Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2021, Vol. 15 Issue (6): 1427-1443   https://doi.org/10.1007/s11705-021-2108-0
  本期目录
Application of electrode materials and catalysts in electrocatalytic treatment of dye wastewater
Weihang Sun1, Dongfang Liu1(), Minghui Zhang2()
1. College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
2. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
 全文: PDF(691 KB)   HTML
Abstract

The dye industry produces a large amount of hazardous wastewater every day worldwide, which brings potential threaten to the global environment. As an excellent method for removal of water chroma and chemical oxygen demand, electrocatalytic methods are currently widely used in the treatment of dye wastewater. The selection and preparation of electrode materials and electrocatalysts play an important role on the electrocatalytic treatment. The aim of this paper is to introduce the most excellent high-efficiency electrode materials and electrocatalysts in the field of dye wastewater treatment. Many electrode materials such as metal electrode materials, boron-doped diamond anode materials and three-dimensional electrode are introduced in detail. Besides, the mechanism of electrocatalytic oxidation is summarized. The composite treatment of active electrode and electrocatalyst are extensively examined. Finally, the progress of photo-assisted electrocatalytic methods of dye wastewater and the catalysts are described.

Key wordselectrocatalytic oxidation    electrode    electrocatalysis    dye wastewater
收稿日期: 2021-05-23      出版日期: 2021-11-09
Corresponding Author(s): Dongfang Liu,Minghui Zhang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1427-1443.
Weihang Sun, Dongfang Liu, Minghui Zhang. Application of electrode materials and catalysts in electrocatalytic treatment of dye wastewater. Front. Chem. Sci. Eng., 2021, 15(6): 1427-1443.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-021-2108-0
https://academic.hep.com.cn/fcse/CN/Y2021/V15/I6/1427
Fig.1  
Fig.2  
Anode type Targeted dye C0/(mg?dm–3) j/(mA?cm–2) pH Color
decay/%
COD
decay/%
Ref.
Ti/Sb-SnO2/α-PbO2/β-PbO2 Acid red G 200 50 100 50 [96]
Crystal violet 200 50 100 50 [96]
Ti/β-PbO2 (Cylinder) Industrial wastewater 5.6 b) 6 59 [99]
Ce-PbO2/C Acid red B 1000 10 b) 6.5 99.9 90.2 [94]
Ce-PVP/PbO2 Methyl orange 100 50 100 91.8 [98]
Nb/PbO2 Methyl orange 30 50 6 99.6 72.6 [95]
G/β-PbO2 Methylene blue 60 10 5.8 96.4 [93]
SS/SiOx/PbO2 Amaranth 0.015 a) 25 <7 100 84 [97]
Ti-Pt/β-PbO2 Industrial wastewater 75 >7 88 [69]
Tab.1  
Fig.3  
Anode type Targeted dye C0/(mg?dm–3) j/(mA?cm–2) Color
decay/%
COD
decay/%
Ref.
Ti/RuO2-IrO2 RhB 50 40 100 61.7 [103]
Ti/RuO2-Pt Acid orange 7 100 10 100 79.5 [100]
Ti/RuO2-Ta2O5 Reactive blue 4 100 50 100 80 [103]
Reactive orange 16 100 50 100 80 [103]
Ti/nano TiO2/PbO2 Methyl orange 50 50 100 96.6 [101]
Ti/SnO2-Sb-CNT Acid red 73 1.0 a) 50 100 80.1 [102]
Ti/Ru0.3Ti0.7O2 Reactive yellow 145 0.75 a) 10 48.1 [106]
Reactive blue 19 0.75 a) 10 78 [106]
Reactive red 195 0.75 a) 10 75 [106]
Tab.2  
Fig.4  
Fig.5  
Anode type Targeted dye C0/(mg?dm–3) j/(mA?cm–2) Color
decay/%
COD
decay/%
Ref.
Ti/BDD Xylenol orange 200 30 100 79 [117]
Si/BDD Reactive black 5 100 50 99 90 [124]
Nb/BDD Reactive black 5 100 50 99 90 [124]
BDD Crystal violet 250 2.5 100 [116]
BDD Methyl orange 100 31 94 [114]
Si/BDD Acid violet 7 200 15 100 48 [121]
Nb/BDD Acid violet 7 200 15 100 60 [121]
Ti/BDD Domestic wastewater 16.5 89.5 78.2 [119]
Nb/BDD Amaranth 100 30 100 49.1 [123]
3D-BDD Reactive blue 19 400 100 84.5 [120]
Ti/BDD Reactive orange 16 50 75 98 [115]
Ti/BDD Acid yellow 36 20 30 >90 100 [118]
Tab.3  
Fig.6  
Fig.7  
Anode type Targeted dye C0/(mg?dm–3) pH Color
decay/%
COD
decay/%
Ref.
Fe(MoO4)3-Kaolin Xylenol orange 100 4.34 100 92.48 [130]
Foam nickel Reactive black 5 5 6.20 99 [128]
Ni-Ce/OMC Reactive black 5 7.50 93.70 [41]
GAC/ATOT Crystal violet 150 7.00 70.00 [131]
Fe2O3/γ-Al2O3 Methyl orange 600 3.00 77.6 58.60 [133]
Sb-SnO2/ceramic Acid violet 7 67.30 [132]
Tab.4  
1 Y Lu, S Song, R Wang, Z Liu, J Meng, A J Sweetman, A Jenkins, R C Ferrier, H Li, W Luo, T Wang. Impacts of soil and water pollution on food safety and health risks in China. Environment International, 2015, 77: 5–15
https://doi.org/10.1016/j.envint.2014.12.010
2 R P Schwarzenbach, T Egli, T B Hofstetter, U V Gunten, B Wehrli. Global water pollution and human health. Social Science Electronic Publishing, 2010, 35: 109–136
3 R Salazar, E Brillas, I Sirés. Finding the best Fe2+/Cu2+ combination for the solar photoelectro-Fenton treatment of simulated wastewater containing the industrial textile dye disperse blue 3. Applied Catalysis B: Environmental, 2012, 115–116(15): 107–116
https://doi.org/10.1016/j.apcatb.2011.12.026
4 T Robinson, G Mcmullan, R Marchant, P Nigam. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 2001, 77(3): 247–255
https://doi.org/10.1016/S0960-8524(00)00080-8
5 C A Martínez-Huitle, E Brillas. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Applied Catalysis B: Environmental, 2009, 87(3–4): 105–145
https://doi.org/10.1016/j.apcatb.2008.09.017
6 M Solís, A Solís, H I Pérez, N Manjarrez, M Flores. Microbial decolouration of azo dyes: a review. Process Biochemistry, 2012, 47(12): 1723–1748
https://doi.org/10.1016/j.procbio.2012.08.014
7 J Kanagaraj, T Senthilvelan, R C Panda. Degradation of azo dyes by laccase: biological method to reduce pollution load in dye wastewater. Clean Technologies and Environmental Policy, 2014, 17(6): 1443–1456
https://doi.org/10.1007/s10098-014-0869-6
8 A Bafana, S S Devi, T Chakrabarti. Azo dyes: past, present and the future. Environmental Reviews, 2011, 19(NA): 350–370
https://doi.org/10.1139/a11-018
9 D H Kumar Reddy, S M Lee. Water pollution and treatment technologies. Journal of Environmental & Analytical Toxicology, 2012, 2(5): e103
https://doi.org/10.4172/2161-0525.1000e103
10 R L Singh, P K Singh. Bio-removal of azo dyes: a review. International Journal of Applied Sciences and Biotechnology, 2017, 5(2): 108–126
https://doi.org/10.3126/ijasbt.v5i2.16881
11 Q Wang, Z Yang. Industrial water pollution, water environment treatment, and health risks in China. Environmental Pollution, 2016, 218: 358–365
https://doi.org/10.1016/j.envpol.2016.07.011
12 V Katheresan, J Kansedo, S Y Lau. Efficiency of various recent wastewater dye removal methods: a review. Journal of Environmental Chemical Engineering, 2018, 6(4): 4676–4697
https://doi.org/10.1016/j.jece.2018.06.060
13 S Vilhunen, M Sillanp. Recent developments in photochemical and chemical AOPs in water treatment: a mini-review. Reviews in Environmental Science and Biotechnology, 2010, 9(4): 323–330
https://doi.org/10.1007/s11157-010-9216-5
14 F Stüber, J Font, A Fortuny, C Bengoa, A Eftaxias, A Fabregat. Carbon materials and catalytic wet air oxidation of organic pollutants in wastewater. Topics in Catalysis, 2005, 33(1–4): 3–50
https://doi.org/10.1007/s11244-005-2497-1
15 K M Sushma, A K Saroha. Performance of various catalysts on treatment of refractory pollutants in industrial wastewater by catalytic wet air oxidation: a review. Journal of Environmental Management, 2018, 228: 169–188
https://doi.org/10.1016/j.jenvman.2018.09.003
16 P K Holt, G W Barton, C A Mitchell. The future for electrocoagulation as a localised water treatment technology. Chemosphere, 2005, 59(3): 355–367
https://doi.org/10.1016/j.chemosphere.2004.10.023
17 G Chen. Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 2004, 38(1): 11–41
https://doi.org/10.1016/j.seppur.2003.10.006
18 M Y Mollah, P Morkovsky, J A Gomes, M Kesmez, J Parga, D L Cocke. Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, 2004, 114(1–3): 199–210
https://doi.org/10.1016/j.jhazmat.2004.08.009
19 T Sivasankar, V S Moholkar. Mechanistic approach to intensification of sonochemical degradation of phenol. Chemical Engineering Journal Lausanne, 2009, 149(1–3): 57–69
https://doi.org/10.1016/j.cej.2008.10.004
20 T E Agustina, H M Ang, V K Vareek. A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2005, 6(4): 264–273
https://doi.org/10.1016/j.jphotochemrev.2005.12.003
21 J Wang, H Chen. Catalytic ozonation for water and wastewater treatment: recent advances and perspective. Science of the Total Environment, 2020, 704: 135249
https://doi.org/10.1016/j.scitotenv.2019.135249
22 Z G Aguilar, E Brillas, M Salazar, J L Nava, I Sirés. Evidence of Fenton-like reaction with active chlorine during the electrocatalytic oxidation of acid yellow 36 azo dye with Ir-Sn-Sb oxide anode in the presence of iron ion. Applied Catalysis B: Environmental, 2017, 206: 44–52
https://doi.org/10.1016/j.apcatb.2017.01.006
23 N Mohan, N Balasubramanian. In situ electrocatalytic oxidation of acid violet 12 dye effluent. Journal of Hazardous Materials, 2006, 136(2): 239–243
https://doi.org/10.1016/j.jhazmat.2005.11.074
24 A Dhaouadi, L Monser, N Adhoum. Anodic oxidation and electro-Fenton treatment of rotenone. Electrochimica Acta, 2009, 54(19): 4473–4480
https://doi.org/10.1016/j.electacta.2009.03.023
25 Y Y Chu, Y Qian, W J Wang, X L Deng. A dual-cathode electro-Fenton oxidation coupled with anodic oxidation system used for 4-nitrophenol degradation. Journal of Hazardous Materials, 2012, 199–200: 179–185
https://doi.org/10.1016/j.jhazmat.2011.10.079
26 J R Swierk, K P Regan, J Jiang, G W Brudvig, C A Schmuttenmaer. Rutile TiO2 as an anode material for water-splitting dye-sensitized photoelectrochemical cells. American Chemical Society Energy Letters, 2016: 603–606
27 D Sengupta, P Das, B Mondal, K Mukherjee. Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application: a review. Renewable & Sustainable Energy Reviews, 2016, 60: 356–376
https://doi.org/10.1016/j.rser.2016.01.104
28 J Wu, Z He, X Du, C Zhang, D Fu. Electrochemical degradation of acid orange II dye using mixed metal oxide anode: role of supporting electrolytes. Journal of the Taiwan Institute of Chemical Engineers, 2016, 59: 303–310
https://doi.org/10.1016/j.jtice.2015.08.008
29 S Garcia-Segura, E Vieira dos Santos, C A Martínez-Huitle. Role of sp3/sp2 ratio on the electrocatalytic properties of boron-doped diamond electrodes: a mini review. Electrochemistry Communications, 2015, 59: 52–55
https://doi.org/10.1016/j.elecom.2015.07.002
30 O M Cornejo, M F Murrieta, L F Castañeda, J L Nava. Characterization of the reaction environment in flow reactors fitted with BDD electrodes for use in electrochemical advanced oxidation processes: a critical review. Electrochimica Acta, 2020, 331: 135373
https://doi.org/10.1016/j.electacta.2019.135373
31 S O Ganiyu, C Martínez-Huitle. Nature, Mechanisms and reactivity of electrogenerated reactive species at thin-film boron-doped diamond (BDD) electrodes during electrochemical wastewater treatment. ChemElectroChem, 2019, 6(9): 2379–2392
https://doi.org/10.1002/celc.201900159
32 B P Chaplin. Critical review of electrochemical advanced oxidation processes for water treatment applications. Environmental Science. Processes & Impacts, 2014, 16(6): 1182–1203
https://doi.org/10.1039/C3EM00679D
33 J Y Chen, N Li, L Zhao. Three-dimensional electrode microbial fuel cell for hydrogen peroxide synthesis coupled to wastewater treatment. Journal of Power Sources, 2014, 254: 316–322
https://doi.org/10.1016/j.jpowsour.2013.12.114
34 L Wei, S Guo, G Yan, C Chen, X Jiang. Electrochemical pretreatment of heavy oil refinery wastewater using a three-dimensional electrode reactor. Electrochimica Acta, 2010, 55(28): 8615–8620
https://doi.org/10.1016/j.electacta.2010.08.011
35 K Grace Pavithra, P Senthil Kumar, F Carolin Christopher, A Saravanan. Removal of toxic Cr(VI) ions from tannery industrial wastewater using a newly designed three-phase three-dimensional electrode reactor. Journal of Physics and Chemistry of Solids, 2017, 110: 379–385
https://doi.org/10.1016/j.jpcs.2017.07.002
36 Y Xiong, P J Strunk, H Xia, X Zhu, H T Karlsson. Treatment of dye wastewater containing acid orange II using a cell with three-phase three-dimensional electrode. Water Research, 2001, 35(17): 4226–4230
https://doi.org/10.1016/S0043-1354(01)00147-6
37 X Gu, X Lu, J Tian, X Li, B Zhou, X Zheng, J Xu. Degradation of folic acid wastewater by electro-Fenton with three-dimensional electrode and its kinetic study. Royal Society Open Science, 2018, 5(1): 170926
https://doi.org/10.1098/rsos.170926
38 Y Xiong, C He, H T Karlsson, X Zhu. Performance of three-phase three-dimensional electrode reactor for the reduction of COD in simulated wastewater-containing phenol. Chemosphere, 2003, 50(1): 131–136
https://doi.org/10.1016/S0045-6535(02)00609-4
39 C Zhang, Y Jiang, Y Li, Z Hu, L Zhou, M Zhou. Three-dimensional electrochemical process for wastewater treatment: a general review. Chemical Engineering Journal, 2013, 228: 455–467
https://doi.org/10.1016/j.cej.2013.05.033
40 H Z Zhao, Y Sun, L N Xu, J R Ni. Removal of acid orange 7 in simulated wastewater using a three-dimensional electrode reactor: removal mechanisms and dye degradation pathway. Chemosphere, 2010, 78(1): 46–51
https://doi.org/10.1016/j.chemosphere.2009.10.034
41 M Zhang, L Zhang, H Wang, Z Bian. Hybrid electrocatalytic ozonation treatment of high-salinity organic wastewater using Ni-Ce/OMC particle electrodes. Science of the Total Environment, 2020, 724: 138170
https://doi.org/10.1016/j.scitotenv.2020.138170
42 B P Chaplin. Critical review of electrochemical advanced oxidation processes for water treatment applications. Environmental Science. Processes & Impacts, 2014, 16(6): 1182–1203
https://doi.org/10.1039/C3EM00679D
43 M Panizza, G Cerisola. Direct and mediated anodic oxidation of organic pollutants. Chemical Reviews, 2009, 109(12): 6541–6569
https://doi.org/10.1021/cr9001319
44 C A Martinez-Huitle, S Ferro. Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chemical Society Reviews, 2006, 35(12): 1324–1340
https://doi.org/10.1039/B517632H
45 A Uranga-Flores, C de la Rosa-Júarez, S Gutierrez-Granados, D C de Moura, C A Martínez-Huitle, J M Peralta Hernández. Electrochemical promotion of strong oxidants to degrade acid red 211: effect of supporting electrolytes. Journal of Electroanalytical Chemistry, 2015, 738: 84–91
https://doi.org/10.1016/j.jelechem.2014.11.030
46 E Brillas, S I Sire, M A Oturan. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chemical Reviews, 2009, 109(12): 6570–6631
https://doi.org/10.1021/cr900136g
47 V Schaller, C Comninellis. Theoretical model for the anodic oxidation of organics on metal oxide electrodes. Electrochimica Acta, 1997, 42(13–14): 2009–2012
48 M Panizza, C Bocca, G Cerisola. Electrochemical treatment of wastewater containing polyaromatic organic pollutants. Water Research, 2000, 34(9): 2601–2605
https://doi.org/10.1016/S0043-1354(00)00145-7
49 C Comninellis, G P Vercesi. Characterization of DSA-type oxygen evolving electrodes: choice of a coating. Journal of Applied Electrochemistry, 1991, 21(4): 335–345
https://doi.org/10.1007/BF01020219
50 C Araújo, G R Oliveira, N S Fernandes, C Zanta, S Castro, D R da Silva, C Martínez-Huitle. Electrochemical removal of synthetic textile dyes from aqueous solutions using Ti/Pt anode: role of dye structure. Environmental Science and Pollution Research International, 2014, 21(16): 9777–9784
https://doi.org/10.1007/s11356-014-2918-4
51 M Zarei, D Salari, A Niaei, A Khataee. Peroxi-coagulation degradation of C.I. basic yellow 2 based on carbon-PTFE and carbon nanotube-PTFE electrodes as cathode. Electrochimica Acta, 2009, 54(26): 6651–6660
https://doi.org/10.1016/j.electacta.2009.06.060
52 Y Hao, W Ge, Y Liu. Application of electrode materials in the electrocatalytic oxidation of organic wastewater. Chemical Engineering, 2012, (1): 35–37
53 H Särkkä, A Bhatnagar, M Sillanpää. Recent developments of electro-oxidation in water treatment—a review. Journal of Electroanalytical Chemistry, 2015, 754: 46–56
https://doi.org/10.1016/j.jelechem.2015.06.016
54 Y Zhao, D Wang, C Zhao. Research progress of electrode materials for electrocatalytic oxidation treatment of refractory wastewater. Materials Reports, 2019, 33: 1125–1132
https://doi.org/10.3390/ma12071125
55 E Brillas, C A Martínez-Huitle. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 2015, 166–167: 603–643
https://doi.org/10.1016/j.apcatb.2014.11.016
56 S Velazquez-Peña, I Linares-Hernández, V Martínez-Miranda, C Barrera-Díaz, B Bilyeu. Azo dyes as electron transfer mediators in the electrochemical reduction of Cr(VI) using boron-doped diamond electrodes. Fuel, 2013, 110: 12–16
https://doi.org/10.1016/j.fuel.2012.11.019
57 R Bellagamba, C Comninellis, N Vatistas. Direct electrochemical oxidation of polyacrylates. Annali di Chimica, 2002, 92(10): 937
58 B Marselli, J Garcia-Gomez, P A Michaud, M A Rodrigo, C Comninellis. Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. Journal of the Electrochemical Society, 2003, 150(3): D79
https://doi.org/10.1149/1.1553790
59 C K Araujo, G R Oliveira, N S Fernandes, C L Zanta, S S Castro, D R da Silva, C A Martinez-Huitle. Electrochemical removal of synthetic textile dyes from aqueous solutions using Ti/Pt anode: role of dye structure. Environmental Science and Pollution Research International, 2014, 21(16): 9777–9784
https://doi.org/10.1007/s11356-014-2918-4
60 S O Ganiyu, N Oturan, S Raffy, M Cretin, R Esmilaire, E Van Hullebusch, G Esposito, M A Oturan. Sub-stoichiometric titanium oxide (Ti4O7) as a suitable ceramic anode for electrooxidation of organic pollutants: a case study of kinetics, mineralization and toxicity assessment of amoxicillin. Water Research, 2016, 106: 171–182
https://doi.org/10.1016/j.watres.2016.09.056
61 N Oturan, S O Ganiyu, S Raffy, M A Oturan. Sub-stoichiometric titanium oxide as a new anode material for electro-Fenton process: application to electrocatalytic destruction of antibiotic amoxicillin. Applied Catalysis B: Environmental, 2017, 217: 214–223
https://doi.org/10.1016/j.apcatb.2017.05.062
62 P A Michaud, M Panizza, L Ouattara, T Diaco, G Foti, C Comninellis. Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes. Journal of Applied Electrochemistry, 2003, 33(2): 151–154
https://doi.org/10.1023/A:1024084924058
63 H Song, L Yan, J Ma, J Jiang, G Cai, W Zhang, Z Zhang, J Zhang, T Yang. Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: efficiency, mechanism and influencing factors. Water Research, 2017, 116: 182–193
https://doi.org/10.1016/j.watres.2017.03.035
64 M Li, C Feng, Z Zhang, N Sugiura. Efficient electrochemical reduction of nitrate to nitrogen using Ti/IrO2-Pt anode and different cathodes. Electrochimica Acta, 2009, 54(20): 4600–4606
https://doi.org/10.1016/j.electacta.2009.03.064
65 S Stucki, R Kötz, B Carcer, W Suter. Electrochemical waste water treatment using high overvoltage anodes Part II: anode performance and applications. Journal of Applied Electrochemistry, 1991, 21(2): 99–104
https://doi.org/10.1007/BF01464288
66 L Szpyrkowicz, J Naumczyk, F Zilio-Grandi. Electrochemical treatment of tannery wastewater using ja:math and Ti/Pt/Ir electrodes. Water Research, 1995, 29(2): 517–524
https://doi.org/10.1016/0043-1354(94)00176-8
67 E Ntagia, E Fiset, L da Silva Lima, I Pikaar, X Zhang, A W Jeremiasse, A Prevoteau, K Rabaey. Anode materials for sulfide oxidation in alkaline wastewater: an activity and stability performance comparison. Water Research, 2019, 149: 111–119
https://doi.org/10.1016/j.watres.2018.11.004
68 Y Yavuz, A S Koparal, Ü B Öğütveren. Treatment of petroleum refinery wastewater by electrochemical methods. Desalination, 2010, 258(1–3): 201–205
https://doi.org/10.1016/j.desal.2010.03.013
69 J M Aquino, R C Rocha-Filho, L A M Ruotolo, N Bocchi, S R Biaggio. Electrochemical degradation of a real textile wastewater using β-PbO2 and DSA® anodes. Chemical Engineering Journal, 2014, 251: 138–145
https://doi.org/10.1016/j.cej.2014.04.032
70 L Szpyrkowicz, S N Kaul, R N Neti, S Satyanarayan. Influence of anode material on electrochemical oxidation for the treatment of tannery wastewater. Water Research, 2005, 39(8): 1601–1613
https://doi.org/10.1016/j.watres.2005.01.016
71 Y Feng, J Li, X Wang, T Wang, S Li, H Wei, Q Li, E Christensen. Electrocatalytic properties of Ti/Pt-IrO2 anode for oxygen evolution in PEM water electrolysis. International Journal of Hydrogen Energy, 2010, 35(15): 8049–8055
https://doi.org/10.1016/j.ijhydene.2010.01.094
72 F J Recio, P Herrasti, I Sirés, A N Kulak, D V Bavykin, C Ponce-de-León, F C Walsh. The preparation of PbO2 coatings on reticulated vitreous carbon for the electro-oxidation of organic pollutants. Electrochimica Acta, 2011, 56(14): 5158–5165
https://doi.org/10.1016/j.electacta.2011.03.054
73 S Song, J Fan, Z He, L Zhan, Z Liu, J Chen, X Xu. Electrochemical degradation of azo dye C.I. reactive red 195 by anodic oxidation on Ti/SnO2-Sb/PbO2 electrodes. Electrochimica Acta, 2010, 55(11): 3606–3613
https://doi.org/10.1016/j.electacta.2010.01.101
74 H An, H Cui, W Zhang, J Zhai, Y Qian, X Xie, Q Li. Fabrication and electrochemical treatment application of a microstructured TiO2-NTs/Sb-SnO2/PbO2 anode in the degradation of C.I. reactive blue 194 (RB 194). Chemical Engineering Journal, 2012, 209: 86–93
https://doi.org/10.1016/j.cej.2012.07.089
75 Q Li, Q Zhang, H Cui, L Ding, Z Wei, J Zhai. Fabrication of cerium-doped lead dioxide anode with improved electrocatalytic activity and its application for removal of rhodamine B. Chemical Engineering Journal, 2013, 228: 806–814
https://doi.org/10.1016/j.cej.2013.05.064
76 T F Yi, Y R Zhu, W Tao, S Luo, Y Xie, X F Li. Recent advances in the research of MLi2Ti6O14 (M = 2Na, Sr, Ba, Pb) anode materials for Li-ion batteries. Journal of Power Sources, 2018, 399: 26–41
https://doi.org/10.1016/j.jpowsour.2018.07.086
77 C Ahmed Basha, R Saravanathamizhan, V Nandakumar, K Chitra, C W Lee. Copper recovery and simultaneous COD removal from copper phthalocyanine dye effluent using bipolar disc reactor. Chemical Engineering Research & Design, 2013, 91(3): 552–559
https://doi.org/10.1016/j.cherd.2012.11.003
78 B D Soni, J P Ruparelia. Decolourization and mineralization of reactive black-5 with transition metal oxide coated electrodes by electrochemical oxidation. Procedia Engineering, 2013, 51: 335–341
https://doi.org/10.1016/j.proeng.2013.01.046
79 M G Tavares, L Silva, A Solano, J Tonholo, C Martínez-Huitle, C Zanta. Electrochemical oxidation of methyl red using Ti/Ru0.3Ti0.7O2 and Ti/Pt anode. Chemical Engineering Journal, 2012, 204–206: 141–150
https://doi.org/10.1016/j.cej.2012.07.056
80 A I Del Río, J Fernández, J Molina, J Bonastre, F Cases. Electrochemical treatment of a synthetic wastewater containing a sulphonated azo dye. Determination of naphthalenesulphonic compounds produced as main by-products. Desalination, 2011, 273(2–3): 428–435
https://doi.org/10.1016/j.desal.2011.01.070
81 M Zhou, H Särkkä, M Sillanpää. A comparative experimental study on methyl orange degradation by electrochemical oxidation on BDD and MMO electrodes. Separation and Purification Technology, 2011, 78(3): 290–297
https://doi.org/10.1016/j.seppur.2011.02.013
82 E Hmani, Y Samet, R Abdelhédi. Electrochemical degradation of auramine-O dye at boron-doped diamond and lead dioxide electrodes. Diamond and Related Materials, 2012, 30: 1–8
https://doi.org/10.1016/j.diamond.2012.08.003
83 X Bian, Y Xia, T Zhan, L Wang, W Zhou, Q Dai, J Chen. Electrochemical removal of amoxicillin using a Cu doped PbO2 electrode: electrode characterization, operational parameters optimization and degradation mechanism. Chemosphere, 2019, 233: 762–770
https://doi.org/10.1016/j.chemosphere.2019.05.226
84 H Lin, L Hou, H Zhang. Degradation of orange II in aqueous solution by a novel electro/Fe3O4 process. Water Science and Technology, 2013, 68(11): 2441–2447
https://doi.org/10.2166/wst.2013.513
85 C C D O Morais, A J C Da Silva, M B Ferreira, D M De Araújo, C L P S Zanta, S S L Castro. Electrochemical degradation of methyl red using Ti/Ru0.3Ti0.7O2: fragmentation of azo group. Electrocatalysis (New York), 2013, 4(4): 312–319
https://doi.org/10.1007/s12678-013-0166-x
86 R Palani, N Balasubramanian. Electrochemical treatment of methyl orange dye wastewater by rotating disc electrode: optimisation using response surface methodology. Coloration Technology, 2012, 128(6): 434–439
https://doi.org/10.1111/j.1478-4408.2012.00387.x
87 E S Z El-Ashtoukhy, N K Amin, O Abdelwahab. Treatment of paper mill effluents in a batch-stirred electrochemical tank reactor. Chemical Engineering Journal, 2009, 146(2): 205–210
https://doi.org/10.1016/j.cej.2008.05.037
88 M Hamza, S Ammar, R Abdelhédi. Electrochemical oxidation of 1,3,5-trimethoxybenzene in aqueous solutions at gold oxide and lead dioxide electrodes. Electrochimica Acta, 2011, 56(11): 3785–3789
https://doi.org/10.1016/j.electacta.2011.02.051
89 H S Awad, N A Galwa. Electrochemical degradation of acid blue and basic brown dyes on Pb/PbO2 electrode in the presence of different conductive electrolyte and effect of various operating factors. Chemosphere, 2005, 61(9): 1327–1335
https://doi.org/10.1016/j.chemosphere.2005.03.054
90 D Pletcher, F C Walsh. Industrial Electrochemistry. 2nd ed. Bangalore: Macmillan Ltd., 2012, 548–549
91 X Li, D Pletcher, F C Walsh. Electrodeposited lead dioxide coatings. Chemical Society Reviews, 2011, 40(7): 3879–3889
https://doi.org/10.1039/c0cs00213e
92 M Weng, Z Zhou, Q Zhang. Electrochemical degradation of typical dyeing wastewater in aqueous solution: performance and mechanism. International Journal of Electrochemical Science, 2013, 8: 290–296
93 M R Samarghandi, A Dargahi, A Shabanloo, H Z Nasab, Y Vaziri, A Ansari. Electrochemical degradation of methylene blue dye using a graphite doped PbO2 anode: optimization of operational parameters, degradation pathway and improving the biodegradability of textile wastewater. Arabian Journal of Chemistry, 2020, 13(8): 6847–6864
https://doi.org/10.1016/j.arabjc.2020.06.038
94 X Hu, Y Yu, L Yang. Electrocatalytic activity of Ce-PbO2/C anode for acid red B reduction in aqueous solution. Journal of Solid State Electrochemistry, 2015, 19(6): 1599–1609
https://doi.org/10.1007/s10008-015-2781-3
95 H Yang, J Liang, Z Li, Z Liang. Electrochemical oxidation degradation of methyl orange wastewater by Nb/PbO2 electrode. International Journal of Electrochemical Science, 2016, 11(2): 1121–1134
96 J Lei, Z Xu, H Xu, D Qiao, Y Wang. Pulsed electrochemical oxidation of acid red G and crystal violet by PbO2 anode. Journal of Environmental Chemical Engineering, 2020, 8(3): 103773
https://doi.org/10.1016/j.jece.2020.103773
97 I Elaissaoui, H Akrout, S Grassini, D Fulginiti, L Bousselmi. Effect of coating method on the structure and properties of a novel PbO2 anode for electrochemical oxidation of Amaranth dye. Chemosphere, 2018, 217: 26–34
https://doi.org/10.1016/j.chemosphere.2018.10.161
98 Y Jin, F Wang, M Xu, Y Hun, W Fang, Y Wei, C Zhu. Preparation and characterization of Ce and PVP co-doped PbO2 electrode for waste water treatment. Journal of the Taiwan Institute of Chemical Engineers, 2015, 51: 135–142
https://doi.org/10.1016/j.jtice.2015.01.017
99 A Mukimin, H Vistanty, N Zen. Oxidation of textile wastewater using cylinder Ti/β-PbO2 electrode in electrocatalytic tube reactor. Chemical Engineering Journal, 2015, 259: 430–437
https://doi.org/10.1016/j.cej.2014.08.020
100 Z Feng, C Feng, W Li, J Cui. Indirect electrochemical oxidation of dye wastewater containing acid orange 7 using Ti/RuO2-Pt Electrode. International Journal of Electrochemical Science, 2014, 9(2): 943–954
101 M Xu, Z Wang, F Wang, P Hong, C Wang, X Ouyang, C Zhu, Y Wei, Y Hun, W Fang. Fabrication of cerium doped Ti/nanoTiO2/PbO2 electrode with improved electrocatalytic activity and its application in organic degradation. Electrochimica Acta, 2016, 201: 240–250
https://doi.org/10.1016/j.electacta.2016.03.168
102 E Isarain-Chávez, M D Baró, E Rossinyol, U Morales-Ortiz, J Sort, E Brillas, E Pellicer. Comparative electrochemical oxidation of methyl orange azo dye using Ti/Ir-Pb, Ti/Ir-Sn, Ti/Ru-Pb, Ti/Pt-Pd and Ti/RuO2 anodes. Electrochimica Acta, 2017, 244: 199–208
https://doi.org/10.1016/j.electacta.2017.05.101
103 A Baddouh, G G Bessegato, M M Rguiti, B El Ibrahimi, L Bazzi, M Hilali, M V B Zanoni. Electrochemical decolorization of rhodamine B dye: influence of anode material, chloride concentration and current density. Journal of Environmental Chemical Engineering, 2018, 6(2): 2041–2047
https://doi.org/10.1016/j.jece.2018.03.007
104 R Silva, S A Neto, A Andrade. Electrochemical degradation of reactive dyes at different DSA compositions. Journal of the Brazilian Chemical Society, 2011, 22(1): 126–133
https://doi.org/10.1590/S0103-50532011000100017
105 A Baddouh, B El Ibrahimi, E Amaterz, M M Rguiti, L Bazzi, M Hilali. Removal of the rhodamine B dye at Ti/Ru0.3Ti0.7O2 anode using flow cell system. Journal of Chemistry, 2019, 2019: 1–10
https://doi.org/10.1155/2019/1424797
106 D H S Santos, J L S Duarte, M G R Tavares, M G Tavares, L C Friedrich, L Meili, W R O Pimentel, J Tonholo, C L P S Zanta. Electrochemical degradation and toxicity evaluation of reactive dyes mixture and real textile effluent over DSA electrodes. Chemical Engineering and Processing, 2020, 153: 107940
https://doi.org/10.1016/j.cep.2020.107940
107 R Faridayunus, Y M Zheng, K G N Nanayakkara, J P Chen. Electrochemical removal of rhodamine 6G by using RuO2 coated Ti DSA. Industrial & Engineering Chemistry Research, 2009, 48(16): 7466–7473
https://doi.org/10.1021/ie801719b
108 N Wächter, G F Pereira, R C Rocha-Filho, N Bocchi, S R Biaggio. Comparative electrochemical degradation of the acid yellow 49 dye using boron-doped diamond, beta-PbO2, and DSA (R) anodes in a flow reactor. International Journal of Electrochemical Science, 2014, 10: 1361–1371
109 M E K Saad, N Rabaaoui, E Elaloui, Y Moussaoui. Mineralization of p-methylphenol in aqueous medium by anodic oxidation with a boron-doped diamond electrode. Separation and Purification Technology, 2016, 171: 157–163
https://doi.org/10.1016/j.seppur.2016.07.018
110 C A Martínez-Huitle, E V dos Santos, D M de Araújo, M Panizza. Applicability of diamond electrode/anode to the electrochemical treatment of a real textile effluent. Journal of Electroanalytical Chemistry, 2012, 674: 103–107
https://doi.org/10.1016/j.jelechem.2012.02.005
111 C Li, M Zhang, C Song, P Tao, M Sun, M Shao, T Wang. Enhanced treatment ability of membrane technology by integrating an electric field for dye wastewater treatment: a review. Journal of AOAC International, 2018, 101(5): 1341–1352
https://doi.org/10.5740/jaoacint.18-0050
112 E Chatzisymeon, N P Xekoukoulotakis, E Diamadopoulos, A Katsaounis, D Mantzavinos. Boron-doped diamond anodic treatment of olive mill wastewaters: statistical analysis, kinetic modeling and biodegradability. Water Research, 2009, 43(16): 3999–4009
https://doi.org/10.1016/j.watres.2009.04.007
113 A Anglada, A Urtiaga, I Ortiz, D Mantzavinos, E Diamadopoulos. Boron-doped diamond anodic treatment of landfill leachate: evaluation of operating variables and formation of oxidation by-products. Water Research, 2011, 45(2): 828–838
https://doi.org/10.1016/j.watres.2010.09.017
114 C Ramírez, A Saldaña, B Hernández, R Acero, R Guerra, S Garcia-Segura, E Brillas, J M Peralta-Hernández. Electrochemical oxidation of methyl orange azo dye at pilot flow plant using BDD technology. Journal of Industrial and Engineering Chemistry, 2013, 19(2): 571–579
https://doi.org/10.1016/j.jiec.2012.09.010
115 F L Migliorini, N A Braga, S A Alves, M R Lanza, M R Baldan, N G Ferreira. Anodic oxidation of wastewater containing the reactive orange 16 Dye using heavily boron-doped diamond electrodes. Journal of Hazardous Materials, 2011, 192(3): 1683–1689
https://doi.org/10.1016/j.jhazmat.2011.07.007
116 R E Palma-Goyes, F L Guzman-Duque, G Penuela, I Gonzalez, J L Nava, R A Torres-Palma. Electrochemical degradation of crystal violet with BDD electrodes: effect of electrochemical parameters and identification of organic by-products. Chemosphere, 2010, 81(1): 26–32
https://doi.org/10.1016/j.chemosphere.2010.07.020
117 Y He, X Wang, W Huang, R Chen, H Lin, H Li. Application of porous boron-doped diamond electrode towards electrochemical mineralization of triphenylmethane dye. Journal of Electroanalytical Chemistry, 2016, 775: 292–298
https://doi.org/10.1016/j.jelechem.2016.06.023
118 Y Juang, E Nurhayati, C Huang, J R Pan, S Huang. A hybrid electrochemical advanced oxidation/microfiltration system using BDD/Ti anode for acid yellow 36 dye wastewater treatment. Separation and Purification Technology, 2013, 120: 289–295
https://doi.org/10.1016/j.seppur.2013.09.042
119 R Daghrir, P Drogui, J Tshibangu. Efficient treatment of domestic wastewater by electrochemical oxidation process using bored doped diamond anode. Separation and Purification Technology, 2014, 131: 79–83
https://doi.org/10.1016/j.seppur.2014.04.048
120 R Mei, Q Wei, C Zhu, W Ye, B Zhou, L Ma, Z Yu, K Zhou. 3D macroporous boron-doped diamond electrode with interconnected liquid flow channels: a high-efficiency electrochemical degradation of RB-19 dye wastewater under low current. Applied Catalysis B: Environmental, 2019, 245: 420–427
https://doi.org/10.1016/j.apcatb.2018.12.074
121 C N Brito, M B Ferreira, S M L de O. Marcionilio, E C M de Moura Santos, J J L Léon, S O Ganiyu, C A Martínez-Huitle. Electrochemical oxidation of acid violet 7 dye by using Si/BDD and Nb/BDD electrodes. Journal of the Electrochemical Society, 2018, 165(5): E250–E255
https://doi.org/10.1149/2.1111805jes
122 C N Brito, M B Ferreira, E C M de Moura Santos, J J L Léon, S O Ganiyu, C A Martínez-Huitle. Electrochemical degradation of azo-dye acid violet 7 using BDD anode: effect of flow reactor configuration on cell hydrodynamics and dye removal efficiency. Journal of Applied Electrochemistry, 2018, 48(12): 1321–1330
https://doi.org/10.1007/s10800-018-1257-4
123 A S Fajardo, R C Martins, C A Martínez-Huitle, R M Quinta-Ferreira. Treatment of Amaranth dye in aqueous solution by using one cell or two cells in series with active and non-active anodes. Electrochimica Acta, 2016, 210: 96–104
https://doi.org/10.1016/j.electacta.2016.05.102
124 B D Soni, U D Patel, A Agrawal, J P Ruparelia. Application of BDD and DSA electrodes for the removal of RB 5 in batch and continuous operation. Journal of Water Process Engineering, 2017, 17: 11–21
https://doi.org/10.1016/j.jwpe.2017.01.009
125 R Bogdanowicz, A Fabiańska, L Golunski, M Sobaszek, M Gnyba, J Ryl, K Darowicki, T Ossowski, S D Janssens, K Haenen, et al.Influence of the boron doping level on the electrochemical oxidation of the azo dyes at Si/BDD thin film electrodes. Diamond and Related Materials, 2013, 39: 82–88
https://doi.org/10.1016/j.diamond.2013.08.004
126 J E L Santos, D R da Silva, C A Martínez-Huitle, E V dos Santos, M A Quiroz. Cathodic hydrogen production by simultaneous oxidation of methyl red and 2, 4-dichlorophenoxyacetate aqueous solutions using Pb/PbO2, Ti/Sb-doped SnO2 and Si/BDD anodes. Part 1: electrochemical oxidation. Royal Society of Chemistry Advances, 2020, 10(62): 37695–37706
https://doi.org/10.1039/D0RA03955A
127 C Zhu, C Jiang, S Chen, R Mei, X Wang, J Cao, L Ma, B Zhou, Q Wei, G Ouyang, et al.Ultrasound enhanced electrochemical oxidation of alizarin red S on boron doped diamond (BDD) anode:effect of degradation process parameters. Chemosphere, 2018, 209: 685–695
https://doi.org/10.1016/j.chemosphere.2018.06.137
128 W Liu, Z Ai, L Zhang. Design of a neutral three-dimensional electro-Fenton system with foam nickel as particle electrodes for wastewater treatment. Journal of Hazardous Materials, 2012, 243: 257–264
https://doi.org/10.1016/j.jhazmat.2012.10.024
129 Y Liu, Z Yu, Y Hou, Z Peng, L Wang. Highly efficient Pd-Fe/Ni foam as heterogeneous Fenton catalysts for the three-dimensional electrode system. Catalysis Communications, 2016, 86: 63–66
https://doi.org/10.1016/j.jhazmat.2012.10.024
130 W He, Q Ma, J Wang, J Yu, W Bao, H Ma, A Amrane. Preparation of novel kaolin-based particle electrodes for treating methyl orange wastewater. Applied Clay Science, 2014, 99: 178–186
https://doi.org/10.1016/j.clay.2014.06.030
131 X Li, Y Wu, W Zhu, F Xue, Y Qian, C Wang. Enhanced electrochemical oxidation of synthetic dyeing wastewater using SnO2-Sb-doped TiO2-coated granular activated carbon electrodes with high hydroxyl radical yields. Electrochimica Acta, 2016, 220: 276–284
https://doi.org/10.1016/j.electacta.2016.09.109
132 J Wei, Y Feng, J Liu, L Zhu. Preparation and electrocatalytic characteristics of ceramic ring particle electrodes loaded with Sb roped SnO2. Journal of the Chinese Ceramic Society, 2011, 39(5): 799–805
133 L Yue, K Wang, J Guo, J Yang, X Luo, J Lian, L Wang. Enhanced electrochemical oxidation of dye wastewater with Fe2O3 supported catalyst. Journal of Industrial and Engineering Chemistry, 2014, 20(2): 725–731
https://doi.org/10.1016/j.jiec.2013.06.001
134 Z M Shen, D Wu, J Yang, T Yuan, W H Wang, J P Jia. Methods to improve electrochemical treatment effect of dye wastewater. Journal of Hazardous Materials, 2006, 131(1–3): 90–97
https://doi.org/10.1016/j.jhazmat.2005.09.010
135 K Esquivel, L G Arriaga, F J Rodriguez, L Martinez, L A Godinez. Development of a TiO2 modified optical fiber electrode and its incorporation into a photoelectrochemical reactor for wastewater treatment. Water Research, 2009, 43(14): 3593–3603
https://doi.org/10.1016/j.watres.2009.05.035
136 G G Bessegato, L C de Almeida, S L C Ferreira, M V B Zanoni. Experimental design as a tool for parameter optimization of photoelectrocatalytic degradation of a textile dye. Journal of Environmental Chemical Engineering, 2019, 7(4): 103264
https://doi.org/10.1016/j.jece.2019.103264
137 G Pan, X Jing, X Ding, Y Shen, S Xu, W Miao. Synergistic effects of photocatalytic and electrocatalytic oxidation based on a three-dimensional electrode reactor toward degradation of dyes in wastewater. Journal of Alloys and Compounds, 2019, 809: 151749
https://doi.org/10.1016/j.jallcom.2019.151749
138 A M S Solano, S Garcia-Segura, C A Martínez-Huitle, E Brillas. Degradation of acidic aqueous solutions of the diazo dye congo red by photo-assisted electrochemical processes based on Fenton’s reaction chemistry. Applied Catalysis B: Environmental, 2015, 168–169: 559–571
https://doi.org/10.1016/j.apcatb.2015.01.019
139 E H Umukoro, M G Peleyeju, J C Ngila, O A Arotiba. Towards wastewater treatment: photo-assisted electrochemical degradation of nitrophenol and orange II dye at a tungsten trioxide-exfoliated graphite composite electrode. Chemical Engineering Journal, 2017, 317: 290–301
https://doi.org/10.1016/j.cej.2017.02.084
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed