Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2021, Vol. 15 Issue (6): 1444-1461   https://doi.org/10.1007/s11705-021-2090-6
  本期目录
Hierarchically porous zeolites synthesized with carbon materials as templates
Huan Wang, Guo Du, Jiaqing Jia, Shaohua Chen, Zhipeng Su, Rui Chen, Tiehong Chen()
Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University, Tianjin 300350, China
 全文: PDF(2865 KB)   HTML
Abstract

Hierarchically porous zeolites are promising candidates in catalytic conversion of relatively bulky molecules, and their syntheses have attracted significant attention. From both industrial and scientific perspectives, different carbon materials have been widely employed as hard templates for the preparation of hierarchically porous zeolites during the past two decades. In this review, the progress in synthetic strategies using carbon materials as templates is comprehensively summarized. Depending on the affinity between the carbon templates and zeolite precursors, the substantial strategies for synthesizing hierarchical zeolites are introduced in direct templates and indirect templates. Direct templates methods, by which the carbon materials are directly mixed with precursors gel as hard templates, are first reviewed. Then, we discuss the indirect templates method (crystallization of carbon-silica composites), by which the carbon is produced by in situ pyrolysis of organic-inorganic precursors. In addition, the technique of encapsulating metal species into zeolites crystals with the assistance of carbon templates is also discussed. In the conclusion part, the factors affecting the synthesis of carbon-templated hierarchically porous zeolites are remarked. This review is expected to attract interest in the synthesis strategies of hierarchically porous zeolites, especially cost-effective and large-scale production methodologies, which are essential to the industrial application of hierarchical zeolites.

Key wordshierarchical zeolites    carbon materials    direct templates    indirect templates    carbon-silica composites
收稿日期: 2021-04-20      出版日期: 2021-11-09
Corresponding Author(s): Tiehong Chen   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1444-1461.
Huan Wang, Guo Du, Jiaqing Jia, Shaohua Chen, Zhipeng Su, Rui Chen, Tiehong Chen. Hierarchically porous zeolites synthesized with carbon materials as templates. Front. Chem. Sci. Eng., 2021, 15(6): 1444-1461.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-021-2090-6
https://academic.hep.com.cn/fcse/CN/Y2021/V15/I6/1444
Fig.1  
Fig.2  
Fig.3  
Zeolite Carbon
template
Gel composition molar ratio Crystallization approach
(temperature/°C, time/d)
Vmacro/meso/(cm3·g−1) Macro/mesopore size/nm Model reaction Porous characteristic Ref.
ZSM-12 Carbon nanoparticle 1 Na2O:1 Al2O3:150 SiO2:36 TEAOH:4500 H2O:150 C HTS (160, 9.5) 0.15–0.19 10–50 Conversion of n-tridecane; 1,3-dimethylcyclohexane Meso-micropores; intracrystal and disordered [30]
MCM-22 Carbon nanoparticle 9.25 NaOH:4.51 NaAlO2:4.51 H2O:50.21 HMI:100 SiO2:4.95 C HTS (135, 7) 0.44 200 Macro-meso-micropores; intercrystal, disordered and interconnected [31]
SAPO-34 Carbon nanoparticle 1.0 Al2O3:1.0 P2O5:0.6 SiO2:1.5 MOR:0.5 TEAOH:60 H2O:13.5 C HTS (180, 2) 0.456 Uptake of n-butane; methanol to olefin Intracrystal and disordered [32]
SAPO-34 CNT 1.0 Al2O3:1.0 P2O5:0.6 SiO2:1.5 MOR:0.5 TEAOH:60 H2O:13.5 C HTS (180, 2) 0.364 Uptake of n-butane; methanol to olefin Intracrystal, disordered and interconnected [32]
ZSM-5 CNT 1.00/0.50/0.33 Al2O3:10 TPABr:10 Na2O:40 SiO2:7200 H2O:647 C HTS (175, 3) 20–50 Hydroconversion of soybean oil Meso-micropores; intracrystal, disordered and interconnected [33]
SAPO-34 CNT 1 Al2O3:1 P2O5:x TEAOH:(2−x) MOR:60 H2O:(0–10.2) C, x = 0.0, 1.0, 2.0 HTS (190, 1) 0.175–0.516 Methanol to olefin Intracrystal and disordered [34]
Beta CNT 2.69 Na2O: 1 Al2O3:50.76 SiO2:12.68 TEAOH:810.24 H2O (2.8 g C/gel) HTS (170, 1) 0.27 25 Hydrocracking of vacuum gas-oil Meso-micropores; disordered [35]
NaY Carbon aerogel 1.00 Al2O3:4.35 SiO2:2.39 (TMA)2O:0.065 Na2O:248.00 H2O HTS (100, 9) 1.37 10 Meso-micropores; disordered [37]
ZSM-5 Carbon aerogel 10 Na2O:200 SiO2: 1 Al2O3:20 TPABr:1600 H2O HTS (100, 9) 0.2 11 Meso-micropores; intercrystal, disordered and interconnected [38]
ZSM-5 Biomass-derived carbon 30.5 H2O:0.017 Al(OC4H9)3: 1 Si(OC2H5)4: 1 TPAOH HTS (160, 3) 0.13 12–16 Meso-micropores; intracrystal, disordered and interconnected [39]
Beta GO 1.5 Na2O:Al2O3:40 SiO2:10 TEAOH:532 H2O:(4–20) C HTS (140, 4–32) 0.12–0.20 3–7 Meso-micropores; intercrystal and disordered [28]
ZSM-5 Hydroxylated CNT 100 SiO2: 1 Al2O3: 1 Na2O:0.2 (TPA)2O:17 H2O:72 C HTS (180, 3) 0.14 10–35 Cracking of tri-isopropylbenzene Meso-micropores; intracrystal and disordered [43]
ZSM-5 Carbon black oxidized by NaClO 80 SiO2:Al2O3:7 TPA2O:1775 H2O:160400 C HTS (170, 2) 0.13–0.17 5–18 Disproportionation of toluene Meso-micropores; intracrystal and disordered [44]
ZSM-58 CNT oxidized by HNO3 21 MTI:100 SiO2:1 Al2O3:3056 H2O:12 NaOH HTS (160, 5) 0.06 3–20 Selective adsorption of propene over propane Meso-micropores; intracrystal and disordered [36]
SAPO-11 Merck carbon oxidized by HNO3 1.0 Al2O3:1.0 P2O5:0.4 SiO2:1.5 DPA:50 H2O (0.06 g C/gel) HTS (200, 1) 0.10 Hydroisomerization of n-decane Disordered [45]
ZSM-5 Carbon nanoparticle 2 Al2O3:20 TPA2O:1 Na2O:100 SiO2:200 H2O HTS (180, 3) 0.45 34.5 Benzylation of mesitylene with benzyl alcohol Meso-micropores; intracrystal and disordered [46]
Beta 3D CMK-n 25 SiO2:0.25 Al2O3:4.5 (TEA)2O:0.35 Na2O:330 H2O:66.9 C HTS (100, 4) repeated 4 times 0.3–0.58 Meso-micropores; intracrystal, ordered and interconnected [18]
LTA 3D CMK-n 11.25 SiO2:1.8 Al2O3:13.4 (TMA)2O:0.6 Na2O:700 H2O:6.75 C HTS (70, 0.5) repeated 6 times 0.28–0.68 Meso-micropores; intracrystal, ordered and interconnected [18]
FAU 3D CMK-n 10 SiO2:2.3 Al2O3:5.5 (TMA)2O:1.2 Na2O:570 H2O:6.22 C HTS (100, 4) repeated 5 times 0.29 Meso-micropores; intracrystal, ordered and interconnected [18]
Sn-MFI 3D CMK-n 1 SiO2:0.008 SnO2:0.43 TPAOH:22.20 H2O:1.5 C HTS (170, 1) repeated 3 times 0.283 4–11 Isomerization of cellulosic sugars Meso-micropores; intracrystal, ordered and interconnected [51]
SAPO-34 3D CMK-n 0.6 SiO2:2 TEA2O:Al2O3:2 P2O5:75 H2O:2.92 Al(OPri)3:0.189 C HTS (180, 0.83) repeated 5 times 0.23–0.33 5.5–13 Methanol to olefin Meso-micropores; intracrystal, ordered and interconnected [52]
ZSM-11 Carbon nanoparticle 1 Al2O3:100 SiO2:20 TBA2O:1
Na2O:200 H2O:900 C
DGC (180, 3) 0.40 Cracking and isomerization of n-hexadecane Intracrystal and disordered [59]
TS-2 Carbon nanoparticle 1 TiO2:100 SiO2:20 TBA2O:200 H2O:900 C DGC (180, 3) 031/0.44 Epoxidation of oct-1-ene and styrene Intracrystal and disordered [59]
ZSM-5 Carbon nanoparticle 1 Al2O3:100 SiO2:20 TPA2O:1 Na2O:200 H2O:900 C DGC (180, 3) 0.40 Direct NO decomposition Intracrystal and disordered [60]
TS-1 Carbon nanoparticle 5 TBOT:312 TEOS:123 TPAOH:9722 H2O:223 C4H10O:4159 C DGC (175, 1) 0.26 20–50 Hydroxylation of phenol and ammoxidation of methyl-ethyl ketone Meso-micropores; intracrystal and disordered [61]
SAPO-34 CNT 1 Al2O3:1 P2O5:0.6 SiO2:6 DEA:70 H2O:0.9 C DGC (200, 6) 0.031 0–50 Methanol to olefin Meso-micropores; intracrystal and disordered [63]
Beta OMMC 1 TEOS:1 TPAOH:0.04 Al(OC3H7)3 DGC (180, 3) 0.18 40 Liquid-phase Friedel-Crafts alkylation of benzene with benzyl alcohol Marco-meso-micropores; intracrystal, ordered and interconnected [68]
ZSM-5 OMMC 0.36 TPAOH:SiO2:x Al2O3:19.2 H2O (x = 0.067, 0.040, 0.020) DGC (180, 3) 35 Cracking of bulky 1,3,5-TIPB; methanol to olefin Marco-meso-micropores; intracrystal, ordered and interconnected [69]
Silicalite-1 3DOm 9 TPA2O:0.15 Na2O:50 SiO2:390 H2O:180 ethanol DGC (180, 2) 0.69–0.99 6 Meso-micropores; intracrystal, ordered and interconnected [70]
Silicalite-1 CMK-L (0–2) Al(OC3H7)3:25 TPAOH:100 TEOS DGC (170, 6) 0.17 8.7 Meso-micropores; intracrystal, ordered and interconnected [29]
Tab.1  
Fig.4  
Composites Carbon source Structure-directing agent Crystallization approach (temperature/°C, time/d) Product Vmacro/meso/(cm3·g−1) Pore size/nm Model reaction Porous characteristics Ref.
Al-SBA-15/CMK-3 Furfuryl alcohol Ethylenediamine and triethylamine DGC (175, 3) Mesoporous materials with MFI zeolitic characteristics 9.0 Cracking of cumene Meso-micropores; ordered [73]
SBA-15/CMK-3 Furfuryl alcohol TPAOH SPT (130, 2) Silicalite-1/SBA-15 composite 0.26 6 Meso-micropores; ordered [75]
SBA-15/CMK-3 P123 TPABr HTS (180, 2) Mesoporous ZSM-5 0.26/0.32 20–40 Methanol to propylene Meso-micropores; ordered and interconnected [76]
SiO2-TiO2/C Tween-40 TPAOH HTS (180, 1) Mesoporous TS-1 0.29 2–95 Oxidative desulfurization Macro-meso-micropores; intracrystal and interconnected [77]
P127 templated SiO2/C composite Phenol-formaldehyde resin TPAOH DGC (130, 3) Mesoporous materials with silicalite-1 nanocrystal 0.43 7 Meso-micropores; ordered [78]
P127 templated SiO2/C composite Phenol-formaldehyde resin TPAOH DGC (130, 3) Mesoporous materials with ZSM-5 nanocrystal 0.32 9 Meso-micropores; ordered [78]
P123 templated SiO2/C composite Furfuryl alcohol TPAOH DGC (140, 0.5) ZSM-5 zeolites composed of linked microcrystalline units 0.35 6–8 Benzylation reaction between naphthalene and benzyl chloride Meso-micropores [81]
C deposited SiO2 Sucrose TBAOH HTS (180, 3) Mesoporous ZSM-11 0.04 Intracrystal and disordered [82]
C deposited SiO2-TiO2 Sucrose TPABr HTS (170, 7) Mesoporous TS-1 0.10–0.42 5–90 Oxidative desulfurization Macro-meso-micropores; Intracrystal, disordered and interconnected [83]
C coated SiO2 Sucrose TPAOH HTS (160, 1) Mesoporous silicalite-1 0.197 9.4 Meso-micropores; intercrystal and disordered [84]
C coated SiO2 Sucrose TPAOH HTS (160, 1) Mesoporous ZSM-5 0.263 7.7 Adsorption of methylene blue, acetalization of cyclohexanone Meso-micropores; intercrystal and disordered [84]
C coated SiO2 Dopamine TPAOH DGC (180, 0.42) Mesoporous ZSM-5 4–10 Cracking of isopropyl benzene Meso-micropores; intracrystal, disordered and interconnected [85]
C coated SiO2 Dopamine TPAOH DGC (180, 0.5) Mesoporous ZSM-5 0.13–0.34 18 Self-etherification of benzyl alcohol Meso-micropores; intracrystal, disordered and interconnected [86]
C deposited SiO2 CH4 flow TBAOH DGC (175, 1) Mesoporous ZSM-11 0.28 6–30 Meso-micropores; intracrystal and disordered [87]
C deposited SiO2 CH4 flow TEAOH DGC (140, 6) Mesoporous Beta 0.26 7–30 Meso-micropores; intracrystal and disordered [87]
C deposited SiO2 CH4 flow Seed DGC (100, 0.75) Mesoporous Y 0.02 10–40 Meso-micropores; intracrystal and disordered [87]
C deposited SiO2 CH4 flow TPAOH DGC (180, 3) Mesoporous ZSM-5 0.28–0.48 10–40 Cracking and isomerization of n-octane Meso-micropores; intracrystal and disordered [88]
C deposited SiO2 Carbonaceous gas (CxHy) TPAOH HTS (180, 3) Mesoporous ZSM-5 0.51–0.85 11 Meso-micropores; intercrystal and disordered [89]
SiO2/C monolith Glucose and resorcinol TPAOH HTS (160, 4) Mesoporous silicalite-1 0.27 30 Meso-micropores; intercrystal and disordered [91]
SiO2-Al2O3/C monolith Glucose and resorcinol TPAOH HTS (160, 4) Mesoporous ZSM-5 0.29 30 Condensation of benzaldehyde with n-butyl alcohol; alkylation of toluene with benzyl chloride; alkylation of toluene with benzyl chloride Meso-micropores; intercrystal and disordered [91]
SiO2-TiO2/C monolith Glucose and resorcinol TPAOH HTS (160, 4) Mesoporous TS-1 0.26 30 Hydroxylation of phenol Meso-micropores; intercrystal and disordered [91]
SiO2-Al2O3/C monolith Glucose and resorcinol TEAOH DGC (150, 5) Mesoporous Beta 0.27 30 Dehydration of fructose into 5-hydroxymethylfurfural Meso-micropores; intracrystal and disordered [92]
SBA-15/CMK-3 Phenol resin TPAOH DGC (170, 1) Mesoporous ZSM-5 10–15 Cracking of triisopropylbenzene Meso-micropores; disordered [94]
Tab.2  
1 L H Chen, M H Sun, Z Wang, W M Yang, Z K Xie, B L Su. Hierarchically structured zeolites: from design to application. Chemical Reviews, 2020, 120(20): 11194–11294
https://doi.org/10.1021/acs.chemrev.0c00016
2 K P de Jong, J Zečević, H Friedrich, P E de Jongh, M Bulut, S van Donk, R Kenmogne, A Finiels, V Hulea, F Fajula. Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts. Angewandte Chemie International Edition, 2010, 49(52): 10074–10078
https://doi.org/10.1002/anie.201004360
3 T J Fu, R Y Qi, W L Wan, J Shao, J Z Wen, Z Li. Fabrication of hollow mesoporous nanosized ZSM-5 catalyst with superior methanol-to-hydrocarbons performance by controllable desilication. ChemCatChem, 2017, 9(22): 4212–4224
https://doi.org/10.1002/cctc.201700925
4 Y H Fang, F Yang, X He, X D Zhu. Dealumination and desilication for Al-rich HZSM-5 zeolite via steam-alkaline treatment and its application in methanol aromatization. Frontiers of Chemical Science and Engineering, 2019, 13(3): 543–553
https://doi.org/10.1007/s11705-018-1778-8
5 S T Yang, C X Yu, L L Yu, S Miao, M M Zou, C Z Jin, D Z Zhang, L Y Xu, S J Huang. Bridging dealumination and desilication for the synthesis of hierarchical MFI zeolites. Angewandte Chemie International Edition, 2017, 56(41): 12553–12556
https://doi.org/10.1002/anie.201706566
6 Q Li, T Dou, Y Zhang, Y P Li, S Wang, F M Sun. Synthesis, characterization and catalytic properties of mesoporous MCM-48 containing zeolite secondary building units. Frontiers of Chemical Science and Engineering, 2007, 1(1): 1–5
7 W M Zhang, W X Ming, S F Hu, B Qin, J H Ma, R F Li. A feasible one-step synthesis of hierarchical zeolite Beta with uniform nanocrystals via CTAB. Materials (Basel), 2018, 11(5): 651–662
https://doi.org/10.3390/ma11050651
8 S T Du, F Li, Q M Sun, N Wang, M J Jia, J H Yu. A green surfactant-assisted synthesis of hierarchical TS-1 zeolites with excellent catalytic properties for oxidative desulfurization. Chemical Communications (Cambridge), 2016, 52(16): 3368–3371
https://doi.org/10.1039/C5CC08441E
9 H Xu, C Lei, Q M Wu, Q Y Zhu, X J Meng, D Dai, S Maurer, A N Parvulescu, U Müller, F S Xiao. Organosilane surfactant-assisted synthesis of mesoporous SSZ-39 zeolite with enhanced catalytic performance in the methanol-to-olefins reaction. Frontiers of Chemical Science and Engineering, 2020, 14(2): 267–274
https://doi.org/10.1007/s11705-019-1845-9
10 S M Xu, X X Zhang, D G Cheng, F Q Chen, X H Ren. Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking. Frontiers of Chemical Science and Engineering, 2018, 12(4): 780–789
https://doi.org/10.1007/s11705-018-1733-8
11 Q M Sun, N Wang, D Y Xi, M Yang, J H Yu. Organosilane surfactant-directed synthesis of hierarchical porous SAPO-34 catalysts with excellent MTO performance. Chemical Communications (Cambridge), 2014, 50(49): 6502–6505
https://doi.org/10.1039/c4cc02050b
12 J Y Liu, J G Wang, N Li, H Zhao, H J Zhou, P C Sun, T H Chen. Polyelectrolyte-surfactant complex as a template for the synthesis of zeolites with intracrystalline mesopores. Langmuir, 2012, 28(23): 8600–8607
https://doi.org/10.1021/la300447n
13 D X Guo, C X Shi, H Zhao, R Chen, S H Chen, P C Sun, T H Chen. Polyacrylic acid as mesoscale template for synthesis of MFI zeolite with plentiful intracrystalline mesopores. Microporous and Mesoporous Materials, 2020, 293: 109821–109828
https://doi.org/10.1016/j.micromeso.2019.109821
14 Y C Shao, Y C Wang, X F Liu, T D Li, P R Haydel, T Tatsumi, J G Wang. A single-crystalline hierarchical zeolite via an oriented co-growth of nanocrystals based on synergy of polyelectrolytes and hetero-atoms. ChemCatChem, 2020, 12(10): 2702–2707
https://doi.org/10.1002/cctc.202000116
15 J Zhu, Y H Zhu, L K Zhu, M Rigutto, A van der Made, C G Yang, S X Pan, L Wang, L F Zhu, Y Y Jin, et al.Highly mesoporous single-crystalline zeolite Beta synthesized using a nonsurfactant cationic polymer as a dual-function template. Journal of the American Chemical Society, 2014, 136(6): 2503–2510
https://doi.org/10.1021/ja411117y
16 D L Jin, G H Ye, J W Zheng, W M Yang, K Zhu, M O Coppens, X G Zhou. Hierarchical silicoaluminophosphate catalysts with enhanced hydroisomerization selectivity by directing the orientated assembly of premanufactured building blocks. ACS Catalysis, 2017, 7(9): 5887–5902
https://doi.org/10.1021/acscatal.7b01646
17 I Schmidt, A Boisen, E Gustavsson, K Ståhl, S Pehrson, S Dahl, A Carlsson, C J H Jacobsen. Carbon nanotube templated growth of mesoporous zeolite single crystals. Chemistry of Materials, 2001, 13(12): 4416–4418
https://doi.org/10.1021/cm011206h
18 H Y Chen, J Wydra, X Y Zhang, P S Lee, Z P Wang, W Fan, M Tsapatsis. Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. Journal of the American Chemical Society, 2011, 133(32): 12390–12393
https://doi.org/10.1021/ja2046815
19 A G Machoke, A M Beltrán, A Inayat, B Winter, T Weissenberger, N Kruse, R Güttel, E Spiecker, W Schwieger. Micro/Macroporous system: MFI-type zeolite crystals with embedded macropores. Advanced Materials, 2015, 27(6): 1066–1070
https://doi.org/10.1002/adma.201404493
20 T Weissenberger, R Leonhardt, B A Zubiri, M Pitínová-Štekrová, T L Sheppard, B Reiprich, J Bauer, R Dotzel, M Kahnt, A Schropp, et al.Synthesis and characterisation of hierarchically structured titanium silicalite-1 zeolites with large intracrystalline macropores. Chemistry, 2019, 25(63): 14430–14440
https://doi.org/10.1002/chem.201903287
21 Y Shi, X Li, J K Hu, J H Lu, Y C Ma, Y H Zhang, Y Tang. Zeolite microspheres with hierarchical structures: formation, mechanism and catalytic performance. Journal of Materials Chemistry, 2011, 21(40): 16223–16230
https://doi.org/10.1039/c1jm11669j
22 P Q Wang, Z B Li, X T Wang, Y M Tong, F L Yuan, Y J Zhu. One-pot synthesis of Cu/SAPO-34 with hierarchical pore using cupric citrate as a copper source for excellent NH3-SCR of NO performance. ChemCatChem, 2020, 12(19): 4871–4878
https://doi.org/10.1002/cctc.202000818
23 Q M Sun, N Wang, R S Bai, X X Chen, J H Yu. Seeding induced nano-sized hierarchical SAPO-34 zeolites: cost-effective synthesis and superior MTO performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(39): 14978–14982
https://doi.org/10.1039/C6TA06613E
24 Q Zhang, A Mayoral, O Terasaki, Q Zhang, B Ma, C Zhao, G J Yang, J H Yu. Amino acid-assisted construction of single-crystalline hierarchical nanozeolites via oriented-aggregation and intraparticle ripening. Journal of the American Chemical Society, 2019, 141(9): 3772–3776
https://doi.org/10.1021/jacs.8b11734
25 K L Ding, A Corma, J A Maciá-Agulló, J G Hu, S Krämer, P C Stair, G D Stucky. Constructing hierarchical porous zeolites via kinetic regulation. Journal of the American Chemical Society, 2015, 137(35): 11238–11241
https://doi.org/10.1021/jacs.5b06791
26 C J H Jacobsen, C Madsen, J Houzvicka, I Schmidt, A Carlsson. Mesoporous zeolite single crystals. Journal of the American Chemical Society, 2000, 122(29): 7116–7117
https://doi.org/10.1021/ja000744c
27 Y M Fang, H Q Hu, G H Chen. Zeolite with tunable intracrystal mesoporosity synthesized with carbon aerogel as a secondary template. Microporous and Mesoporous Materials, 2008, 113(1–3): 481–489
https://doi.org/10.1016/j.micromeso.2007.12.006
28 J Du, Q H Wang, Y Wang, Y N Guo, R F Li. A hierarchical zeolite Beta with well-connected pores via using graphene oxide. Materials Letters, 2019, 250: 139–142
https://doi.org/10.1016/j.matlet.2019.05.014
29 H S Cho, R Ryoo. Synthesis of ordered mesoporous MFI zeolite using CMK carbon templates. Microporous and Mesoporous Materials, 2012, 151: 107–112
https://doi.org/10.1016/j.micromeso.2011.11.007
30 X T Wei, P G Smirniotis. Synthesis and characterization of mesoporous ZSM-12 by using carbon particles. Microporous and Mesoporous Materials, 2006, 89(1–3): 170–178
https://doi.org/10.1016/j.micromeso.2005.09.030
31 A Schwanke, J Villarroel-Rocha, K Sapag, U Díaz, A Corma, S Pergher. Dandelion-like microspherical MCM-22 zeolite using BP 2000 as a hard template. ACS Omega, 2018, 3(6): 6217–6622
https://doi.org/10.1021/acsomega.8b00647
32 F Schmidt, S Paasch, E Brunner, S Kaskel. Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction. Microporous and Mesoporous Materials, 2012, 164: 214–221
https://doi.org/10.1016/j.micromeso.2012.04.045
33 H Chen, X W Zhang, J F Zhang, Q F Wang. Controllable synthesis of hierarchical ZSM-5 for hydroconversion of vegetable oil to aviation fuel like hydrocarbons. RSC Advances, 2017, 7(73): 46109–46117
https://doi.org/10.1039/C7RA08867A
34 A Z Varzaneh, J Towfighi, S Sahebdelfarb, H Bahrami. Carbon nanotube templated synthesis of hierarchical SAPO-34 catalysts with different structure directing agents for catalytic onversion of methanol to light olefins. Journal of Analytical and Applied Pyrolysis, 2016, 121: 11–23
https://doi.org/10.1016/j.jaap.2016.06.007
35 C Manrique, A Guzmán, J Pérez-Pariente, C Márquez-Álvarez, A Echavarrí. Vacuum gas-oil hydrocracking performance of Beta zeolite obtained by hydrothermal synthesis using carbon nanotubes as mesoporous template. Fuel, 2016, 182: 236–247
https://doi.org/10.1016/j.fuel.2016.05.097
36 M R Li, Y P Zhou, Y M Fang. Functioned carbon nanotube templated hierarchical silicate-1 synthesis: on the existence of super-micropore. Microporous and Mesoporous Materials, 2016, 225: 392–398
https://doi.org/10.1016/j.micromeso.2016.01.018
37 Y S Tao, H Kanoh, K Kaneko. Uniform mesopore-donated zeolite Y using carbon aerogel templating. Journal of Physical Chemistry B, 2003, 107(40): 10974–10976
https://doi.org/10.1021/jp0356822
38 Y S Tao, H Kanoh, K Kaneko. ZSM-5 monolith of uniform mesoporous channels. Journal of the American Chemical Society, 2003, 125(20): 6044–6045
https://doi.org/10.1021/ja0299405
39 R J White, A Fischer, C Goebel, A Thomas. A sustainable template for mesoporous zeolite synthesis. Journal of the American Chemical Society, 2014, 136(7): 2715–2718
https://doi.org/10.1021/ja411586h
40 Ó de la Iglesia, J L Sánchez, J Coronas. Hierarchical silicalite-1 structures based on pyrolized materials. Materials Letters, 2011, 65(19–20): 3124–3127
https://doi.org/10.1016/j.matlet.2011.06.080
41 D Li, L Qiu, K Wang, Y Zeng, D Li, T Williams, Y Huang, M Tsapatsis, H T Wang. Growth of zeolite crystals with graphene oxide nanosheets. Chemical Communications, 2012, 48(16): 2249–2251
https://doi.org/10.1039/c2cc17378f
42 Z Ren, E Kim, S W Pattinson, K S Subrahmanyam, C N R Rao, A K Cheetham, D Eder. Hybridizing photoactive zeolites with graphene: a powerful strategy towards superior photocatalytic properties. Chemical Science, 2012, 3(1): 209–216
https://doi.org/10.1039/C1SC00511A
43 L C Zhang, X B Sun, M Pan, X N Yang, Y C Liu, J H Sun, Q H Wang, J J Zheng, Y Wang, J H Ma, et al.Interfacial effects between carbon nanotube templates and precursors on fabricating a wall-crystallized hierarchical pore system in zeolite crystals. Journal of Materials Science, 2020, 55(24): 10412–10426
https://doi.org/10.1007/s10853-020-04708-1
44 S Y Han, Z Wang, L Y Meng, N Z Jiang. Synthesis of uniform mesoporous ZSM-5 using hydrophilic carbon as a hard template. Materials Chemistry and Physics, 2016, 177: 112–117
https://doi.org/10.1016/j.matchemphys.2016.04.003
45 R Bértolo, J M Silva, F Ribeiroa, F J Maldonado-Hódar, A Fernandes, A Martins. Effects of oxidant acid treatments on carbon-templated hierarchical SAPO-11 materials: synthesis, characterization and catalytic evaluation in n-decane hydroisomerization. Applied Catalysis A, General, 2014, 485: 230–237
https://doi.org/10.1016/j.apcata.2014.08.006
46 S F Zhao, W D Wang, L Z Wang, W Schwieger, W Wang, J Huang. Tuning hierarchical ZSM-5 zeolite for both gas- and liquid-phase biorefining. ACS Catalysis, 2020, 10(2): 1185–1194
https://doi.org/10.1021/acscatal.9b04104
47 W C Yoo, S Kumar, Z Y Wang, N S Ergang, W Fan, G N Karanikolos, A V McCormick, R L Penn, M Tsapatsis, A Stein. Nanoscale reactor engineering: hydrothermal synthesis of uniform zeolite particles in massively parallel reaction chambers. Angewandte Chemie International Edition, 2008, 47(47): 9096–9099
https://doi.org/10.1002/anie.200803103
48 W C Yoo, S Kumar, R L Penn, M Tsapatsis, A Stein. Growth patterns and shape development of zeolite nanocrystals in confined syntheses. Journal of the American Chemical Society, 2009, 131(34): 12377–12383
https://doi.org/10.1021/ja904466v
49 Z P Wang, P Dornath, C C Chang, H Y Chen, W Fan. Confined synthesis of three-dimensionally ordered mesoporous imprinted zeolites with tunable morphology and Si/Al ratio. Microporous and Mesoporous Materials, 2013, 181: 8–16
https://doi.org/10.1016/j.micromeso.2013.07.010
50 H Y Chen, P S Lee, X Y Zhang, D Lu. Structure replication and growth development of three-dimensionally ordered mesoporous-imprinted zeolites during confined growth. Journal of Materials Research, 2013, 28(10): 1356–1364
https://doi.org/10.1557/jmr.2013.106
51 H J Cho, P Dornath, W Fan. Synthesis of hierarchical Sn-MFI as Lewis acid catalysts for isomerization of cellulosic sugars. ACS Catalysis, 2014, 4(6): 2029–2037
https://doi.org/10.1021/cs500295u
52 J Wang, M F Yang, W J Shang, X P Su, Q Q Hao, H Y Chen, X X Ma. Synthesis, characterization, and catalytic application of hierarchical SAPO-34 zeolite with three-dimensionally ordered mesoporous imprinted structure. Microporous and Mesoporous Materials, 2017, 252: 10–16
https://doi.org/10.1016/j.micromeso.2017.06.012
53 J Wang, M F Yang, J B Zhang, S P Zhang, X X Wang, K Fu, M Y Wang, W J Sahng, H Y Chen, X X Ma. Fabrication of *BEA/MFI zeolite nanocomposites by confined space synthesis. Materials Chemistry and Physics, 2018, 207: 167–174
https://doi.org/10.1016/j.matchemphys.2017.12.062
54 C Madsen, C Madsen, C J H Jacobsen. Nanosized zeolite crystals-convenient control of crystal size distribution by confined space synthesis. Chemical Communications, 1999, 8(8): 673–674
https://doi.org/10.1039/a901228a
55 I Schmidt, C Madsen, C J H Jacobsen. Confined space synthesis. A novel route to nanosized zeolites. Inorganic Chemistry, 2000, 39(11): 2279–2283
https://doi.org/10.1021/ic991280q
56 C J H Jacobsen, C Madsen, T V W Janssens, H J Jakobsen, J Skibsted. Zeolites by confined space synthesis-characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and 27Al/29Si-MAS NMR spectroscopy. Microporous and Mesoporous Materials, 2000, 39(1–2): 393–401
https://doi.org/10.1016/S1387-1811(00)00215-8
57 C H Christensen, K Johannsen, I Schmidt, C H Christensen. Catalytic benzene alkylation over mesoporous zeolite single crystals: improving activity and selectivity with a new family of porous materials. Journal of the American Chemical Society, 2003, 125(44): 13370–13371
https://doi.org/10.1021/ja037063c
58 I Schmidt, A Krogh, K Wienberg, A Carlsson, M Brorson, C J H Jacobsen. Catalytic epoxidation of alkenes with hydrogen peroxide over first mesoporous titanium-containing zeolite. Chemical Communications, 2000, 21(21): 2157–2158
https://doi.org/10.1039/b006460m
59 M Y Kustova, P Hasselriis, C H Christensen. Mesoporous MEL-type zeolite single crystal catalysts. Catalysis Letters, 2004, 96(3–4): 205–211
https://doi.org/10.1023/B:CATL.0000030122.37779.f4
60 M Y Kustova, S B Rasmussen, A L Kustov, C H Christensen. Direct NO decomposition over conventional and mesoporous Cu-ZSM-5 and Cu-ZSM-11 catalysts: improved performance with hierarchically porous zeolites. Applied Catalysis B: Environmental, 2006, 67(1–2): 60–67
https://doi.org/10.1016/j.apcatb.2006.04.014
61 H C Xin, J Zhao, S T Xu, J P Li, W P Zhang, X W Guo, E J M Hensen, Q H Yang, C Li. Enhanced catalytic oxidation by hierarchically structured TS-1 zeolite. Journal of Physical Chemistry, 2010, 114(14): 6553–6559
62 M S Holm, K Egeblad, P N R Vennestrøm, C G Hartmann, M Kustova, C H Christensen. Enhancing the porosity of mesoporous carbon-templated ZSM-5 by desilication. European Journal of Inorganic Chemistry, 2008, 33(33): 5185–5189
https://doi.org/10.1002/ejic.200800781
63 S Rimaz, R Halladj, S Askari. Synthesis of hierarchal SAPO-34 nano catalyst with dry gel conversion method in the presence of carbon nanotubes as a hard template. Journal of Colloid and Interface Science, 2016, 464: 137–146
https://doi.org/10.1016/j.jcis.2015.11.005
64 Z Y Deng, Y C Zhang, K Zhu, G Qian, X G Zhou. Carbon nanotubes as transient inhibitors in steam-assisted crystallization of hierarchical ZSM-5 zeolites. Materials Letters, 2015, 159: 466–469
https://doi.org/10.1016/j.matlet.2015.07.062
65 K Zhu, K Egeblad, C H Christensen. Mesoporous carbon prepared from carbohydrate as hard template for hierarchically porous zeolites. European Journal of Inorganic Chemistry, 2007, 2007(25): 3955–3960
https://doi.org/10.1002/ejic.200700218
66 Y Song, Z Hua, Y Zhu, X Zhou, W Wu, L Zhang, J Shi. An in situ carbonaceous mesoporous template for the synthesis of hierarchical ZSM-5 zeolites by one-pot steam-assisted crystallization. Chemistry, an Asian Journal, 2012, 7(12): 2772–2776
https://doi.org/10.1002/asia.201200744
67 D Nandan, S K Saxena, N Viswanadham. Synthesis of hierarchical ZSM-5 using glucose as a templating precursor. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(4): 1054–1059
https://doi.org/10.1039/C3TA13904B
68 M H Sun, L H Chen, S Yu, Y Li, X G Zhou, Z Y Hu, H Y Sun, Y Xu, B L Su. Micron-sized zeolite Beta single crystals featuring intracrystal interconnected ordered macro-meso-microporosity displaying superior catalytic performance. Angewandte Chemie International Edition, 2020, 59(44): 19582–19591
https://doi.org/10.1002/anie.202007069
69 M H Sun, J Zhou, Z Y Hu, L H Chen, L Y Li, Y D Wang, Z K Xie, S Turner, G V Tendeloo, T Hasan, et al.Hierarchical zeolite single-crystal reactor for excellent catalytic efficiency. Mater, 2020, 3(4): 1226–1245
https://doi.org/10.1016/j.matt.2020.07.016
70 W Fan, M A Snyder, S Kumar, P S Lee, W C Yoo, A V Mccormick, R L Penn, A, Stein M Tsapaysis. Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nature Materials, 2008, 7(12): 984–991
https://doi.org/10.1038/nmat2302
71 R Ryoo, S H Joo, S Jun. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. Journal of Physical Chemistry B, 1999, 103(37): 7743–7746
https://doi.org/10.1021/jp991673a
72 S Jun, S H Joo, M Kruk, M Jaroniec, Z Liu, T Ohsuna, O Terasaki. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. Journal of the American Chemical Society, 2000, 122(43): 10712–10713
https://doi.org/10.1021/ja002261e
73 Y W Zhang, T Okubo, M Ogura. Synthesis of mesoporous aluminosilicate with zeolitic characteristics using vapor phase transport. Chemical Communications, 2005, 1(21): 2719–2720
https://doi.org/10.1039/b500075k
74 M Ogura, Y W Zhang, S P Elangovan, T Okubo. Formation of ZMM-n: the composite materials having both natures of zeolites and mesoporous silica materials. Microporous and Mesoporous Materials, 2007, 101(1–2): 224–230
https://doi.org/10.1016/j.micromeso.2006.10.032
75 J Wang, A Vinu, M O Coppens. Synthesis and structure of silicalite-1/SBA-15 composites prepared by carbon templating and crystallization. Journal of Materials Chemistry, 2007, 17(40): 4265–4273
https://doi.org/10.1039/b708242h
76 C Sun, J M Du, J Liu, Y Yang, N Ren, N Shen, H L Xu, Y Tang. A facile route to synthesize endurable mesopore containing ZSM-5 catalyst for methanol to propylene reaction. Chemical Communications, 2010, 46(15): 2671–2673
https://doi.org/10.1039/b925850g
77 X Y Pei, X X Liu, X Y Liu, J L Shan, H Fu, Y Xie, X M Yan, X Z Meng, Y C Zheng, G Li, et al.Synthesis of hierarchical titanium silicalite-1 using a carbon-silica-titania composite from aerogel mild carbonization. Catalysts, 2019, 9(8): 672–680
https://doi.org/10.3390/catal9080672
78 C F Xue, F Zhang, L M Wu, D Y Zhao. Vapor assisted “in situ” transformation of mesoporous carbon-silica composite for hierarchically porous zeolites. Microporous and Mesoporous Materials, 2012, 151: 495–500
https://doi.org/10.1016/j.micromeso.2011.09.001
79 J Du, Y Wang, Y Wang, J H Ma, R F Li. In situ recrystallization of mesoporous carbon-silica composite for the synthesis of hierarchically porous zeolites. Materials (Basel), 2020, 13(7): 1640–1649
https://doi.org/10.3390/ma13071640
80 S Tanaka, C Yuan, Y Miyake. Synthesis of silicalite-1 using an interspace of ordered mesoporous carbon-silica nanocomposites: introduction of mesoporosity in zeolite crystals. Microporous and Mesoporous Materials, 2008, 113(1–3): 418–426
https://doi.org/10.1016/j.micromeso.2007.12.001
81 J Du, Y Wang, Y Wang, J H Ma, R F Li. Preparation of hierarchical ZSM-5 zeolites by in-situ crystallization of mesoporous carbon-silica composite. ChemistrySelect, 2020, 5(44): 14130–14135
https://doi.org/10.1002/slct.202003631
82 M Kustova, K Egeblad, K Zhu, C H Christensen. Versatile route to zeolite single crystals with controlled mesoporosity: in situ sugar decomposition for templating of hierarchically porous zeolites. Chemistry of Materials, 2007, 19(12): 2915–2917
https://doi.org/10.1021/cm071168n
83 X Wang, G Li, W Wang, C Jin, Y Chen. Synthesis, characterization and catalytic performance of hierarchical TS-1 with carbon template from sucrose carbonization. Microporous and Mesoporous Materials, 2011, 142(2–3): 494–502
https://doi.org/10.1016/j.micromeso.2010.12.035
84 P Liu, L N Jin, C Jin, J N Zhang, S W Bian. Synthesis of hierarchically porous silicate-1 and ZSM-5 by hydrothermal transformation of SiO2 colloid crystal/carbon composites. Microporous and Mesoporous Materials, 2018, 262: 217–226
https://doi.org/10.1016/j.micromeso.2017.11.033
85 Z Peng, L H Chen, M H Sun, H Zhao, Z Wang, Y Li, L Y Li, J Zhou, Z C Liu, B L Su. A hierarchical zeolitic Murray material with a mass transfer advantage promotes catalytic efficiency improvement. Inorganic Chemistry Frontiers, 2018, 5(11): 2829–2835
https://doi.org/10.1039/C8QI00761F
86 Y X Hou, X Y Li, M H Sun, C F Li, S H Bakhtiar, K Lei, S Yu, Z Wang, Z Hu, L Chen, et al.The effect of hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios on its pore structure and catalytic performance. Frontiers of Chemical Science and Engineering, 2021, 15(2): 269–278
https://doi.org/10.1007/s11705-020-1948-3
87 J O Abildstrøm, Z N Ali, U V Mentzel, J Mielby, S Kegnæs, M Kegnæs. Mesoporous MEL, BEA, and FAU zeolite crystals obtained by in situ formation of carbon template over metal nanoparticles. New Journal of Chemistry, 2016, 40(5): 4223–4227
https://doi.org/10.1039/C5NJ02809D
88 J O Abildstrøm, M Kegnæs, G Hytoft, J Mielby, S Kegnæs. Synthesis of mesoporous zeolite catalysts by in situ formation of carbon template over nickel nanoparticles. Microporous and Mesoporous Materials, 2016, 225: 232–237
https://doi.org/10.1016/j.micromeso.2015.12.015
89 C Wattanakit, C Warakulwit, P Pantu, B Sunpetch, M Charoenpanich, J Limtrakul. The versatile synthesis method for hierarchical micro- and mesoporous zeolite: an embedded nanocarbon cluster approach. Canadian Journal of Chemical Engineering, 2012, 90(4): 873–880
https://doi.org/10.1002/cjce.20692
90 T Imyen, W Wannapakdee, J Limtrakul, C Wattanakit. Role of hierarchical micro-mesoporous structure of ZSM-5 derived from an embedded nanocarbon cluster synthesis approach in isomerization of alkenes, catalytic cracking and hydrocracking of alkanes. Fuel, 2019, 254: 115593–115605
https://doi.org/10.1016/j.fuel.2019.06.001
91 H X Tao, H Yang, Y H Zhang, J W Ren, X H Liu, Y Q Wang, G Z Lu. Space-confined synthesis of nanorod oriented assembled hierarchical MFI zeolite microspheres. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(44): 13821–13827
https://doi.org/10.1039/c3ta12989f
92 H Yang, P P Yang, X H Liu, Y Q Wang. Space-confined synthesis of zeolite Beta microspheres via steam-assisted crystallization. Chemical Engineering Journal, 2016, 299: 112–119
https://doi.org/10.1016/j.cej.2016.04.009
93 Y Huang, J Ho, Z Wang, P Nakashima, A J Hill, H T Wang. Mesoporous carbon confined conversion of silica nanoparticles into zeolite nanocrystals. Microporous and Mesoporous Materials, 2009, 117(1-2): 490–496
https://doi.org/10.1016/j.micromeso.2008.07.036
94 S I Cho, S D Choi, J H Kim, G J Kim. Synthesis of ZSM-5 films and monoliths with bimodal micro/mesoscopic structures. Advanced Functional Materials, 2004, 14(1): 49–54
https://doi.org/10.1002/adfm.200305118
95 Y C Tong, T B Zhao, F Y Li, Y Wang. Synthesis of monolithic zeolite Beta with hierarchical porosity using carbon as a transitional template. Chemistry of Materials, 2006, 18(18): 4218–4220
https://doi.org/10.1021/cm060035j
96 A Martini, E Borfecchia, K A Lomachenko, I A Pankin, C Negri, G Berlier, P Beato, H Falsig, S Bordiga, C Lamberti. Composition-driven Cu-speciation and reducibility in Cu-CHA zeolite catalysts: a multivariate XAS/FTIR approach to complexity. Chemical Science (Cambridge), 2017, 8(10): 6836–6851
https://doi.org/10.1039/C7SC02266B
97 Z C Zhao, R Yu, R R Zhao, C Shi, H Gies, F S Xiao, D De Vos, T Yokoi, X H Bao, U Kolb, et al.Cu-exchanged Al-rich SSZ-13 zeolite from organotemplate-free synthesis as NH3-SCR catalyst: effects of Na+ ions on the activity and hydrothermal stability. Applied Catalysis B: Environmental, 2017, 217: 421–428
https://doi.org/10.1016/j.apcatb.2017.06.013
98 P F Zhu, G H Yang, J Sun, R Fan, P P Zhang, Y Yoneyama, N Tsubaki. A hollow Mo/HZSM-5 zeolite capsule catalyst: preparation and enhanced catalytic properties in methane dehydroaromatization. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(18): 8599–8607
https://doi.org/10.1039/C7TA02345F
99 J Gu, Z Y Zhang, L P Ding, K Huang, N H Xue, L M Peng, X F Guo, W P Ding. Platinum nanoparticles encapsulated in HZSM-5 crystals as an efficient catalyst for green production of p-aminophenol. Catalysis Communications, 2017, 97: 98–101
https://doi.org/10.1016/j.catcom.2017.04.028
100 M Choi, Z J Wu, E Iglesia. Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation. Journal of the American Chemical Society, 2010, 132(26): 9129–9137
https://doi.org/10.1021/ja102778e
101 N Wang, Q M Sun, R S Bai, X Li, G Q Guo, J H Yu. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. Journal of the American Chemical Society, 2016, 138(24): 7484–7487
https://doi.org/10.1021/jacs.6b03518
102 M Sánchez-Sánchez, A Manjón Sanz, I Díaz, Á Mayoral, E Sastre. Micron-sized single-crystal-like CoAPO-5/carbon composites leading to hierarchical CoAPO-5 with both inter-and intracrystalline mesoporosity. Crystal Growth & Design, 2013, 13(6): 2476–2485
https://doi.org/10.1021/cg4001768
103 A Z Varzaneh, J Towfighi, S Sahebdelfar. Carbon nanotube templated synthesis of metal containing hierarchical SAPO-34 catalysts: impact of the preparation method and metal avidities in the MTO reaction. Microporous and Mesoporous Materials, 2016, 236: 1–12
https://doi.org/10.1016/j.micromeso.2016.08.027
104 C Flores, N Batalha, V V Ordomsky, V L Zholobenko, W Baaziz, N R Marcilio, A Y Khodakov. Direct production of iso-paraffins from syngas over hierarchical cobalt-ZSM-5 nanocomposites synthetized by using carbon nanotubes as sacrificial templates. ChemCatChem, 2018, 10(10): 2291–2299
https://doi.org/10.1002/cctc.201701848
105 C Flores, V L Zholobenko, B Gu, N Batalha, V Valtchev, W Baaziz, O Ersen, N R Marcilio, V V Ordomsky, A Y Khodakov. Versatile roles of metal species in carbon nanotube templates for the synthesis of metal-zeolite nanocomposite catalysts. ACS Applied Nano Materials, 2019, 2(7): 4507–4517
https://doi.org/10.1021/acsanm.9b00888
106 C C Amoo, M Li, A Noreen, Y Fu, E Maturura, C Du, R Yang, X Gao, C Xing, N Tsubaki. Fabricating Fe nanoparticles embedded in zeolite Y microcrystals as active catalysts for Fischer-Tropsch synthesis. ACS Applied Nano Materials, 2020, 3(8): 8096–8103
https://doi.org/10.1021/acsanm.0c01515
107 Y Y Chen, C J Chang, H V Lee, J C Juan, Y C Lin. Gallium-immobilized carbon nanotubes as solid templates for the synthesis of hierarchical Ga/ZSM-5 in methanol aromatization. Industrial & Engineering Chemistry Research, 2019, 58(19): 7948–7956
https://doi.org/10.1021/acs.iecr.9b00726
108 C J Chang, C H Chen, J F Lee, T Sooknoi, Y C Lin. Ga-supported MFI zeolites synthesized using carbon nanotubes containing gallium oxide nanoparticles on exterior walls and in interior channels as hard templates for methanol aromatization. Industrial & Engineering Chemistry Research, 2020, 59(24): 11177–11186
https://doi.org/10.1021/acs.iecr.0c01628
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed