompeting hydrogen evolution. Angewandte Chemie International Edition, 2018, 130(31): 9788–9792
https://doi.org/10.1002/ange.201802055
15 S Lamaison, D Wakerley, D Montero, G Rousse, D Taverna, D Giaume, D Mercier, J Blanchard, H N Tran, M Fontecave, et al.. Zn-Cu alloy nanofoams as efficient catalysts for the reduction of CO2 to syngas mixtures with a potential-independent H2/CO ratio. ChemSusChem, 2019, 12(2): 511–517
https://doi.org/10.1002/cssc.201802287
16 W Yang, J Zhang, R Si, L Cao, D Zhong, T Lu. Efficient and steady production of 1:2 syngas (CO/H2) by simultaneous electrochemical reduction of CO2 and H2O. Inorganic Chemistry Frontiers, 2021, 8(7): 1695–1701
https://doi.org/10.1039/D0QI01351J
17 L Tao, Y Wang, Y Zou, N Zhang, Y Zhang, Y Wu, Y Wang, R Chen, S Wang. Charge transfer modulated activity of carbon-based electrocatalysts. Advanced Energy Materials, 2019, 10(11): 1901227
https://doi.org/10.1002/aenm.201901227
18 Z Miao, J Meng, M Liang, Z Li, Y Zhao, F Wang, L Xu, J Mu, S Zhuo, J Zhou. In-situ CVD synthesis of Ni@N-CNTs/carbon paper electrode for electro-reduction of CO2. Carbon, 2021, 172: 324–333
https://doi.org/10.1016/j.carbon.2020.10.044
19 W Zheng, C Guo, J Yang, F He, B Yang, Z Li, L Lei, J Xiao, G Wu, Y Hou. Highly active metallic nickel sites confined in N-doped carbon nanotubes toward significantly enhanced activity of CO2 electroreduction. Carbon, 2019, 150: 52–59
https://doi.org/10.1016/j.carbon.2019.04.112
20 S Zhang, Q Wu, L Tang, Y Hu, M Wang, J Zhao, M Li, J Han, X Liu, H Wang. Individual high-quality N-doped carbon nanotubes embedded with nonprecious metal nanoparticles toward electrochemical reaction. ACS Applied Materials & Interfaces, 2018, 10(46): 39757–39767
https://doi.org/10.1021/acsami.8b14536
21 Y Niu, C Zhang, Y Wang, D Fang, L Zhang, C Wang. Confining chainmail-bearing Ni nanoparticles in N-doped carbon nanotubes for robust and efficient electroreduction of CO2. ChemSusChem, 2021, 14(4): 1140–1154
https://doi.org/10.1002/cssc.202002596
22 R Daiyan, X Lu, X Tan, X Zhu, R Chen, S C Smith, R Amal. Antipoisoning nickel-carbon electrocatalyst for practical electrochemical CO2 reduction to CO. ACS Applied Energy Materials, 2019, 2(11): 8002–8009
https://doi.org/10.1021/acsaem.9b01470
23 Y Hu, J O Jensen, W Zhang, L N Cleemann, W Xing, N J Bjerrum, Q Li. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angewandte Chemie International Edition, 2014, 53(14): 3675–3679
https://doi.org/10.1002/anie.201400358
24 J Deng, L Yu, D Deng, X Chen, F Yang, X Bao. Highly active reduction of oxygen on a FeCo alloy catalyst encapsulated in pod-like carbon nanotubes with fewer walls. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(47): 14868
https://doi.org/10.1039/c3ta13759g
25 D Xiang, X Bo, X Gao, C Zhang, C Du, F Zheng, Z Zhuang, P Li, L Zhu, W Chen. Novel one-step synthesis of core@shell iron–nickel alloy nanoparticles coated by carbon layers for efficient oxygen evolution reaction electrocatalysis. Journal of Power Sources, 2019, 438: 226988
https://doi.org/10.1016/j.jpowsour.2019.226988
26 Y Tu, P Ren, D Deng, X Bao. Structural and electronic optimization of graphene encapsulating binary metal for highly efficient water oxidation. Nano Energy, 2018, 52: 494–500
https://doi.org/10.1016/j.nanoen.2018.07.062
27 Y Ou, W Tian, L Liu, Y Zhang, P Xiao. Bimetallic Co2Mo3O8 suboxides coupled with conductive cobalt nanowires for efficient and durable hydrogen evolution in alkaline electrolyte. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(12): 5217–5228
https://doi.org/10.1039/C7TA11401J
28 M Chen, G Zhao, L Shao, Z Yuan, Q Jing, K Huang, Z Huang, X Zhao, G Zou. Controlled synthesis of nickel encapsulated into nitrogen-doped carbon nanotubes with covalent bonded interfaces: the structural and electronic modulation strategy for an efficient electrocatalyst in dye-sensitized solar cells. Chemistry of Materials, 2017, 29(22): 9680–9694
https://doi.org/10.1021/acs.chemmater.7b03385
29 L Chen, Z Xu, W Han, Q Zhang, Z Bai, Z Chen, G Li, X Wang. Bimetallic CoNi alloy nanoparticles embedded in pomegranate-like nitrogen-doped carbon spheres for electrocatalytic oxygen reduction and evolution. ACS Applied Nano Materials, 2020, 3(2): 1354–1362
https://doi.org/10.1021/acsanm.9b02201
30 Y Xie, C Feng, Y Guo, S Li, C Guo, Y Zhang, J Wang. MOFs derived carbon nanotubes coated CoNi alloy nanocomposites with N-doped rich-defect and abundant cavity structure as efficient trifunctional electrocatalyst. Applied Surface Science, 2021, 536: 147786
https://doi.org/10.1016/j.apsusc.2020.147786
31 J Zhao, J Deng, J Han, S Imhanria, K Chen, W Wang. Effective tunable syngas generation via CO2 reduction reaction by non-precious Fe-N-C electrocatalyst. Chemical Engineering Journal, 2020, 389: 124323
https://doi.org/10.1016/j.cej.2020.124323
32 L Yang, D Wang, Y Lv, D Cao. Nitrogen-doped graphitic carbons with encapsulated CoNi bimetallic nanoparticles as bifunctional electrocatalysts for rechargeable Zn-air batteries. Carbon, 2019, 144: 8–14
https://doi.org/10.1016/j.carbon.2018.12.008
33 Y Shen, Y Zhou, D Wang, X Wu, J Li, J Xi. Nickel-copper alloy encapsulated in graphitic carbon shells as electrocatalysts for hydrogen evolution reaction. Advanced Energy Materials, 2018, 8(2): 1701759
https://doi.org/10.1002/aenm.201701759
34 M Tong, L Wang, P Yu, X Liu, H Fu. 3D network nanostructured NiCoP nanosheets supported on N-doped carbon coated Ni foam as a highly active bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. Frontiers of Chemical Science and Engineering, 2018, 12(3): 417–424
https://doi.org/10.1007/s11705-018-1711-1
35 L Li, Y Huang, Y Li. Carbonaceous materials for electrochemical CO2 reduction. EnergyChem, 2020, 2(1): 100024
https://doi.org/10.1016/j.enchem.2019.100024
36 G Li, X Xu, B Yang, S Cao, X Wang, X Fu, Y Shi, Y Yan, X Song, C Hao. Micelle-template synthesis of a 3D porous FeNi alloy and nitrogen-codoped carbon material as a bifunctional oxygen electrocatalyst. Electrochimica Acta, 2020, 331: 135375
https://doi.org/10.1016/j.electacta.2019.135375
37 X Ma, H Chai, Y Cao, J Xu, Y Wang, H Dong, D Jia, W Zhou. An effective bifunctional electrocatalysts: controlled growth of CoFe alloy nanoparticles supported on N-doped carbon nanotubes. Journal of Colloid and Interface Science, 2018, 514: 656–663
https://doi.org/10.1016/j.jcis.2017.12.081
38 Z Wang, J Ang, J Liu, X Y D Ma, J Kong, Y Zhang, T Yan, X Lu. FeNi alloys encapsulated in N-doped CNTs-tangled porous carbon fibers as highly efficient and durable bifunctional oxygen electrocatalyst for rechargeable zinc-air battery. Applied Catalysis B: Environmental, 2020, 263: 118344
https://doi.org/10.1016/j.apcatb.2019.118344
39 M Wu, B Guo, A Nie, R Liu. Tailored architectures of FeNi alloy embedded in N-doped carbon as bifunctional oxygen electrocatalyst for rechargeable zinc-air battery. Journal of Colloid and Interface Science, 2020, 561: 585–592
https://doi.org/10.1016/j.jcis.2019.11.033
40 P Liu, D Gao, W Xiao, L Ma, K Sun, P Xi, D Xue, J Wang. Self-powered water-splitting devices by core-shell NiFe@N-graphite-based Zn-air batteries. Advanced Functional Materials, 2018, 28(14): 1706928
https://doi.org/10.1002/adfm.201706928
41 Z Gao, L Wang, J Chang, C Chen, D Wu, F Xu, K Jiang. CoNi alloy incorporated, N doped porous carbon as efficient counter electrode for dye-sensitized solar cell. Journal of Power Sources, 2017, 348: 158–167
https://doi.org/10.1016/j.jpowsour.2017.03.009
42 T T Gebremariam, F Chen, Y Jin, Q Wang, J Wang, J Wang. Bimetallic NiCo/CNF encapsulated in a N-doped carbon shell as an electrocatalyst for Zn-air batteries and water splitting. Catalysis Science & Technology, 2019, 9(10): 2532–2542
https://doi.org/10.1039/C9CY00266A
43 X Cui, P Ren, D Deng, J Deng, X Bao. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy & Environmental Science, 2016, 9(1): 123–129
https://doi.org/10.1039/C5EE03316K
44 H B Yang, S Hung, S Liu, K Yuan, S Miao, L Zhang, X Huang, H Wang, W Cai, R Chen, et al.. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nature Energy, 2018, 3(2): 140–147
https://doi.org/10.1038/s41560-017-0078-8
45 X Li, W Bi, M Chen, Y Sun, H Ju, W Yan, J Zhu, X Wu, W Chu, C Wu, et al.. Exclusive Ni–N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. Journal of the American Chemical Society, 2017, 139(42): 14889–14892
https://doi.org/10.1021/jacs.7b09074
46 C Gao, F Lyu, Y Yin. Encapsulated metal nanoparticles for catalysis. Chemical Reviews, 2021, 121(2): 834–881
https://doi.org/10.1021/acs.chemrev.0c00237
47 C M Pradeep, K K Samir. Biomass-derived syngas fermentation into biofuels: opportunities and challenges. Bioresource Technology, 2010, 101(13): 5013–5022
https://doi.org/10.1016/j.biortech.2009.12.098
48 Y Wang, C Niu, Y Zhu, D He, W Huang. Tunable syngas formation from electrochemical CO2 reduction on copper nanowire arrays. ACS Applied Energy Materials, 2020, 3(10): 9841–9847
https://doi.org/10.1021/acsaem.0c01504
49 C Zhang, J Liu, Y Ye, Q Chen, C Liang. Encapsulation of Co-based nanoparticle in N-doped graphitic carbon for efficient oxygen reduction reaction. Carbon, 2020, 156: 31–37
https://doi.org/10.1016/j.carbon.2019.09.025
[1] FCE-21016-OF-BJ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed