Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2022, Vol. 16 Issue (5): 592-613   https://doi.org/10.1007/s11705-021-2105-3
  本期目录
A review on membrane distillation in process engineering: design and exergy equations, materials and wetting problems
Stefano Capizzano1, Mirko Frappa1, Francesca Macedonio1(), Enrico Drioli1,2,3()
1. Institute of Membrane Technology, National Research Council of Italy, Rende 87036, Italy
2. Department of Environmental Engineering, University of Calabria, Rende, Italy
3. Nanjing Tech University, College of Chemical Engineering, Nanjing 211816, China
 全文: PDF(976 KB)   HTML
Abstract

One of the problems that most afflicts humanity is the lack of clean water. Water stress, which is the pressure on the quantity and quality of water resources, exists in many places throughout the World. Desalination represents a valid solution to the scarcity of fresh water and several technologies are already well applied and successful (such as reverse osmosis), producing about 100 million m3·d−1 of fresh water. Further advances in the field of desalination can be provided by innovative processes such as membrane distillation. The latter is of particular interest for the treatment of waste currents from conventional desalination processes (for example the retentate of reverse osmosis) as it allows to desalt highly concentrated currents as it is not limited by concentration polarization phenomena. New perspectives have enhanced research activities and allowed a deeper understanding of mass and heat transport phenomena, membrane wetting, polarization phenomena and have encouraged the use of materials particularly suitable for membrane distillation applications. This work summarizes recent developments in the field of membrane distillation, studies for module length optimization, commercial membrane modules developed, recent patents and advancement of membrane material.

Key wordsmembrane distillation    recent developments    heat and mass transfer    wetting    membrane material
收稿日期: 2021-04-15      出版日期: 2022-03-28
Corresponding Author(s): Francesca Macedonio,Enrico Drioli   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2022, 16(5): 592-613.
Stefano Capizzano, Mirko Frappa, Francesca Macedonio, Enrico Drioli. A review on membrane distillation in process engineering: design and exergy equations, materials and wetting problems. Front. Chem. Sci. Eng., 2022, 16(5): 592-613.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-021-2105-3
https://academic.hep.com.cn/fcse/CN/Y2022/V16/I5/592
Fig.1  
Fig.2  
Membrane trade name or details about module configuration Material Manufacturer δ/μm ε/% LEPw/kPa Ref.
Plate and frame module Polytetrafluoroethylene (PTFE) Scarab development AB 200 80% ? [17]
Spiral wound module Membrane in PTFE supported on polypropylene (PP) Solar spring GmbH 70 for PTFE, 280 for the support in PP 80 for PTFE, 50 for the support in PP ? [18,19]
Spiral wound module Low-density
polyethylene (LDPE)
Aquastill BV 76 85 ? [20]
Plate and frame module PTFE Memsys GmbH 20 μm (200 μm if including the supporting layer) 70?75 ? [21]
Hollow fiber membrane modules Polyvinylidene fluoride (PVDF) Econity ?
TF200 PTFE/PP Gelman 178 80 282
TF450 PTFE/PP Gelman 178 80 138 [2224]
TF1000 PTFE/PP Gelman 178 80 48
PT20 PTFE/PP Gore 64 ± 5 90 ± 1 368 ± 1 [22]
PT45 PTFE/PP Gore 77 ± 8 89 ± 4 288 ± 1 [22]
TS1.0 PTFE/PP Osmonics Corp. 175 70 ?
TS22 PTFE/PP Osmonics Corp. 175 70 ? [23]
TS45 PTFE/PP Osmonics Corp. 175 70 ?
Taflen PTFE/PP Gelman 60 50 ?
FGLP PTFE/PP Millipore 130 70 280
FHLP PTFE/PP Millipore 175 85 124
GVHP PVDF Millipore 110 75 204
PV22 PVDF Millipore 126 ± 7 62 ± 2 229 ± 3 [22,25]
PV45 PVDF Millipore 116 ± 9 66 ± 2 110 ± 4
HVHP (Durapore) PVDF Millipore 140 75 105
GVSP PVDF Millipore 108 80 ? [23]
GORE PTFE Gore 64 90 368
GORE PTFE Gore 77 89 288
Tecknokrama PTFE Teknokrama 80 ?
Tecknokrama PTFE Teknokrama 80 ?
Tecknokrama PTFE Teknokrama 80 ?
G-4.0-6-7 PTFE GoreTex Sep GmbH 100 80 463
Sartorious PTFE Sartorious 70 70 ?
MD080CO2N PP Enka Microdyn 650 70 ?
MD020TP2N PP Enka Microdyn 1550 70 ? [22,23]
Accurel® PP Enka A.G. 400 74 ?
Celgard X-20 PP Hoechst Celenese Co. 25 35 ?
Accurel® S6/2 PP Akzo Nobel 450 70 140 [22]
Enka PP Sartorious 100 75 ?
Enka PP Sartorious 140 75 ? [23]
3MA PP 3M Corporation 91 66 ?
3MB PP 3M Corporation 81 76 ?
3MC PP 3M Corporation 76 79 ?
3MD PP 3M Corporation 86 80 ?
3ME PP 3M Corporation 79 85 ?
Membrana PP Membrana, Germany 91 ? ?
PP22 PP Osmionics Corp. 150 70 ?
Metricel PP Gelman 90 55 ?
Celgard 2400 PP Hoechst Celenese Co. 25 38 ?
Celgard 2500 PP Hoechst Celenese Co. 28 45 ?
EHF270FA-16 polyethylene (PE) Mitsubishi 55 70 ?
Tab.1  
Fig.3  
Configuration Advantage Disadvantage
DCMD The easiest and simplest configuration to realize practically; flux is more stable than VMD for the feeds with fouling tendency; high gained output ratio [38]; suitable for the removal of volatile components since it was found to give higher selectivity than SGMD and VMD under similar operating conditions [43] Flux obtained is relatively lower than vacuum configurations under the identical operating conditions; thermal polarization is highest among all the configurations; flux is relatively more sensitive to feed concentration; the permeate quality is sensitive to membrane wetting; suitable mainly for aqueous solutions
AGMD Lower fluxes than the other MD configurations [44]; low thermal losses; integrable with heat recovery systems; no wetting on permeate side; less fouling tendency Air gap provides an additional resistance to vapors; difficult module design; difficult model due to the involvement of too many variables; lowest gained output ratio [42]
SGMD Thermal polarization is lower; no wetting from permeate side; permeate quality independent of membrane wetting Additional complexity due to the extra equipment involved; heat recovery is difficult; low flux; pretreatment of sweep gas might be needed
VMD High flux; can be used for recovery of aroma compounds and related substances [45,46]; the permeate quality is stable despite of some wetting; no possibility of wetting from distillate side; thermal polarization if very low Higher probability of pore wetting; higher fouling; minimum selectivity of volatile components [43]; require vacuum pump external condenser
Tab.2  
Patent Inventor Remark
Membrane distillation device with bubble column dehumidifier
Publication number: US20200095138A1
Date of patent: Mar. 26, 2020
Atia Esmaeil Khalifa
Mohamed A. Antar
Suhaib M. Alawad
The present disclosure relates to a desalination device comprising a membrane distillation module with a water feed chamber, a CG (carrier gas) chamber, and a hydrophobic microporous membrane configured to separate the water feed chamber and the CG chamber
Porous membrane for membrane distillation, and method for operating membrane distillation module
Publication number: US20200109070 A1
Date of patent: Apr. 9, 2020
Tomotaka Hashimoto
Hiroyuki Arai
Kazuto Nagata
Noboru Kubota
Hiroki Takezawa
Takehito Otoyo
The invention relates to a membrane distillation device, provided with a membrane distillation module including a plurality of hydrophobic porous hollow fiber membranes, and a condenser for condensing water vapor extracted from the module
Multistage membrane distillation system for distilled water production
Publication number: US20200179877 A1
Date of patent: Jun. 11, 2020
Atia Esmaeil Khalifa The present disclosure relates to a membrane distillation module with a circulating line to circulate a portion of distilled water, which is formed and accumulated in a distillate zone, to enhance a permeate flux of water vapor through a hydrophobic membrane of the membrane distillation module. Various combinations of embodiments of the membrane distillation module are provided
Plate-type membrane distillation module with hydrophobic membrane
Publication number: US20200179876 A1
Date of patent: Jun. 11, 2020
Atia Esmaeil Khalifa The invention relates to a membrane distillation module with a circulating line to circulate a portion of distilled water, which is formed and accumulated in a distillate zone, to enhance a permeate flux of water vapor through a hydrophobic membrane of the membrane distillation module. Various combinations of embodiments of the membrane distillation module are provided
Porous membrane for membrane distillation, membrane module, and membrane distillation device
Publication number: US20200179876 A1
Date of patent: Jun. 11, 2020
Mitsunori Iwamuro
Yasuharu Murakami
Tatsuya Makino
The object of the present invention is to provide a porous membrane, containing aerogel particles, for membrane distillation excellent in thermal insulation properties
Hollow fiber membrane module for direct contact membrane distillation-based desalination
Publication number: US20200197867 A1
Date of patent: Jun. 25, 2020
Kamalesh Sirkar
Dhananjay Singh
Lin Li
Thomas J. McEvoy
The present disclosure has been developed to describe the observed water production rates of a cylindrical cross-flow module containing high-flux composite hydrophobic hollow fiber membranes in multiple brine feed introduction configurations
Nanostructured fibrous membranes for membrane distillation
Publication number: US20200316504 A1
Date of patent: Oct. 8, 2020
Benjamin Chu
Benjamin S. Hsiao
The present disclosure relates to membranes suitable for use in membrane distillation including nano-fibrous layers with adjustable pore sizes, hydrophobic nanofibrous scaffolds and thin hydrophilic protecting layers that can significantly reduce fouling and scaling problems
Hydrophobic polyethylene membrane for use in venting, degassing, and membrane distillation processes
Publication number: US20200406201A1
Date of patent: Dec. 31, 2020
Wai Ming Choi
Jad Ali Jaber
Vinay Goel
Vinay KALYANI
Anthony Dennis
The invention relates to polyethylene membranes and with high molecular weight and hydrophobicity, that have been obtained by stretching polyethylene and grafting hydrophobic monomers onto the membrane surface
Novel materials and methods for photothermal membrane distillation
Publication number: US20210023505 A1
Date of patent: Jan. 28, 2021
Young-Shin Jun
Srikanth Singamaneni
Xuanhao Wu
Qisheng Jiang
This patent discloses a photothermal distillation membrane comprising a tridecafluoro-1,1,2,2-tetrahydrooctyl-trichlorosilane (FTCS) fluoro-silanized, polydopamine (PDA) coated, PVDF membrane and a process for synthesizing a FTCS-PDA-PVDF membrane
Solar thermal membrane distillation system for drinking water production
Publication number: US20210017048 A1
Date of patent: Jan. 21, 2021
Peng Yi
Rahamat
Ullah Tanvir
Shahin Ahmed Suion
This invention relates to a solar distillation device that includes a feed water chamber having an open interior feed water compartment and a feed water inlet to the feed water compartment. The top, the rear wall, and the sides of the distillate chamber include a solar radiation transmissive portion
Apparatus for solar-assisted water distillation using waste heat of air conditioners
Publication number: US10926223B2
Date of patent: Feb. 23, 2021
Fahad G. AL-AMRI The invention presents an apparatus for water purification that includes a MD cell, an air conditioner and a photovoltaic solar collector cell including a transparent photovoltaic cell configured to generate electricity
Tab.3  
Polymer Tg/°C Ref. Tm/°C K/(W?m?1?K?1)
PE ?120 [50] 85 to 140 0.33 to 0.52
PVDF ?40 [50] 155 to 185 0.1 to 0.25
PP ?15 [50] 165 to 175 0.1 to 0.22
PTFE 126 [50] 320 to 330 0.25
Polysulfone 190 [50] 185 0.26
Hyflon 192 [51] 280 to 290 0.20
Polyethersulfone (PES ) 230 [50] 230 0.13 to 0.18
Polyimide (Kapton) 300 [50] 375 to 401 0.10 to 0.35
Tab.4  
Fig.4  
Fig.5  
Fig.6  
M (Alkali Metal) Solubility of MCl/(mol?L?1)
Li 19.6
Na 6.2
K 4.8
Rb 7.5
Cs 11.0
Tab.5  
1 N A Eckhardt, E Cominelli, M Galbiati, C Tonelli. The future of science: food and water for life. Plant Cell, 2009, 21(2): 368–372
https://doi.org/10.1105/tpc.109.066209
2 A Boretti, L Rosa. Reassessing the projections of the world water development report. NPJ Clean Water, 2019, 2(1): 1–6
https://doi.org/10.1038/s41545-019-0039-9
3 M A Shannon, P W Bohn, M Elimelech, J G Georgiadis, B J Mariñas, A M Mayers. Science and technology for water purification in the coming decades. Nature, 2009, 452(7185): 301–310
https://doi.org/10.1038/nature06599
4 F S Pinto, R C Marques. Desalination projects economic feasibility: a standardization of cost determinants. Renewable & Sustainable Energy Reviews, 2017, 78: 904–915
https://doi.org/10.1016/j.rser.2017.05.024
5 GWI and IDA. IDA Water Security Handbook 2018–2019. Oxford (United Kingdom): Media Analytics Ltd., 2018, 4–28
6 U K Kesieme, N Milne, H Aral, C Y Cheng, M Duke. Economic analysis of desalination technologies in the context of carbon pricing, and opportunities for membrane distillation. Desalination, 2013, 323: 66–74
https://doi.org/10.1016/j.desal.2013.03.033
7 A Ali, R A Tufa, F Macedonio, E Curcio, E Drioli. Membrane technology in renewable-energy-driven desalination. Renewable & Sustainable Energy Reviews, 2018, 81: 1–21
https://doi.org/10.1016/j.rser.2017.07.047
8 M Gryta. Capillary polypropylene membranes for membrane distillation. Fibers (Basel, Switzerland), 2019, 7(1): 1
https://doi.org/10.3390/fib7010001
9 E Curcio, A Criscuoli, E Drioli. Membrane crystallizers. Industrial & Engineering Chemistry Research, 2001, 40(12): 2679–2684
https://doi.org/10.1021/ie000906d
10 E Drioli, A Criscuoli, E Curcio. Membrane contactors: Fundamentals, Applications and Potentialities. 1st ed. Amsterdam: Elsevier, 2006, 24
11 F Macedonio, E Drioli. Special issue of desalination journal on “membrane engineering for desalination in the mining and extraction industry”. Desalination, 2018, 440: 1
https://doi.org/10.1016/j.desal.2018.04.025
12 C A Quinst-Jensen, F Macedonio, E Drioli. Integrated membrane desalination systems with membrane crystallization units for resource recovery: a new approach for Mining from the sea. Crystals, 2016, 6(4): 36
https://doi.org/10.3390/cryst6040036
13 E Chabanon, D Mangin, C Charcosset. Membranes and crystallization processes: state of the art and prospects. Journal of Membrane Science, 2016, 509: 57–67
https://doi.org/10.1016/j.memsci.2016.02.051
14 F Macedonio, C A Quist-Jensen, O Al-Harbi, H Alromaih, S A Al-Jlil, F Al Shabouna, E Drioli. Thermodynamic modeling of brine and its use in membrane crystallizer. Desalination, 2013, 323: 83–92
https://doi.org/10.1016/j.desal.2013.02.009
15 P Biniaz, N Torabi Ardekani, M A Makarem, M R Rahimpour. Water and wastewater treatment systems by novel integrated membrane distillation (MD). ChemEngineering, 2019, 3(1): 8
https://doi.org/10.3390/chemengineering3010008
16 G Zaragoza, J A Andrés-Mañas, A Ruiz-Aguirre. Commercial scale membrane distillation for solar desalination. NPJ Clean Water, 2018, 1(1): 1–6
https://doi.org/10.1038/s41545-018-0020-z
17 E Guillén-Burrieza, J Blanco, G Zaragoza, D C Alarcón, P Palenzuela, M Ibarra, W Gernjak. Experimental analysis of an air gap membrane distillation solar desalination pilot system. Journal of Membrane Science, 2011, 379(1–2): 386–396
https://doi.org/10.1016/j.memsci.2011.06.009
18 J Koschikowski, M Wieghaus, M Rommel, V S Ortin, B P Suarez, J R Rodríguez. Experimental investigations on solar driven stand-alone membrane distillation systems for remote areas. Desalination, 2009, 248(1–3): 125–131
https://doi.org/10.1016/j.desal.2008.05.047
19 R Schwantes, L Bauer, K Chavan, D Dücker, C Felsmann, J Pfafferott. Air gap membrane distillation for hypersaline brine concentration: Operational analysis of a full-scale module–New strategies for wetting mitigation. Desalination, 2018, 444: 13–25
https://doi.org/10.1016/j.desal.2018.06.012
20 A Ruiz-Aguirre, J A Andrés-Mañas, J M Fernández-Sevilla, G Zaragoza. Experimental characterization and optimization of multi-channel spiral wound air gap membrane distillation modules for seawater desalination. Separation and Purification Technology, 2018, 205: 212–222
https://doi.org/10.1016/j.seppur.2018.05.044
21 E S Mohamed, P Boutikos, E Mathioulakis, V Belessiotis. Experimental evaluation of the performance and energy efficiency of a vacuum multi-effect membrane distillation system. Desalination, 2017, 408: 70–80
https://doi.org/10.1016/j.desal.2016.12.020
22 E Drioli, A Ali, F Macedonio. Membrane distillation: Recent developments and perspectives. Desalination, 2015, 356: 56–84
https://doi.org/10.1016/j.desal.2014.10.028
23 M Khayet. Membranes and theoretical modeling of membrane distillation: a review. Advances in Colloid and Interface Science, 2011, 164(1–2): 56–88
https://doi.org/10.1016/j.cis.2010.09.005
24 L Martínez, F J Florido-Díaz, A Hernandez, P Prádanos. Characterisation of three hydrophobic porous membranes used in membrane distillation: modelling and evaluation of their water vapour permeabilities. Journal of Membrane Science, 2002, 203(1–2): 15–27
https://doi.org/10.1016/S0376-7388(01)00719-0
25 M A Izquierdo-Gil, M C Garcıa-Payo, C Fernández-Pineda. Air gap membrane distillation of sucrose aqueous solutions. Journal of Membrane Science, 1999, 155(2): 291–307
https://doi.org/10.1016/S0376-7388(98)00323-8
26 S Al-Obaidani, E Curcio, F Macedonio, G Di Profio, H Al-Hinai, E Drioli. Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation. Journal of Membrane Science, 2008, 323(1): 85–98
https://doi.org/10.1016/j.memsci.2008.06.006
27 C Picard, A Larbot, F Guida-Pietrasanta, B Boutevin, A Ratsimihety. Grafting of ceramic membranes by fluorinated silanes: hydrophobic features. Separation and Purification Technology, 2001, 25(1–3): 65–69
https://doi.org/10.1016/S1383-5866(01)00091-0
28 A Dafinov, R Garcia-Valls, J Font. Modification of ceramic membranes by alcohol adsorption. Journal of Membrane Science, 2002, 196(1): 69–77
https://doi.org/10.1016/S0376-7388(01)00575-0
29 C C Ko, A Ali, E Drioli, K L Tung, C H Chen, Y R Chen, F Macedonio. Performance of ceramic membrane in vacuum membrane distillation and in vacuum membrane crystallization. Desalination, 2018, 440: 48–58
https://doi.org/10.1016/j.desal.2018.03.011
30 X Chen, X Gao, K Fu, M Qiu, F Xiong, D Ding, Z Cui, Z Wang, Y Fan, E Drioli. Tubular hydrophobic ceramic membrane with asymmetric structure for water desalination via vacuum membrane distillation process. Desalination, 2018, 443: 212–220
https://doi.org/10.1016/j.desal.2018.05.027
31 A Ali, F Macedonio, E Drioli, S Aljlil, O A Alharbi. Experimental and theoretical evaluation of temperature polarization phenomenon in direct contact membrane distillation. Chemical Engineering Research & Design, 2013, 91(10): 1966–1977
https://doi.org/10.1016/j.cherd.2013.06.030
32 E Drioli, L Giorno, E Fontananova. Comprehensive Membrane Science and Engineering. 2nd ed. Oxford: Elsevier, 2017: 282–296
33 J Ravi, M H D Othman, T Matsuura, M Ro’il Bilad, T H El-badawy, F Aziz, A F Ismail, M A Rahman, J Jaafar. Polymeric membranes for desalination using membrane distillation: a review. Desalination, 2020, 490: 114530
https://doi.org/10.1016/j.desal.2020.114530
34 M Yao, L D Tijing, G Naidu, S H Kim, H Matsuyama, A G Fane, H K Shon. A review of membrane wettability for the treatment of saline water deploying membrane distillation. Desalination, 2020, 479: 114312
https://doi.org/10.1016/j.desal.2020.114312
35 A Alkhudhiri, N Hilal. Emerging Technologies for Sustainable Desalination Handbook. 1st ed. Oxford: Butterworth-Heinemann, 2018, 55–106
36 Y Cohen. Materials and Energy: Volume 17. Advances in Water Desalination Technologies. Singapore: World Scientific Publishing Co. Pte. Ltd., 2021, 227–261
37 A Alhathal Alanezi, H Abdallah, E El-Zanati, A Ahmad, A O Sharif. Performance investigation of O-ring vacuum membrane distillation module for water desalination. Journal of Chemistry, 2016: 9378460
38 G Gude. Emerging Technologies for Sustainable Desalination Handbook. Burlington: Butterworth-Heinemann, 2018, 55–98
39 A C Franken, J A Nolten, M H Mulder, D Bargeman, C A Smolders. Wetting criteria for the applicability of membrane distillation. Journal of Membrane Science, 1987, 33(3): 315–328
https://doi.org/10.1016/S0376-7388(00)80288-4
40 L D Tijing, Y C Woo, J S Choi, S Lee, S H Kim, H K Shon. Fouling and its control in membrane distillation—a review. Journal of Membrane Science, 2015, 475: 215–244
https://doi.org/10.1016/j.memsci.2014.09.042
41 M Rezaei, D M Warsinger, M C Duke, T Matsuura, W M Samhaber. Wetting phenomena in membrane distillation: mechanisms, reversal, and prevention. Water Research, 2018, 139: 329–352
https://doi.org/10.1016/j.watres.2018.03.058
42 E K Summers, H A Arafat, J H Lienhard. Energy efficiency comparison of single-stage membrane distillation (MD) desalination cycles in different configurations. Desalination, 2012, 290: 54–66
https://doi.org/10.1016/j.desal.2012.01.004
43 Z Ding, L Liu, Z Li, R Ma, Z Yang. Experimental study of ammonia removal from water by membrane distillation (MD): the comparison of three configurations. Journal of Membrane Science, 2006, 286(1–2): 93–103
https://doi.org/10.1016/j.memsci.2006.09.015
44 A Basile. Handbook of Membrane Reactors. Volume 2: Reactor Types and Industrial Applications. 1st ed. Philadelphia: Woodhead Publishing, 2013, 78–81
45 R Bagger-Jørgensen, A S Meyer, C Varming, G Jonsson. Recovery of volatile aroma compounds from black currant juice by vacuum membrane distillation. Journal of Food Engineering, 2004, 64(1): 23–31
https://doi.org/10.1016/j.jfoodeng.2003.09.009
46 L H Wang, T Pyatkovskyy, A Yousef, X A Zeng, S K Sastry. Mechanism of Bacillus subtilis spore inactivation induced by moderate electric fields. Innovative Food Science & Emerging Technologies, 2020, 62: 102349
https://doi.org/10.1016/j.ifset.2020.102349
47 A Ali, C A Quist-Jensen, F Macedonio, E Drioli. On designing of membrane thickness and thermal conductivity for large scale membrane distillation modules. Journal of Membrane Science and Research, 2016, 2(4): 179–185
48 P Wang, M M Teoh, T S Chung. Morphological architecture of dual-layer hollow fiber for membrane distillation with higher desalination performance. Water Research, 2011, 45(17): 5489–5500
https://doi.org/10.1016/j.watres.2011.08.012
49 M Khayet, J I Mengual, T Matsuura. Porous hydrophobic/hydrophilic composite membranes: application in desalination using direct contact membrane distillation. Journal of Membrane Science, 2005, 252(1–2): 101–113
https://doi.org/10.1016/j.memsci.2004.11.022
50 A Deshmukh, M Elimelech. Understanding the impact of membrane properties and transport phenomena on the energetic performance of membrane distillation desalination. Journal of Membrane Science, 2017, 539: 458–474
https://doi.org/10.1016/j.memsci.2017.05.017
51 K W Lawson, D R Loyd. Membrane distillation. Journal of Membrane Science, 1997, 24(1): 1–25
https://doi.org/10.1016/S0376-7388(96)00236-0
52 K Y Wang, S W Foo, T S Chung. Mixed matrix PVDF hollow fiber membranes with nanoscale pores for desalination through direct contact membrane distillation. Industrial & Engineering Chemistry Research, 2009, 48(9): 4474–4483
https://doi.org/10.1021/ie8009704
53 L Eykens, K De Sitter, C Dotremont, L Pinoy, B Van der Bruggen. How to optimize the membrane properties for membrane distillation: a review. Industrial & Engineering Chemistry Research, 2016, 55(35): 9333–9343
https://doi.org/10.1021/acs.iecr.6b02226
54 K Schneider, W Hölz, R Wollbeck, S Ripperger. Membranes and modules for transmembrane distillation. Journal of Membrane Science, 1988, 39(1): 25–42
https://doi.org/10.1016/S0376-7388(00)80992-8
55 Y Tang, N Li, A Liu, S Ding, C Yi, H Liu. Effect of spinning conditions on the structure and performance of hydrophobic PVDF hollow fiber membranes for membrane distillation. Desalination, 2012, 287: 326–339
https://doi.org/10.1016/j.desal.2011.11.045
56 M Gryta. Fouling in direct contact membrane distillation process. Journal of Membrane Science, 2008, 325(1): 383–394
https://doi.org/10.1016/j.memsci.2008.08.001
57 H Du, J Li, J Zhang, G Su, X Li, Y Zhao. Separation of hydrogen and nitrogen gases with porous graphene membrane. Journal of Physical Chemistry C, 2011, 115(47): 23261–23266
https://doi.org/10.1021/jp206258u
58 A Basile, A Cassano, N K Rastogi. Advances in Membrane Technologies for Water Treatment: Materials, Processes and applications. 1st ed. Cambridge: Woodhead Publishing, 2015, 605–624
59 J C Lin, D J Lee, C Huang. Membrane fouling mitigation: membrane cleaning. Separation Science and Technology, 2010, 45(7): 858–872
https://doi.org/10.1080/01496391003666940
60 H Norafifah, M Y Noordin, K Y Wong, S Izman, A A Ahmad. A study of operational factors for reducing the fouling of hollow fiber membranes during wastewater filtration. Procedia CIRP, 2015, 26: 781–785
https://doi.org/10.1016/j.procir.2014.07.082
61 N Shahkaramipour, T N Tran, S Ramanan, H Lin. Membranes with surface-enhanced antifouling properties for water purification. Membranes, 2017, 7(1): 13
https://doi.org/10.3390/membranes7010013
62 M M Teoh, T S Chung, Y S Yeo. Dual-layer PVDF/PTFE composite hollow fibers with a thin macrovoid-free selective layer for water production via membrane distillation. Chemical Engineering Journal, 2011, 171(2): 684–691
https://doi.org/10.1016/j.cej.2011.05.020
63 M M Teoh, T S Chung. Membrane distillation with hydrophobic macrovoid-free PVDF-PTFE hollow fiber membranes. Separation and Purification Technology, 2009, 66(2): 229–236
https://doi.org/10.1016/j.seppur.2009.01.005
64 L Zou, P Gusnawan, Y B Jiang, G Zhang, J Yu. Macrovoid-inhibited PVDF hollow fiber membranes via spinning process delay for direct contact membrane distillation. ACS Applied Materials & Interfaces, 2020, 12(25): 28655–28668
https://doi.org/10.1021/acsami.0c06902
65 A Mansourizadeh, A F Ismail. Hollow fiber gas-liquid membrane contactors for acid gas capture: a review. Journal of Hazardous Materials, 2009, 171(1–3): 38–53
https://doi.org/10.1016/j.jhazmat.2009.06.026
66 E Drioli, L Giorno. Encyclopedia of Membranes. 1st ed. Berlin: Springer, 2016, 1009–1012
67 R W Schofield, A G Fane, C J Fell. Gas and vapour transport through microporous membranes. I. Knudsen-Poiseuille transition. Journal of Membrane Science, 1990, 53(1–2): 159–171
https://doi.org/10.1016/0376-7388(90)80011-A
68 C M Guijt, G W Meindersma, T Reith, A B De Haan. Air gap membrane distillation: 2. Model validation and hollow fibre module performance analysis. Separation and Purification Technology, 2005, 43(3): 245–255
https://doi.org/10.1016/j.seppur.2004.09.016
69 A L McGaughey, R D Gustafson, A E Childress. Effect of long-term operation on membrane surface characteristics and performance in membrane distillation. Journal of Membrane Science, 2017, 543: 143–150
https://doi.org/10.1016/j.memsci.2017.08.040
70 M Gryta. Long-term performance of membrane distillation process. Journal of Membrane Science, 2005, 265(1–2): 153–159
https://doi.org/10.1016/j.memsci.2005.04.049
71 S Srisurichan, R Jiraratananon, A G Fane. Mass transfer mechanisms and transport resistances in direct contact membrane distillation process. Journal of Membrane Science, 2006, 277(1–2): 186–194
https://doi.org/10.1016/j.memsci.2005.10.028
72 L Martínez-Díez, M I Vazquez-Gonzalez. Temperature and concentration polarization in membrane distillation of aqueous salt solutions. Journal of Membrane Science, 1999, 156(2): 265–273
https://doi.org/10.1016/S0376-7388(98)00349-4
73 M Asghari, M Dehghani, H Riasat Harami, A H Mohammadi. Effects of operating parameters in sweeping gas membrane distillation process: numerical simulation of Persian Gulf seawater desalination. Journal of Water and Environmental Nanotechnology, 2018, 3(2): 128–140
74 A Ali, C A Quist-Jensen, F Macedonio, E Drioli. Optimization of module length for continuous direct contact membrane distillation process. Chemical Engineering and Processing, 2016, 110: 188–200
https://doi.org/10.1016/j.cep.2016.10.014
75 A Ali, J H Tsai, K L Tung, E Drioli, F Macedonio. Designing and optimization of continuous direct contact membrane distillation process. Desalination, 2018, 426: 97–107
https://doi.org/10.1016/j.desal.2017.10.041
76 Y Cerci. Exergy analysis of a reverse osmosis desalination plant in California. Desalination, 2002, 142(3): 257–266
https://doi.org/10.1016/S0011-9164(02)00207-2
77 F Macedonio, E Curcio, E Drioli. Integrated membrane systems for seawater desalination: energetic and exergetic analysis, economic evaluation, experimental study. Desalination, 2007, 203(1–3): 260–276
https://doi.org/10.1016/j.desal.2006.02.021
78 F Macedonio, E Drioli. An exergetic analysis of a membrane desalination system. Desalination, 2010, 261(3): 293–299
https://doi.org/10.1016/j.desal.2010.06.070
79 F Macedonio, A Criscuoli, L Gzara, M Albeirutty, E Drioli. Water and salts recovery from desalination brines: an exergy evaluation. Journal of Environmental Chemical Engineering, 2021, 9(5): 105884
https://doi.org/10.1016/j.jece.2021.105884
80 E Drioli, E Curcio, G Di Profio, F Macedonio, A Criscuoli. Integrating membrane contactors technology and pressure-driven membrane operations for seawater desalination: energy, exergy and costs analysis. Chemical Engineering Research & Design, 2006, 84(3): 209–220
https://doi.org/10.1205/cherd.05171
81 M Shukuya, A Hammache. Introduction to the concept of exergy-for a better understanding of low-temperature-heating and high-temperature-cooling systems. VTT Technical Research Centre of Finland, VTT Tiedotteita—Research Notes No. 2158, 2002, 1–61
82 A Ali, C A Quist-Jensen, E Drioli, F Macedonio. Evaluation of integrated microfiltration and membrane distillation/crystallization processes for produced water treatment. Desalination, 2018, 434: 161–168
https://doi.org/10.1016/j.desal.2017.11.035
83 R A Tufa, Y Noviello, G Di Profio, F Macedonio, A Ali, E Drioli, E Fontananova, K Bouzek, E Curcio. Integrated membrane distillation-reverse electrodialysis system for energy-efficient seawater desalination. Applied Energy, 2019, 253: 113551
https://doi.org/10.1016/j.apenergy.2019.113551
84 M L Perrotta, G Saielli, G Casella, F Macedonio, L Giorno, E Drioli, A Gugliuzza. An ultrathin suspended hydrophobic porous membrane for high-efficiency water desalination. Applied Materials Today, 2017, 9: 1–9
https://doi.org/10.1016/j.apmt.2017.04.009
85 L Eykens, I Hitsov, K De Sitter, C Dotremont, L Pinoy, I Nopens, B Van der Bruggen. Influence of membrane thickness and process conditions on direct contact membrane distillation at different salinities. Journal of Membrane Science, 2016, 498: 353–364
https://doi.org/10.1016/j.memsci.2015.07.037
86 Y C Woo, L D Tijing, W G Shim, J S Choi, S H Kim, T He, E Drioli, H K Shon. Water desalination using graphene-enhanced electrospun nanofiber membrane via air gap membrane distillation. Journal of Membrane Science, 2016, 520: 99–110
https://doi.org/10.1016/j.memsci.2016.07.049
87 K Celebi, J Buchheim, R M Wyss, A Droudian, P Gasser, I Shorubalko, J I Kye, C Lee, H G Park. Ultimate permeation across atomically thin porous graphene. Science, 2014, 344(6181): 289–292
https://doi.org/10.1126/science.1249097
88 B Mi. Graphene oxide membranes for ionic and molecular sieving. Science, 2014, 343(6172): 740–742
https://doi.org/10.1126/science.1250247
89 S P Surwade, S N Smirnov, I V Vlassiouk, R R Unocic, G M Veith, S Dai, S M Mahurin. Water desalination using nanoporous single-layer graphene. Nature Nanotechnology, 2015, 10(5): 459–464
https://doi.org/10.1038/nnano.2015.37
90 A A Balandin, S Ghosh, W Bao, I Calizo, D Teweldebrhan, F Miao, C N Lau. Superior thermal conductivity of single-layer graphene. Nano Letters, 2008, 8(3): 902–907
https://doi.org/10.1021/nl0731872
91 C Y Ho, R W Powell, P E Liley. Thermal conductivity of the elements. Journal of Physical and Chemical Reference Data, 1972, 1(2): 279–421
https://doi.org/10.1063/1.3253100
92 G Grasso, F Galiano, M J Yoo, R Mancuso, H B Park, B Gabriele, A Figoli, E Drioli. Development of graphene-PVDF composite membranes for membrane distillation. Journal of Membrane Science, 2020, 604: 118017
https://doi.org/10.1016/j.memsci.2020.118017
93 Y C Woo, Y Kim, W G Shim, L D Tijing, M Yao, L D Nghiem, J S Choi, S H Kim, H K Shon. Graphene/PVDF flat-sheet membrane for the treatment of RO brine from coal seam gas produced water by air gap membrane distillation. Journal of Membrane Science, 2016, 513: 74–84
https://doi.org/10.1016/j.memsci.2016.04.014
94 E Gontarek, F Macedonio, F Militano, L Giorno, M Lieder, A Politano, E Drioli, A Gugliuzza. Adsorption-assisted transport of water vapour in super-hydrophobic membranes filled with multilayer graphene platelets. Nanoscale, 2019, 11(24): 11521–11529
https://doi.org/10.1039/C9NR02581B
95 M Frappa, A D Castillo, F Macedonio, A Politano, E Drioli, F Bonaccorso, V Pellegrini, A Gugliuzza. A few-layer graphene for advanced composite PVDF membranes dedicated to water desalination: a comparative study. Nanoscale Advances, 2020, 2(10): 4728–4739
https://doi.org/10.1039/D0NA00403K
96 A Gugliuzza, F Macedonio, A Politano, E Drioli. Prospects of 2D materials-based membranes in water desalination. Chemical Engineering Transactions, 2019, 73: 265–270
97 F Macedonio, A Politano, E Drioli, A Gugliuzza. Bi2Se3-assisted membrane crystallization. Materials Horizons, 2018, 5(5): 912–919
https://doi.org/10.1039/C8MH00612A
98 M Frappa, F Macedonio, A Gugliuzza, W Jin, E Drioli. Performance of PVDF based membrane with 2D materials for Membrane Assisted-Crystallization process. Membranes, 2021, 11(5): 302
https://doi.org/10.3390/membranes11050302
99 T N Krupenkin, J A Taylor, T M Schneider, S Yang. From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces. Langmuir, 2004, 20(10): 3824–3827
https://doi.org/10.1021/la036093q
100 R B Saffarini, B Mansoor, R Thomas, H A Arafat. Effect of temperature-dependent microstructure evolution on pore wetting in PTFE membranes under membrane distillation conditions. Journal of Membrane Science, 2013, 429: 282–294
https://doi.org/10.1016/j.memsci.2012.11.049
101 Y Yin, N Jeong, T Tong. The effects of membrane surface wettability on pore wetting and scaling reversibility associated with mineral scaling in membrane distillation. Journal of Membrane Science, 2020, 614: 118503
https://doi.org/10.1016/j.memsci.2020.118503
102 M Gryta. The application of polypropylene membranes for production of fresh water from brines by membrane distillation. Chemical Papers, 2017, 71(4): 775–784
https://doi.org/10.1007/s11696-016-0059-6
103 S Meng, Y Ye, J Mansouri, V Chen. Fouling and crystallisation behaviour of superhydrophobic nano-composite PVDF membranes in direct contact membrane distillation. Journal of Membrane Science, 2014, 463: 102–112
https://doi.org/10.1016/j.memsci.2014.03.027
104 S Srisurichan, R Jiraratananon, A G Fane. Humic acid fouling in the membrane distillation process. Desalination, 2005, 174(1): 63–72
https://doi.org/10.1016/j.desal.2004.09.003
105 K J Lu, T S Chung. Membrane Distillation: Membranes, Hybrid Systems and Pilot Studies. Boca Raton: CRC Press, 2019, 167–182
106 A Razmjou, E Arifin, G Dong, J Mansouri, V Chen. Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation. Journal of Membrane Science, 2012, 415: 850–863
https://doi.org/10.1016/j.memsci.2012.06.004
107 Z Ma, Y Hong, L Ma, M Su. Superhydrophobic membranes with ordered arrays of nanospiked microchannels for water desalination. Langmuir, 2009, 25(10): 5446–5450
https://doi.org/10.1021/la900494u
108 C Su, T Horseman, H Cao, K Christie, Y Li, S Lin. Robust superhydrophobic membrane for membrane distillation with excellent scaling resistance. Environmental Science & Technology, 2019, 53(20): 11801–11809
https://doi.org/10.1021/acs.est.9b04362
109 S Lin, S Nejati, C Boo, Y Hu, C O Osuji, M Elimelech. Omniphobic membrane for robust membrane distillation. Environmental Science & Technology Letters, 2014, 1(11): 443–447
https://doi.org/10.1021/ez500267p
110 K J Lu, J Zuo, J Chang, H N Kuan, T S Chung. Omniphobic hollow-fiber membranes for vacuum membrane distillation. Environmental Science & Technology, 2018, 52(7): 4472–4480
https://doi.org/10.1021/acs.est.8b00766
111 Y C Woo, Y Chen, L D Tijing, S Phuntsho, T He, J S Choi, S H Kim, H K Shon. CF4 plasma-modified omniphobic electrospun nanofiber membrane for produced water brine treatment by membrane distillation. Journal of Membrane Science, 2017, 529: 234–242
https://doi.org/10.1016/j.memsci.2017.01.063
112 H C Yang, J Hou, V Chen, Z K Xu. Janus membranes: exploring duality for advanced separation. Angewandte Chemie International Edition, 2016, 55(43): 13398–13407
https://doi.org/10.1002/anie.201601589
113 Y Chen, K J Lu, S Japip, T S Chung. Can composite Janus membranes with an ultrathin dense hydrophilic layer resist wetting in membrane distillation? Environmental Science & Technology, 2020, 54(19): 12713–12722
https://doi.org/10.1021/acs.est.0c04242
114 A S Timin, H Gao, D V Voronin, D A Gorin, G B Sukhorukov. Inorganic/organic multilayer capsule composition for improved functionality and external triggering. Advanced Materials Interfaces, 2017, 4(1): 1600338
https://doi.org/10.1002/admi.201600338
115 H Shi, Y He, Y Pan, H Di, G Zeng, L Zhang, C Zhang. A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation. Journal of Membrane Science, 2016, 506: 60–70
https://doi.org/10.1016/j.memsci.2016.01.053
116 L W McKeen. Permeability Properties of Plastics and Elastomers. 3rd ed. Waltham: Elsevier, 2012, 21–37
117 J H Tsai, M L Perrotta, A Gugliuzza, F Macedonio, L Giorno, E Drioli, K L Tung, E Tocci. Membrane-assisted crystallization: a molecular view of NaCl nucleation and growth. Applied Sciences (Basel, Switzerland), 2018, 8(11): 2145
https://doi.org/10.3390/app8112145
118 A Whelan. Polymer Technology Dictionary. 1st ed. London: Springer Science & Business Media, 2012, 341
119 A Bottino, G Capannelli, S Munari, A Turturro. High performance ultrafiltration membranes cast from LiCl doped solutions. Desalination, 1988, 68(2–3): 167–177
https://doi.org/10.1016/0011-9164(88)80052-3
120 A Mansourizadeh, A F Ismail. Effect of LiCl concentration in the polymer dope on the structure and performance of hydrophobic PVDF hollow fiber membranes for CO2 absorption. Chemical Engineering Journal, 2010, 165(3): 980–988
https://doi.org/10.1016/j.cej.2010.10.034
121 S Chen, J Ishii, S Horiuchi, M Yoshizawa-Fujita, E I Izgorodina. Difference in chemical bonding between lithium and sodium salts: influence of covalency on their solubility. Physical Chemistry Chemical Physics, 2017, 19(26): 17366–17372
https://doi.org/10.1039/C7CP03009F
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed