Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2021, Vol. 15 Issue (6): 1360-1379   https://doi.org/10.1007/s11705-021-2101-7
  本期目录
Scaling up of cluster beam deposition technology for catalysis application
Giuseppe Sanzone1,2, Jinlong Yin1(), Hailin Sun1
1. Teer Coatings Ltd., Droitwich, Worcestershire WR9 9AS, UK
2. Quantum Solid-State Physics, Department of Physics and Astronomy, B-3001 Leuven, Belgium
 全文: PDF(7254 KB)   HTML
Abstract

Many research works have demonstrated that the combination of atomically precise cluster deposition and theoretical calculations is able to address fundamental aspects of size-effects, cluster-support interactions, and reaction mechanisms of cluster materials. Although the wet chemistry method has been widely used to synthesize nanoparticles, the gas-phase synthesis and size-selected strategy was the only method to prepare supported metal clusters with precise numbers of atoms for a long time. However, the low throughput of the physical synthesis method has severely constrained its wider adoption for catalysis applications. In this review, we introduce the latest progress on three types of cluster source which have the most promising potential for scale-up, including sputtering gas aggregation source, pulsed microplasma cluster source, and matrix assembly cluster source. While the sputtering gas aggregation source is leading ahead with a production rate of ~20 mg·h–1, the pulsed microplasma source has the smallest physical dimensions which makes it possible to compact multiple such devices into a small volume for multiplied production rate. The matrix assembly source has the shortest development history, but already show an impressive deposition rate of ~10 mg·h–1. At the end of the review, the possible routes for further throughput scale-up are envisaged.

Key wordsnanoparticle    cluster    cluster beam deposition    magnetron sputtering    heterogeneous catalysis
收稿日期: 2021-05-26      出版日期: 2021-11-09
Corresponding Author(s): Jinlong Yin   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1360-1379.
Giuseppe Sanzone, Jinlong Yin, Hailin Sun. Scaling up of cluster beam deposition technology for catalysis application. Front. Chem. Sci. Eng., 2021, 15(6): 1360-1379.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-021-2101-7
https://academic.hep.com.cn/fcse/CN/Y2021/V15/I6/1360
Type of source Reported flux/(nm·s–1) Materials usable Typical cluster size Typical vacuum regime Proportion of ionized particles
SSNS ~20 Low-boiling point metals ~100–103 atoms UHV 0
TGAS ~0.05 Any material that attains 1 mbar vapor pressure at 2000 K ~103 atoms UHV 0
SGAS ~100
(~1)
Virtually any solid (using RF or HiPIMS for insulators) 1–60 nm HV Up to 50%
LAS ~0.1 Virtually any solid ~100–102 atoms UHV ≈10%
PACIS ~1 Virtually any solid 1–10 nm HV ≈10%
PMCS 1–30 Conductive solids ~101–104 atoms UHV ≈10%
MACS 10 mg·h–1 Any metal can be vaporised ~100–103 atoms HV 0
Tab.1  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
1 M Haruta, T Kobayashi, H Sano, N Yamada. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chemistry Letters, 1987, 16(2): 405–408
https://doi.org/10.1246/cl.1987.405
2 E C Tyo, S Vajda. Catalysis by clusters with precise numbers of atoms. Nature Nanotechnology, 2015, 10(7): 577–588
https://doi.org/10.1038/nnano.2015.140
3 C Yao, N Guo, S Xi, C Q Xu, W Liu, X Zhao, J Li, H Fang, J Su, Z Chen, et al.Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. Nature Communications, 2020, 11(1): 4389
https://doi.org/10.1038/s41467-020-18080-w
4 R Jin, G Li, S Sharma, Y Li, X Du. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chemical Reviews, 2021, 121(2): 567–648
https://doi.org/10.1021/acs.chemrev.0c00495
5 Z Li, S Ji, Y Liu, X Cao, S Tian, Y Chen, Z Niu, Y Li. Well-defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites. Chemical Reviews, 2020, 120(2): 623–682
https://doi.org/10.1021/acs.chemrev.9b00311
6 Z Niu, Y Li. Removal and utilization of capping agents in nanocatalysis. Chemistry of Materials, 2014, 26(1): 72–83
https://doi.org/10.1021/cm4022479
7 Y Du, H Sheng, D Astruc, M Zhu. Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chemical Reviews, 2020, 120(2): 526–622
https://doi.org/10.1021/acs.chemrev.8b00726
8 H Rong, S Ji, J Zhang, D Wang, Y Li. Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nature Communications, 2020, 11(1): 5884
https://doi.org/10.1038/s41467-020-19571-6
9 P R Ellis, C M Brown, P T Bishop, J Yin, K Cooke, W D Terry, J Liu, F Yin, R E Palmer. The cluster beam route to model catalysts and beyond. Faraday Discussions, 2016, 188(0): 39–56
https://doi.org/10.1039/C5FD00178A
10 A Halder, L A Curtiss, A Fortunelli, S Vajda. Perspective: size selected clusters for catalysis and electrochemistry. Journal of Chemical Physics, 2018, 148(11): 110901
https://doi.org/10.1063/1.5020301
11 C Roy, B Sebok, S B Scott, E M Fiordaliso, J E Sørensen, A Bodin, D B Trimarco, C D Damsgaard, P C K Vesborg, O Hansen, et al.Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy. Nature Catalysis, 2018, 1(11): 820–829
https://doi.org/10.1038/s41929-018-0162-x
12 D Escalera-López, Y Niu, J Yin, K Cooke, N V Rees, R E Palmer. Enhancement of the hydrogen evolution reaction from Ni-MoS2 hybrid nanoclusters. ACS Catalysis, 2016, 6(9): 6008–6017
https://doi.org/10.1021/acscatal.6b01274
13 F Calvo. Nanoalloys. 2nd ed. Cambridge: Elsevier, 2020, 22
14 J A De Toro, P S Normile, C Binns. Gas-Phase Synthesis of Nanoparticles. Weinheim: Wiley-VCH, 2017, 39–55
15 R Behrisch, W Eckstein. Sputtering by Particle Bombardment. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, 33–187
16 Y Yamamura, H Tawara. Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence. Atomic Data and Nuclear Data Tables, 1996, 62(2): 149–253
https://doi.org/10.1006/adnd.1996.0005
17 Y Yamamura, S Shindo. An empirical formula for angular dependence of sputtering yields. Radiation Effects, 1984, 80(1–2): 57–72
https://doi.org/10.1080/00337578408222489
18 P Sigmund. Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Physical Review, 1969, 184(2): 383–416
https://doi.org/10.1103/PhysRev.184.383
19 J Bohdansky. A universal relation for the sputtering yield of monatomic solids at normal ion incidence. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 1984, 2(1): 587–591
https://doi.org/10.1016/0168-583X(84)90271-4
20 A Anders. Deposition rates of high power impulse magnetron sputtering: physics and economics. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2010, 28(4): 783–790
https://doi.org/10.1116/1.3299267
21 A Anders. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS). Journal of Applied Physics, 2017, 121(17): 171101
https://doi.org/10.1063/1.4978350
22 H Oechsner. Sputtering—a review of some recent experimental and theoretical aspects. Applied Physics (Berlin), 1975, 8(3): 185–198
https://doi.org/10.1007/BF00896610
23 F M Penning. Die glimmentladung bei niedrigem druck zwischen koaxialen zylindern in einem axialen magnetfeld. Physica, 1936, 3(9): 873–894
https://doi.org/10.1016/S0031-8914(36)80313-9
24 E Kay. Magnetic field effects on an abnormal truncated glow discharge and their relation to sputtered thin-film growth. Journal of Applied Physics, 1963, 34(4): 760–768
https://doi.org/10.1063/1.1729530
25 R K Waits. Planar magnetron sputtering. Journal of Vacuum Science and Technology, 1978, 15(2): 179–187
https://doi.org/10.1116/1.569451
26 W D Gill, E Kay. Efficient low pressure sputtering in a large inverted magnetron suitable for film synthesis. Review of Scientific Instruments, 1965, 36(3): 277–282
https://doi.org/10.1063/1.1719553
27 D Lundin, T Minea, J T Gudmundsson. High Power Impulse Magnetron Sputtering. Amsterdam: Elsevier, 2020, 1–48
28 P V Kashtanov, B M Smirnov, R Hippler. Magnetron plasma and nanotechnology. Physics Uspekhi, 2007, 50(5): 455–488
https://doi.org/10.1070/PU2007v050n05ABEH006138
29 P M Martin. Handbook of Deposition Technologies for Films and Coatings. 3rd ed. Boston: William Andrew Publishing, 2010, 253–296
30 Y Huttel. Gas-Phase Synthesis of Nanoparticles. Weinheim: Wiley-VCH, 2017, 23–28
31 H Haberland, M Karrais, M Mall, Y Thurner. Thin films from energetic cluster impact: a feasibility study. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 1992, 10(5): 3266–3271
https://doi.org/10.1116/1.577853
32 H Haberland, M Mall, M Moseler, Y Qiang, T Reiners, Y Thurner. Filling of micron-sized contact holes with copper by energetic cluster impact. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 1994, 12(5): 2925–2930
https://doi.org/10.1116/1.578967
33 C Liu, L Zhang, S Zhang, F Liu, G Wang, M Han. Influence of discharge power on the size of the Pd cluster generated with a magnetron plasma gas aggregation cluster source. Vacuum, 2020, 179: 109486
https://doi.org/10.1016/j.vacuum.2020.109486
34 C Zhang, Y Feng. Application of extended Smoluchowski equations to formation of silver nanoclusters generated by direct current magnetron sputtering source. Journal of the Physical Society of Japan, 2016, 85(9): 094606
https://doi.org/10.7566/JPSJ.85.094606
35 G Sanzone, J Yin, K Cooke, H Sun, P Lievens. Impact of the gas dynamics on the cluster flux in a magnetron cluster-source: influence of the chamber shape and gas-inlet position. Review of Scientific Instruments, 2021, 92(3): 033901
https://doi.org/10.1063/5.0028854
36 M Ganeva, T Peter, S Bornholdt, H Kersten, T Strunskus, V Zaporojtchenko, F Faupel, R Hippler. Mass spectrometric investigations of nano-size cluster ions produced by high pressure magnetron sputtering. Contributions to Plasma Physics, 2012, 52(10): 881–889
https://doi.org/10.1002/ctpp.201200046
37 T Peter, O Polonskyi, B Gojdka, A Mohammad Ahadi, T Strunskus, V Zaporojtchenko, H Biederman, F Faupel. Influence of reactive gas admixture on transition metal cluster nucleation in a gas aggregation cluster source. Journal of Applied Physics, 2012, 112(11): 114321
https://doi.org/10.1063/1.4768528
38 O Polonskyi, P Solař, O Kylián, M Drábik, A Artemenko, J Kousal, J Hanuš, J Pešička, I Matolínová, E Kolíbalová, D Slavínská, H Biederman. Nanocomposite metal/plasma polymer films prepared by means of gas aggregation cluster source. Thin Solid Films, 2012, 520(12): 4155–4162
https://doi.org/10.1016/j.tsf.2011.04.100
39 J A González, J P Andrés, J A De Toro, P Muñiz, T Muñoz, O Crisan, C Binns, J M Riveiro. Co-CoO nanoparticles prepared by reactive gas-phase aggregation. Journal of Nanoparticle Research, 2008, 11(8): 2105–2111
https://doi.org/10.1007/s11051-008-9576-8
40 A Marek, J Valter, S Kadlec, J Vyskočil. Gas aggregation nanocluster source—reactive sputter deposition of copper and titanium nanoclusters. Surface and Coatings Technology, 2011, 205: S573–S576
https://doi.org/10.1016/j.surfcoat.2010.12.027
41 I Shyjumon, M Gopinadhan, C A Helm, B M Smirnov, R Hippler. Deposition of titanium/titanium oxide clusters produced by magnetron sputtering. Thin Solid Films, 2006, 500(1): 41–51
https://doi.org/10.1016/j.tsf.2005.11.006
42 B M Smirnov, I Shyjumon, R Hippler. Formation of clusters through generation of free atoms. Physica Scripta, 2006, 73(3): 288–295
https://doi.org/10.1088/0031-8949/73/3/009
43 E L Román García, L Martínez-Orellana, M Díaz Lagos, Y Huttel. Device and method for manufacturing nanoparticles. WO Patent, 2011, WO2011089298: A1
44 Y Xu, J Wang. Magnetic properties of heterostructured Co-Au nanoparticles direct-synthesized from gas phase. IEEE Transactions on Magnetics, 2007, 43(6): 3109–3111
https://doi.org/10.1109/TMAG.2007.894006
45 D Pearmain, S J Park, A Abdela, R E Palmer, Z Y Li. The size-dependent morphology of Pd nanoclusters formed by gas condensation. Nanoscale, 2015, 7(46): 19647–19652
https://doi.org/10.1039/C5NR06473B
46 G Krishnan, M A Verheijen, G H ten Brink, G Palasantzas, B J Kooi. Tuning structural motifs and alloying of bulk immiscible Mo-Cu bimetallic nanoparticles by gas-phase synthesis. Nanoscale, 2013, 5(12): 5375–5383
https://doi.org/10.1039/c3nr00565h
47 S Aktaş, S C Thornton, C Binns, L Lari, A Pratt, R Kröger, M A Horsfield. Control of gas phase nanoparticle shape and its effect on MRI relaxivity. Materials Research Express, 2015, 2(3): 035002
https://doi.org/10.1088/2053-1591/2/3/035002
48 L Martínez, M Díaz, E Román, M Ruano, P D Llamosa, Y Huttel. Generation of nanoparticles with adjustable size and controlled stoichiometry: recent advances. Langmuir, 2012, 28(30): 11241–11249
https://doi.org/10.1021/la3022134
49 D Llamosa, M Ruano, L Martínez, A Mayoral, E Roman, M García-Hernández, Y Huttel. The ultimate step towards a tailored engineering of core@shell and core@shell@shell nanoparticles. Nanoscale, 2014, 6(22): 13483–13486
https://doi.org/10.1039/C4NR02913E
50 M Ruano, L Martínez, Y Huttel. Investigation of the working parameters of a single magnetron of a multiple ion cluster source: determination of the relative influence of the parameters on the size and density of nanoparticles. Dataset Papers in Science, 2013, 2013: 597023
https://doi.org/10.1155/2013/597023
51 J T Gudmundsson, N Brenning, D Lundin, U Helmersson. High power impulse magnetron sputtering discharge. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2012, 30(3): 030801
https://doi.org/10.1116/1.3691832
52 A Anders. Discharge physics of high power impulse magnetron sputtering. Surface and Coatings Technology, 2011, 205: S1–S9
https://doi.org/10.1016/j.surfcoat.2011.03.081
53 D Lundin, K Sarakinos. An introduction to thin film processing using high-power impulse magnetron sputtering. Journal of Materials Research, 2012, 27(5): 780–792
https://doi.org/10.1557/jmr.2012.8
54 O Polonskyi, T Peter, A Mohammad Ahadi, A Hinz, T Strunskus, V Zaporojtchenko, H Biederman, F Faupel. Huge increase in gas phase nanoparticle generation by pulsed direct current sputtering in a reactive gas admixture. Applied Physics Letters, 2013, 103(3): 033118
https://doi.org/10.1063/1.4816036
55 C Zhang, H Tsunoyama, H Akatsuka, H Sekiya, T Nagase, A Nakajima. Advanced nanocluster ion source based on high-power impulse magnetron sputtering and time-resolved measurements of nanocluster formation. Journal of Physical Chemistry A, 2013, 117(40): 10211–10217
https://doi.org/10.1021/jp406521v
56 V Straňák, S Block, S Drache, Z Hubička, C A Helm, L Jastrabík, M Tichý, R Hippler. Size-controlled formation of Cu nanoclusters in pulsed magnetron sputtering system. Surface and Coatings Technology, 2011, 205(8): 2755–2762
https://doi.org/10.1016/j.surfcoat.2010.10.030
57 I Pilch, D Söderström, N Brenning, U Helmersson. Size-controlled growth of nanoparticles in a highly ionized pulsed plasma. Applied Physics Letters, 2013, 102(3): 033108
https://doi.org/10.1063/1.4788739
58 I Pilch, D Söderström, M I Hasan, U Helmersson, N Brenning. Fast growth of nanoparticles in a hollow cathode plasma through orbit motion limited ion collection. Applied Physics Letters, 2013, 103(19): 193108
https://doi.org/10.1063/1.4828883
59 R R Arslanbekov, A A Kudryavtsev, R C Tobin. On the hollow-cathode effect: conventional and modified geometry. Plasma Sources Science & Technology, 1998, 7(3): 310–322
https://doi.org/10.1088/0963-0252/7/3/009
60 P Milani, M Ferretti, P Piseri, C E Bottani, A Ferrari, A Li Bassi, G Guizzetti, M Patrini. Synthesis and characterization of cluster-assembled carbon thin films. Journal of Applied Physics, 1997, 82(11): 5793–5798
https://doi.org/10.1063/1.366446
61 H V Tafreshi, G Benedek, P Piseri, S Vinati, E Barborini, P Milani. A simple nozzle configuration for the production of low divergence supersonic cluster beam by aerodynamic focusing. Aerosol Science and Technology, 2002, 36(5): 593–606
https://doi.org/10.1080/02786820252883838
62 G Ganteför, H R Siekmann, H O Lutz, K H Meiwes-Broer. Pure metal and metal-doped rare-gas clusters grown in a pulsed ARC cluster ion source. Chemical Physics Letters, 1990, 165(4): 293–296
https://doi.org/10.1016/0009-2614(90)87191-S
63 H R Siekmann, C Lüder, J Faehrmann, H O Lutz, K H Meiwes-Broer. The pulsed arc cluster ion source (PACIS). Zeitschrift für Physik D, Atoms, Molecules and Clusters, 1991, 20(1): 417–420
https://doi.org/10.1007/BF01544026
64 C Cha, G Ganteför, W Eberhardt. New experimental setup for photoelectron spectroscopy on cluster anions. Review of Scientific Instruments, 1992, 63(12): 5661–5666
https://doi.org/10.1063/1.1143397
65 W Lu, R Huang, J Ding, S Yang. Generation of fullerenes and metal-carbon clusters in a pulsed arc cluster ion source (PACIS). Journal of Chemical Physics, 1996, 104(17): 6577–6581
https://doi.org/10.1063/1.471377
66 N Blessing, S Burkart, G Ganteför. Production of large metallocarbohedrene clusters using a pulsed arc cluster ion source. The European Physical Journal D—Atomic, Molecular. Optical and Plasma Physics, 2001, 17(1): 37–41
67 H Wang, X Zhang, Y J Ko, A Grubisic, X Li, G Ganteför, H Schnöckel, B W Eichhorn, M S Lee, P Jena, et al.Aluminum Zintl anion moieties within sodium aluminum clusters. Journal of Chemical Physics, 2014, 140(5): 054301
https://doi.org/10.1063/1.4862989
68 A Bettac, L Köller, V Rank, K H Meiwes-Broer. Scanning tunneling spectroscopy on deposited platinum clusters. Surface Science, 1998, 402–404: 475–479
https://doi.org/10.1016/S0039-6028(98)00028-4
69 B Klipp, M Grass, J Müller, D Stolcic, U Lutz, G Ganteför, T Schlenker, J Boneberg, P Leiderer. Deposition of mass-selected cluster ions using a pulsed arc cluster-ion source. Applied Physics. A, Materials Science & Processing, 2001, 73(5): 547–554
https://doi.org/10.1007/s003390100947
70 S Pietsch, A Dollinger, C H Strobel, E J Park, G Ganteför, H O Seo, Y D Kim, J C Idrobo, S J Pennycook. The quest for inorganic fullerenes. Journal of Applied Physics, 2015, 118(13): 134302
https://doi.org/10.1063/1.4932143
71 E Barborini, P Piseri, P Milani. A pulsed microplasma source of high intensity supersonic carbon cluster beams. Journal of Physics. D, Applied Physics, 1999, 32(21): L105–L109
https://doi.org/10.1088/0022-3727/32/21/102
72 A Schmidt-Ott. Spark Ablation. 1st ed. Singapore: Jenny Stanford Publishing, 2020, 245–271
73 H Vahedi Tafreshi, P Piseri, G Benedek, P Milani. The role of gas dynamics in operation conditions of a pulsed microplasma cluster source for nanostructured thin films deposition. Journal of Nanoscience and Nanotechnology, 2006, 6(4): 1140–1149
https://doi.org/10.1166/jnn.2006.139
74 K Wegner, P Piseri, H V Tafreshi, P Milani. Cluster beam deposition: a tool for nanoscale science and technology. Journal of Physics. D, Applied Physics, 2006, 39(22): R439–R459
https://doi.org/10.1088/0022-3727/39/22/R02
75 C Piazzoni, M Buttery, M R Hampson, E W Roberts, C Ducati, C Lenardi, F Cavaliere, P Piseri, P Milani. Tribological coatings for complex mechanical elements produced by supersonic cluster beam deposition of metal dichalcogenide nanoparticles. Journal of Physics. D, Applied Physics, 2015, 48(26): 265302
https://doi.org/10.1088/0022-3727/48/26/265302
76 P Piseri, A Podestà, E Barborini, P Milani. Production and characterization of highly intense and collimated cluster beams by inertial focusing in supersonic expansions. Review of Scientific Instruments, 2001, 72(5): 2261–2267
https://doi.org/10.1063/1.1361082
77 J Fernandez de la Mora, J Rosell-Llompart. Aerodynamic focusing of heavy molecules in seeded supersonic jets. Journal of Chemical Physics, 1989, 91(4): 2603–2615
https://doi.org/10.1063/1.456969
78 H Vahedi Tafreshi, P Piseri, E Barborini, G Benedek, P Milani. Simulation on the effect of Brownian motion on nanoparticle trajectories in a pulsed microplasma cluster source. Journal of Nanoparticle Research, 2002, 4(6): 511–524
https://doi.org/10.1023/A:1022845401781
79 O F Hagena, W Obert. Cluster formation in expanding supersonic jets: effect of pressure, temperature, nozzle size, and test gas. Journal of Chemical Physics, 1972, 56(5): 1793–1802
https://doi.org/10.1063/1.1677455
80 J F De La Mora, P Riesco-Chueca. Aerodynamic focusing of particles in a carrier gas. Journal of Fluid Mechanics, 1988, 195(1): 1–21
https://doi.org/10.1017/S0022112088002307
81 F Di Fonzo, A Gidwani, M H Fan, D Neumann, D I Iordanoglou, J V R Heberlein, P H McMurry, S L Girshick, N Tymiak, W W Gerberich, et al.Focused nanoparticle-beam deposition of patterned microstructures. Applied Physics Letters, 2000, 77(6): 910–912
https://doi.org/10.1063/1.1306638
82 R E Palmer, L Cao, F Yin. Note: proof of principle of a new type of cluster beam source with potential for scale-up. Review of Scientific Instruments, 2016, 87(4): 046103
https://doi.org/10.1063/1.4947229
83 M C Spadaro, L Cao, W Terry, R Balog, F Yin, R E Palmer. Size control of Au nanoparticles from the scalable and solvent-free matrix assembly cluster source. Journal of Nanoparticle Research, 2020, 22(6): 139
https://doi.org/10.1007/s11051-020-04869-9
84 J Zhao, L Cao, R E Palmer, K Nordlund, F Djurabekova. Formation and emission mechanisms of Ag nanoclusters in the Ar matrix assembly cluster source. Physical Review Materials, 2017, 1(6): 66002
https://doi.org/10.1103/PhysRevMaterials.1.066002
85 A Ilinov, A Kuronen, K Nordlund, G Greaves, J A Hinks, P Busby, N J Mellors, S E Donnelly. Sputtering yields exceeding 1000 by 80 keV Xe irradiation of Au nanorods. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 2014, 341: 17–21
https://doi.org/10.1016/j.nimb.2014.03.025
86 M C Spadaro, J Zhao, W D Terry, J Liu, F Yin, F Djurabekova, R E Palmer. Angular dependence of nanoparticle generation in the matrix assembly cluster source. Nano Research, 2019, 12(12): 3069–3074
https://doi.org/10.1007/s12274-019-2553-y
87 R Cai, L Cao, R Griffin, S Chansai, C Hardacre, R E Palmer. Scale-up of cluster beam deposition to the gram scale with the matrix assembly cluster source for heterogeneous catalysis (propylene combustion). AIP Advances, 2020, 10(2): 025314
https://doi.org/10.1063/1.5142836
88 R Cai, F Martelli, J Vernieres, S Albonetti, N Dimitratos, C Tizaoui, R E Palmer. Scale-up of cluster beam deposition to the gram scale with the matrix assembly cluster source for heterogeneous catalysis (catalytic ozonation of nitrophenol in aqueous solution). ACS Applied Materials & Interfaces, 2020, 12(22): 24877–24882
https://doi.org/10.1021/acsami.0c05955
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed