Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2022, Vol. 16 Issue (5): 564-591   https://doi.org/10.1007/s11705-021-2109-z
  本期目录
Surface-tailoring chlorine resistant materials and strategies for polyamide thin film composite reverse osmosis membranes
Pei Sean Goh(), Kar Chun Wong, Tuck Whye Wong, Ahmad Fauzi Ismail()
Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
 全文: PDF(5186 KB)   HTML
Abstract

Polyamide thin film composite membranes have dominated current reverse osmosis market on account of their excellent separation performances compared to the integrally skinned counterparts. Despite their very promising separation performance, chlorine-induced degradation resulted from the susceptibility of polyamide toward chlorine attack has been regarded as the Achilles’s heel of polyamide thin film composite. The free chlorine species present during chlorine treatment can impair membrane performance through chlorination and depolymerization of the polyamide selective layer. From material point of view, a chemically stable membrane is crucial for the sustainable application of membrane separation process as it warrants a longer membrane lifespan and reduces the cost involved in membrane replacement. Various strategies, particularly those involved membrane material optimization and surface modifications, have been established to address this issue. This review discusses membrane degradation by free chlorine attack and its correlation with the surface chemistry of polyamide. The advancement in the development of chlorine resistant polyamide thin film composite membranes is reviewed based on the state-of-the-art surface modifications and tailoring approaches which include the in situ and post-fabrication membrane modifications using a broad range of functional materials. The challenges and future directions in this field are also highlighted.

Key wordsreverse osmosis    polyamide    thin film composite membranes    chlorine resistance    surface modification
收稿日期: 2021-04-15      出版日期: 2022-03-28
Corresponding Author(s): Pei Sean Goh,Ahmad Fauzi Ismail   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2022, 16(5): 564-591.
Pei Sean Goh, Kar Chun Wong, Tuck Whye Wong, Ahmad Fauzi Ismail. Surface-tailoring chlorine resistant materials and strategies for polyamide thin film composite reverse osmosis membranes. Front. Chem. Sci. Eng., 2022, 16(5): 564-591.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-021-2109-z
https://academic.hep.com.cn/fcse/CN/Y2022/V16/I5/564
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Chlorine resistant materials Approach Chlorination condition Chlorine resistance indicators a) Ref.
Modified TFC Neat TFC
P(ADMH-co-Vam) Grafting NaClO, 2000 ppm, pH 7.5, 1 h Normalized R: 0.65
Normalized P: 1.00
Normalized R: 0.29
Normalized P: 0.99
[119]
MPEG Grafting NaClO, 42000 ppm, pH 9 R: 99.1% to 97.9% R: 98.8% to 87.6%
P: 3.56 to 8.29
[122]
PEGDA Grafting NaClO, 1200 ppm, pH 1, 1 h R:96.8% to 95.9%
P:2.42 to 2.10
R: 90.5% to 83.1%
P: 2.54 to 1.01
[124]
TA Grafting NaClO, 500 ppm, pH 7, 8 h R: 98.8% to 98.7% R: 99.4% to 98.2% [125]
TA/PEI/Fe Coating NaClO, 2500 ppm, pH 8, 1 h R: 99.0%
P: 5.32
P: 4.19 [126]
Gly Grafting NaClO, 500 ppm, pH 4, 3 cycles Normalized R: 0.99 Normalized R: 0.92 [128]
ε-Poly-l-lysine Grafting NaClO, 500 ppm, pH 4, 6 h Normalized R: 0.99 Normalized R: 0.95 [129]
PAMAM Ontology doping NaClO, 12000 ppm, pH 9, 24 h R: 96.6% to 96.9%
P: 1.95 to 3.25
R: 98.6% to 97.3%
P: 0.81 to 1.76
[132]
PAMAM Grafting NaClO, 1000 ppm, pH 7, 1 h R: 95.2% to 94.1%
P: 2.15 to 0.84
R: 96.1% to 92.3%
P: 2.3 to 0.52
[133]
GO Ontology doping NaClO, 1000 ppm, pH 7, 1 h R: 98.7% to 98.5%
P: 1.59 to 1.82
R: 97.9% to 97.5%
P: 0.86 to 1.17
[137]
GO Grafting NaClO, 1000 ppm, pH 7, 15 h R: 97.1% to 96.1%
P: 2.49 to 5.78
R: 96.0% to 92.8%
P: 3.34 to 10.67
[142]
GO Coating NaClO, 6000 ppm, pH 11, 16 h R: ca. 95% b) to 75% R: ca. 95.0% b) to 63% [141]
GO Coating NaClO, 2000 ppm, 1 h R: 92.5% to 79.3%
P: 0.46 to 1.26
R: 89.3% to 53.6%
P: 0.49 to 1.62
[143]
GOQD Grafting NaClO, 1000 ppm, pH 7, 160 h R: 96.3% to 92%
P: 2.4 to 2.6
R: 94.1% to 77.6% [144]
g-C3N4 nanosheet Ontology doping NaClO, 1000 ppm, pH 7, 24 h R: 98.6% to 95.6% R: negligible change (>97%) [145]
Oxidized g-C3N4 Ontology doping NaClO, 1000 ppm, pH 7, 40 h R: 98.0% to 83% R: 98.4% to 71.7% [148]
CNF Ontology doping NaClO, 2000 ppm, pH 4, 3 h R: 96.2% to ca. 93% b) R: 91% to 73% [135]
LA Grafting NaClO, 1000 ppm, pH 4, 8 h R: 98.9% to 98.2%
P: 2.61 to 2.16
[150]
Tab.1  
1 R Bain, R Johnston, T Slaymaker. Drinking water quality and the SDGs. NPJ Clean Water, 2020, 3(1): 37
https://doi.org/10.1038/s41545-020-00085-z
2 S Kirschke, D Barrington, J Tingey-holyoak. Decade of action on SDG 6. One Earth, 2020, 2(3): 199–200
https://doi.org/10.1016/j.oneear.2020.02.013
3 H Qi, S Zeng, L Shi, X Dong. What the reclaimed water use can change: from a perspective of inter-provincial virtual water network. Journal of Environmental Management, 2021, 287: 112350
https://doi.org/10.1016/j.jenvman.2021.112350
4 J Hristov, J Barreiro-Hurle, G Salputra, M Blanco, P Witzke. Reuse of treated water in European agriculture: potential to address water scarcity under climate change. Agricultural Water Management, 2021, 251: 106872
https://doi.org/10.1016/j.agwat.2021.106872
5 C Skuse, A Gallego-Schmid, A Azapagic, P Gorgojo. Can emerging membrane-based desalination technologies replace reverse osmosis? Desalination, 2021, 500: 114844
https://doi.org/10.1016/j.desal.2020.114844
6 M Qasim, M Badrelzaman, N N Darwish, N A Darwish, N Hilal. Reverse osmosis desalination: a state-of-the-art review. Desalination, 2019, 459: 59–104
https://doi.org/10.1016/j.desal.2019.02.008
7 I G Wenten, Khoiruddin. Reverse osmosis applications: prospect and challenges. Desalination, 2016, 391: 112–125
https://doi.org/10.1016/j.desal.2015.12.011
8 E Obotey Ezugbe, S Rathilal. Membrane technologies in wastewater treatment: a review. Membranes, 2020, 10(5): 89
https://doi.org/10.3390/membranes10050089
9 Z Yang, Y Zhou, Z Feng, X Rui, T Zhang, Z Zhang. A review on reverse osmosis and nanofiltration membranes for water purification. Polymers, 2019, 11(8): 1–22
https://doi.org/10.3390/polym11081252
10 S Zhao, Z Liao, A Fane, J Li, C Tang, C Zheng, J Lin, L Kong. Engineering antifouling reverse osmosis membranes: a review. Desalination, 2021, 499: 114857
https://doi.org/10.1016/j.desal.2020.114857
11 N K Khanzada, M U Farid, J A Kharraz, J Choi, C Y Tang, L D Nghiem, A Jang, A K An. Removal of organic micropollutants using advanced membrane-based water and wastewater treatment: a review. Journal of Membrane Science, 2020, 598: 117672
https://doi.org/10.1016/j.memsci.2019.117672
12 K Park, J Kim, D R Yang, S Hong. Towards a low-energy seawater reverse osmosis desalination plant: a review and theoretical analysis for future directions. Journal of Membrane Science, 2020, 595: 117607
https://doi.org/10.1016/j.memsci.2019.117607
13 M Q Seah, W J Lau, P S Goh, H H Tseng, R A Wahab, A F Ismail. Progress of interfacial iolymerization techniques for polyamide thin film (nano)composite membrane fabrication: a comprehensive review. Polymers, 2020, 12(12): 2817
https://doi.org/10.3390/polym12122817
14 R Dai, J Li, Z Wang. Constructing interlayer to tailor structure and performance of thin-film composite polyamide membranes: a review. Advances in Colloid and Interface Science, 2020, 282: 2–17
https://doi.org/10.1016/j.cis.2020.102204
15 D L Zhao, S Japip, Y Zhang, M Weber, C Maletzko, T S Chung. Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: a review. Water Research, 2020, 173: 115557
https://doi.org/10.1016/j.watres.2020.115557
16 J Li, M Wei, Y Wang. Substrate matters: the influences of substrate layers on the performances of thin-film composite reverse osmosis membranes. Chinese Journal of Chemical Engineering, 2017, 25(11): 1676–1684
https://doi.org/10.1016/j.cjche.2017.05.006
17 P Karami, B Khorshidi, M McGregor, J T Peichel, J B P Soares, M Sadrzadeh. Thermally stable thin film composite polymeric membranes for water treatment: a review. Journal of Cleaner Production, 2020, 250: 119447
https://doi.org/10.1016/j.jclepro.2019.119447
18 A F Ismail, M Padaki, N Hilal, T Matsuura, W J Lau. Thin film composite membrane—recent development and future potential. Desalination, 2015, 356: 140–148
https://doi.org/10.1016/j.desal.2014.10.042
19 S Habib, S T Weinman. A review on the synthesis of fully aromatic polyamide reverse osmosis membranes. Desalination, 2021, 502: 114939
https://doi.org/10.1016/j.desal.2021.114939
20 T A Otitoju, R A Saari, A L Ahmad. Progress in the modification of reverse osmosis (RO) membranes for enhanced performance. Journal of Industrial and Engineering Chemistry, 2018, 67: 52–71
https://doi.org/10.1016/j.jiec.2018.07.010
21 Y Yu, S Lee, S Hong. Effect of solution chemistry on organic fouling of reverse osmosis membranes in seawater desalination. Journal of Membrane Science, 2010, 351(1–2): 205–213
https://doi.org/10.1016/j.memsci.2010.01.051
22 M Bagheri, S A Mirbagheri. Critical review of fouling mitigation strategies in membrane bioreactors treating water and wastewater. Bioresource Technology, 2018, 258: 318–334
https://doi.org/10.1016/j.biortech.2018.03.026
23 S Jiang, Y Li, B P B P Ladewig. A review of reverse osmosis membrane fouling and control strategies. Science of the Total Environment, 2017, 595: 567–583
https://doi.org/10.1016/j.scitotenv.2017.03.235
24 R A Al-Juboori, T Yusaf. Biofouling in RO system: mechanisms, monitoring and controlling. Desalination, 2012, 302: 1–23
https://doi.org/10.1016/j.desal.2012.06.016
25 S P Nunes. Can fouling in membranes be ever defeated? Current Opinion in Chemical Engineering, 2020, 28: 90–95
https://doi.org/10.1016/j.coche.2020.03.006
26 P S Goh, W J Lau, M H D Othman, A F Ismail. Membrane fouling in desalination and its mitigation strategies. Desalination, 2018, 425: 130–155
https://doi.org/10.1016/j.desal.2017.10.018
27 J Kavitha, M Rajalakshmi, A R Phani, M Padaki. Pretreatment processes for seawater reverse osmosis desalination systems—a review. Journal of Water Process Engineering, 2019, 32: 100926
https://doi.org/10.1016/j.jwpe.2019.100926
28 W Yu, D Song, W Chen, H Yang. Antiscalants in RO membrane scaling control. Water Research, 2020, 183: 115985
https://doi.org/10.1016/j.watres.2020.115985
29 Y H Cai, N Galili, Y Gelman, M Herzberg, J Gilron. Evaluating the impact of pretreatment processes on fouling of reverse osmosis membrane by secondary wastewater. Journal of Membrane Science, 2021, 623: 119054
https://doi.org/10.1016/j.memsci.2021.119054
30 H Winters. Twenty years experience in seawater reverse osmosis and how chemicals in pretreatment affect fouling of membranes. Desalination, 1997, 110(1–2): 93–96
https://doi.org/10.1016/S0011-9164(97)00088-X
31 I M Stoica, E Vitzilaiou, H Lyng Røder, M Burmølle, D Thaysen, S Knøchel, F van den Berg. Biofouling on RO-membranes used for water recovery in the dairy industry. Journal of Water Process Engineering, 2018, 24: 1–10
https://doi.org/10.1016/j.jwpe.2018.05.004
32 H C Flemming. Biofouling and me: my Stockholm syndrome with biofilms. Water Research, 2020, 173: 115576
https://doi.org/10.1016/j.watres.2020.115576
33 T Fujioka, M T T Ngo, S Boivin, K Kawahara, A Takada, Y Nakamura, H Yoshikawa. Controlling biofouling and disinfection by-product formation during reverse osmosis treatment for seawater desalination. Desalination, 2020, 488: 114507
https://doi.org/10.1016/j.desal.2020.114507
34 J Yu, Y Baek, H Yoon, J Yoon. New disinfectant to control biofouling of polyamide reverse osmosis membrane. Journal of Membrane Science, 2013, 427: 30–36
https://doi.org/10.1016/j.memsci.2012.09.057
35 M Al-Abri, B Al-Ghafri, T Bora, S Dobretsov, J Dutta, S Castelletto, L Rosa, A Boretti. Chlorination disadvantages and alternative routes for biofouling control in reverse osmosis desalination. npj Clean Water, 2019, 2(1): 2
36 Y H Wang, Y H Wu, X Tong, T Yu, L Peng, Y Bai, X H Zhao, Z Y Huo, N Ikuno, H Y Hu. Chlorine disinfection significantly aggravated the biofouling of reverse osmosis membrane used for municipal wastewater reclamation. Water Research, 2019, 154: 246–257
https://doi.org/10.1016/j.watres.2019.02.008
37 K Lequette, N Ait-Mouheb, N Adam, M Muffat-Jeandet, V Bru-Adan, N Wéry. Effects of the chlorination and pressure flushing of drippers fed by reclaimed wastewater on biofouling. Science of the Total Environment, 2021, 758: 143598
https://doi.org/10.1016/j.scitotenv.2020.143598
38 Y Yao, X Zhang. Chlorine resistant reverse osmosis membrane: a call for reform of desalination treatment processes. Desalination, 2021, 501: 114907
https://doi.org/10.1016/j.desal.2020.114907
39 J Glater, S Hong, M Elimelech. The search for a chlorine-resistant reverse osmosis membrane. Desalination, 1994, 95(3): 325–345
https://doi.org/10.1016/0011-9164(94)00068-9
40 J Xu, Z Wang, L Yu, J Wang, S Wang. A novel reverse osmosis membrane with regenerable anti-biofouling and chlorine resistant properties. Journal of Membrane Science, 2013, 435: 80–91
https://doi.org/10.1016/j.memsci.2013.02.010
41 S P Chesters, N Pena, S Gallego, M Fazel, M W Armstrong, F del Vigo. Results from 99 seawater RO membrane autopsies. IDA Journal of Desalination and Water Reuse, 2013, 5(1): 40–47
https://doi.org/10.1179/2051645213Y.0000000006
42 J Landaburu-Aguirre, R García-Pacheco, S Molina, L Rodríguez-Sáez, J Rabadán, E García-Calvo. Fouling prevention, preparing for re-use and membrane recycling. Towards circular economy in RO desalination. Desalination, 2016, 393: 16–30
https://doi.org/10.1016/j.desal.2016.04.002
43 I C Tessaro, J B A da Silva, K Wada. Investigation of some aspects related to the degradation of polyamide membranes: aqueous chlorine oxidation catalyzed by aluminum and sodium laurel sulfate oxidation during cleaning. Desalination, 2005, 181(1–3): 275–282
https://doi.org/10.1016/j.desal.2005.04.008
44 M Kim, M Kim, B Park, S Kim. Changes in characteristics of polyamide reverse osmosis membrane due to chlorine attack. Desalination and Water Treatment, 2015, 54(4–5): 923–928
https://doi.org/10.1080/19443994.2014.912161
45 S P Hong, I C Kim, T Tak, Y N Kwon. Interfacially synthesized chlorine-resistant polyimide thin film composite (TFC) reverse osmosis (RO) membranes. Desalination, 2013, 309: 18–26
https://doi.org/10.1016/j.desal.2012.09.025
46 Y N Kwon, J O Leckie. Hypochlorite degradation of crosslinked polyamide membranes. I. Changes in chemical/morphological properties. Journal of Membrane Science, 2006, 283(1–2): 21–26
https://doi.org/10.1016/j.memsci.2006.06.008
47 V T Do, C Y Tang, M Reinhard, J O Leckie. Effects of chlorine exposure conditions on physiochemical properties and performance of a polyamide membrane-mechanisms and implications. Environmental Science & Technology, 2012, 46(24): 13184–13192
https://doi.org/10.1021/es302867f
48 J H Lee, J Y Chung, E P Chan, C M Stafford. Correlating chlorine-induced changes in mechanical properties to performance in polyamide-based thin film composite membranes. Journal of Membrane Science, 2013, 433: 72–79
https://doi.org/10.1016/j.memsci.2013.01.026
49 N P Soice, A R Greenberg, W B Krantz, A D Norman. Studies of oxidative degradation in polyamide RO membrane barrier layers using pendant drop mechanical analysis. Journal of Membrane Science, 2004, 243(1–2): 345–355
https://doi.org/10.1016/j.memsci.2004.06.039
50 X Wei, Z Wang, Z Zhang, J Wang, S Wang. Surface modification of commercial aromatic polyamide reverse osmosis membranes by graft polymerization of 3-allyl-5,5-dimethylhydantoin. Journal of Membrane Science, 2010, 351(1–2): 222–233
https://doi.org/10.1016/j.memsci.2010.01.054
51 W Gai, Y Zhang, Q Zhao, T S Chung. Highly permeable thin film composite hollow fiber membranes for brackish water desalination by incorporating amino functionalized carbon quantum dots and hypochlorite treatment. Journal of Membrane Science, 2021, 620: 118952
https://doi.org/10.1016/j.memsci.2020.118952
52 R Verbeke, V Gómez, I F J Vankelecom. Chlorine-resistance of reverse osmosis (RO) polyamide membranes. Progress in Polymer Science, 2017, 72: 1–15
https://doi.org/10.1016/j.progpolymsci.2017.05.003
53 J M Gohil, P Ray. A review on semi-aromatic polyamide TFC membranes prepared by interfacial polymerization: potential for water treatment and desalination. Separation and Purification Technology, 2017, 181: 159–182
https://doi.org/10.1016/j.seppur.2017.03.020
54 M Asadollahi, D Bastani, S A Musavi. Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: a review. Desalination, 2017, 420: 330–383
https://doi.org/10.1016/j.desal.2017.05.027
55 M J Cran, S W Bigger, S R Gray. Degradation of polyamide reverse osmosis membranes in the presence of chloramine. Desalination, 2011, 283: 58–63
https://doi.org/10.1016/j.desal.2011.04.050
56 R Verbeke, A Bergmaier, S Eschbaumer, V Gómez, G Dollinger, I Vankelecom. Elemental depth profiling of chlorinated polyamide-based thin-film composite membranes with elastic recoil detection. Environmental Science & Technology, 2019, 53(15): 8640–8648
https://doi.org/10.1021/acs.est.8b07226
57 M Stolov, V Freger. Degradation of polyamide membranes exposed to chlorine: an impedance spectroscopy study. Environmental Science & Technology, 2019, 53(5): 2618–2625
https://doi.org/10.1021/acs.est.8b04790
58 R Verbeke, V Gómez, T Koschine, S Eyley, A Szymczyk, M Dickmann, T Stimpel-Lindner, W Egger, W Thielemans, I F J Vankelecom. Real-scale chlorination at pH4 of BW30 TFC membranes and their physicochemical characterization. Journal of Membrane Science, 2018, 551: 123–135
https://doi.org/10.1016/j.memsci.2018.01.019
59 S Surawanvijit, A Rahardianto, Y Cohen. An Integrated approach for characterization of polyamide reverse osmosis membrane degradation due to exposure to free chlorine. Journal of Membrane Science, 2016, 510: 164–173
https://doi.org/10.1016/j.memsci.2016.02.044
60 S Nakagawara, T Goto, M Nara, Y Ozawa, K Hotta, Y Arata. Spectroscopic characterization and the pH dependence of bactericidal activity of the aqueous chlorine solution. Analytical Sciences, 1998, 14(4): 691–698
https://doi.org/10.2116/analsci.14.691
61 C Liu, W Wang, B Yang, K Xiao, H Zhao. Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: from mechanisms to mitigation strategies. Water Research, 2021, 195: 116976
https://doi.org/10.1016/j.watres.2021.116976
62 Y Zhao, L Dai, Q Zhang, S Zhou, S Zhang. Chlorine-resistant sulfochlorinated and sulfonated polysulfone for reverse osmosis membranes by coating method. Journal of Colloid and Interface Science, 2019, 541: 434–443
https://doi.org/10.1016/j.jcis.2019.01.104
63 R Ling, J Shao, J P Chen, M Reinhard. Iron catalyzed degradation of an aromatic polyamide reverse osmosis membrane by free chlorine. Journal of Membrane Science, 2019, 577: 205–211
https://doi.org/10.1016/j.memsci.2019.02.010
64 J Wu, Z Wang, Y Wang, W Yan, J Wang, S Wang. Polyvinylamine-grafted polyamide reverse osmosis membrane with improved antifouling property. Journal of Membrane Science, 2015, 495: 1–13
https://doi.org/10.1016/j.memsci.2015.08.007
65 A Ettori, E Gaudichet-Maurin, P Aimar, C Causserand. Pilot scale study of chlorination-induced transport property changes of a seawater reverse osmosis membrane. Desalination, 2013, 311: 24–30
https://doi.org/10.1016/j.desal.2012.11.004
66 D Wu, J Martin, J R Du, Y Zhang, D Lawless, X Feng. Effects of chlorine exposure on nanofiltration performance of polyamide membranes. Journal of Membrane Science, 2015, 487: 256–270
https://doi.org/10.1016/j.memsci.2015.02.021
67 T Kawaguchi, H Tamura. Chlorine-resistant membrane for reverse osmosis. I. Correlation between chemical structures and chlorine resistance of polyamides. Journal of Applied Polymer Science, 1984, 29(11): 3359–3367
https://doi.org/10.1002/app.1984.070291113
68 S Avlonitis, W T Hanbury, T Hodgkiess. Chlorine degradation of aromatic polyamides. Desalination, 1992, 85(3): 321–334
https://doi.org/10.1016/0011-9164(92)80014-Z
69 S Liu, C Wu, X Hou, J She, S Liu, X Lu, H Zhang, S Gray. Understanding the chlorination mechanism and the chlorine-induced separation performance evolution of polypiperazine-amide nanofiltration membrane. Journal of Membrane Science, 2019, 573: 36–45
https://doi.org/10.1016/j.memsci.2018.11.071
70 G Barassi, T Borrmann. N-chlorination and Orton rearrangement of aromatic polyamides, revisited. Journal of Membrane Science & Technology, 2012, 02(02): 2–4
https://doi.org/10.4172/2155-9589.1000115
71 J Powell, J Luh, O Coronell. Amide link scission in the polyamide active layers of thin-film composite membranes upon exposure to free chlorine: Kinetics and mechanisms. Environmental Science & Technology, 2015, 49(20): 12136–12144
https://doi.org/10.1021/acs.est.5b02110
72 V T Do, C Y Tang, M Reinhard, J O Leckie. Degradation of polyamide nanofiltration and reverse osmosis membranes by hypochlorite. Environmental Science & Technology, 2012, 46(2): 852–859
https://doi.org/10.1021/es203090y
73 J Xu, Z Wang, X Wei, S Yang, J Wang, S Wang. The chlorination process of crosslinked aromatic polyamide reverse osmosis membrane: new insights from the study of self-made membrane. Desalination, 2013, 313: 145–155
https://doi.org/10.1016/j.desal.2012.12.020
74 L Valentino, T Renkens, T Maugin, J P Croué, B J Mariñas. Changes in physicochemical and transport properties of a reverse osmosis membrane exposed to chloraminated seawater. Environmental Science & Technology, 2015, 49(4): 2301–2309
https://doi.org/10.1021/es504495j
75 R Singh. Polyamide polymer solution behaviour under chlorination conditions. Journal of Membrane Science, 1994, 88(2–3): 285–287
https://doi.org/10.1016/0376-7388(94)87015-2
76 R García-Pacheco, J Landaburu-Aguirre, A Lejarazu-Larrañaga, L Rodríguez-Sáez, S Molina, T Ransome, E García-Calvo. Free chlorine exposure dose (ppm∙h) and its impact on RO membranes ageing and recycling potential. Desalination, 2019, 457: 133–143
https://doi.org/10.1016/j.desal.2019.01.030
77 W Lawler, Z Bradford-Hartke, M J Cran, M Duke, G Leslie, B P Ladewig, P Le-Clech. Towards new opportunities for reuse, recycling and disposal of used reverse osmosis membranes. Desalination, 2012, 299: 103–112
https://doi.org/10.1016/j.desal.2012.05.030
78 B C Donose, S Sukumar, M Pidou, Y Poussade, J Keller, W Gernjak. Effect of pH on the ageing of reverse osmosis membranes upon exposure to hypochlorite. Desalination, 2013, 309: 97–105
https://doi.org/10.1016/j.desal.2012.09.027
79 K L Tu, A R Chivas, L D Nghiem. Effects of chemical preservation on flux and solute rejection by reverse osmosis membranes. Journal of Membrane Science, 2014, 472: 202–209
https://doi.org/10.1016/j.memsci.2014.08.052
80 M Badruzzaman, N Voutchkov, L Weinrich, J G Jacangelo. Selection of pretreatment technologies for seawater reverse osmosis plants: a review. Desalination, 2019, 449: 78–91
https://doi.org/10.1016/j.desal.2018.10.006
81 B de O Freitas, L de S Leite, L A Daniel. Chlorine and peracetic acid in decentralized wastewater treatment: disinfection, oxidation and odor control. Process Safety and Environmental Protection, 2021, 146: 620–628
https://doi.org/10.1016/j.psep.2020.11.047
82 Y H Wu, Z Chen, X Li, Y H Wang, B Liu, G Q Chen, L W Luo, H B Wang, X Tong, Y Bai, et al.. Effect of ultraviolet disinfection on the fouling of reverse osmosis membranes for municipal wastewater reclamation. Water Research, 2021, 195: 116995
https://doi.org/10.1016/j.watres.2021.116995
83 J Liu, Z Zhang, Q Chen, X Zhang. Synergistic effect of ferrate (VI)-ozone integrated pretreatment on the improvement of water quality and fouling alleviation of ceramic UF membrane in reclaimed water treatment. Journal of Membrane Science, 2018, 567: 216–227
https://doi.org/10.1016/j.memsci.2018.09.029
84 R Xu, P Jiang, C Wei, Z Lü, S Yu, M Liu, C Gao. Depositing sericin on partially degraded polyamide reverse osmosis membrane for restored salt rejection and simultaneously enhanced resistance to both fouling and chlorine. Journal of Membrane Science, 2018, 545: 196–203
https://doi.org/10.1016/j.memsci.2017.09.073
85 S T Mitrouli, A J Karabelas, N P Isaias, A S Al Rammah. Application of hydrophilic macromolecules on thin film composite polyamide membranes for performance restoration. Desalination, 2011, 278(1–3): 105–116
https://doi.org/10.1016/j.desal.2011.05.014
86 M K Da Silva, A Ambrosi, G M Dos Ramos, I C Tessaro. Rejuvenating polyamide reverse osmosis membranes by tannic acid treatment. Separation and Purification Technology, 2012, 100: 1–8
https://doi.org/10.1016/j.seppur.2012.07.027
87 L F Liu, H Wu, R H Li, C Yu, X T Zhao, C J Gao. Modification of poly(amide-urethane-imide) (PAUI) thin film composite reverse osmosis membrane with nano-silver particles. RSC Advances, 2018, 8(66): 37817–37827
https://doi.org/10.1039/C8RA04906H
88 H Sun, Y Chen, J Liu, D Chai, P Li, M Wang, Y Hou, Q Jason Niu. A novel chlorine-resistant polyacrylate nanofiltration membrane constructed from oligomeric phenolic resin. Separation and Purification Technology, 2021, 262: 118300
https://doi.org/10.1016/j.seppur.2021.118300
89 Y H La, R Sooriyakumaran, D C Miller, M Fujiwara, Y Terui, K Yamanaka, B D McCloskey, B D Freeman, R D Allen. Novel thin film composite membrane containing ionizable hydrophobes: pH-dependent reverse osmosis behavior and improved chlorine resistance. Journal of Materials Chemistry, 2010, 20(22): 4615–4620
https://doi.org/10.1039/b925270c
90 Y K Kim, S Y Lee, D H Kim, B S Lee, S Y Nam, J W Rhim. Preparation and characterization of thermally crosslinked chlorine resistant thin film composite polyamide membranes for reverse osmosis. Desalination, 2010, 250(2): 865–867
https://doi.org/10.1016/j.desal.2008.11.058
91 S Wu, C Zheng, G Zheng. Truly chlorine-resistant polyamide reverse osmosis composite membrane. Journal of Applied Polymer Science, 1996, 61(7): 1147–1148
https://doi.org/10.1002/(SICI)1097-4628(19960815)61:7<1147::AID-APP10>3.0.CO;2-V
92 Y Zhang, C Zhao, H Yan, G Pan, M Guo, H Na, Y Liu. Highly chlorine-resistant multilayer reverse osmosis membranes based on sulfonated poly(arylene ether sulfone) and poly(vinyl alcohol). Desalination, 2014, 336(1): 58–63
https://doi.org/10.1016/j.desal.2013.12.034
93 N Zhang, X Song, H Jiang, C Y Tang. Advanced thin-film nanocomposite membranes embedded with organic-based nanomaterials for water and organic solvent purification: A review. Separation and Purification Technology, 2021, 269: 118719
https://doi.org/10.1016/j.seppur.2021.118719
94 Z Liao, J Zhu, X Li, B Van der Bruggen. Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance: A critical review. Separation and Purification Technology, 2021, 266: 118567
https://doi.org/10.1016/j.seppur.2021.118567
95 G R Xu, J N Wang, C J Li. Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: surface modifications and nanoparticles incorporations. Desalination, 2013, 328: 83–100
https://doi.org/10.1016/j.desal.2013.08.022
96 R H Hailemariam, Y C Woo, M M Damtie, B C Kim, K D Park, J S Choi. Reverse osmosis membrane fabrication and modification technologies and future trends: a review. Advances in Colloid and Interface Science, 2020, 276: 102100
https://doi.org/10.1016/j.cis.2019.102100
97 M P Li, X Zhang, H Zhang, W L Liu, Z H Huang, F Xie, X H Ma, Z L Xu. Hydrophilic yolk-shell ZIF-8 modified polyamide thin-film nanocomposite membrane with improved permeability and selectivity. Separation and Purification Technology, 2020, 247: 116990
https://doi.org/10.1016/j.seppur.2020.116990
98 J Sun, L P Zhu, Z H Wang, F Hu, P B Zhang, B K Zhu. Improved chlorine resistance of polyamide thin-film composite membranes with a terpolymer coating. Separation and Purification Technology, 2016, 157: 112–119
https://doi.org/10.1016/j.seppur.2015.11.034
99 Q Cheng, Y Zheng, S Yu, H Zhu, X Peng, J Liu, J Liu, M Liu, C Gao. Surface modification of a commercial thin-film composite polyamide reverse osmosis membrane through graft polymerization of N-isopropylacrylamide followed by acrylic acid. Journal of Membrane Science, 2013, 447: 236–245
https://doi.org/10.1016/j.memsci.2013.07.025
100 M Liu, Q Chen, L Wang, S Yu, C Gao. Improving fouling resistance and chlorine stability of aromatic polyamide thin-film composite RO membrane by surface grafting of polyvinyl alcohol (PVA). Desalination, 2015, 367: 11–20
https://doi.org/10.1016/j.desal.2015.03.028
101 P S Goh, A K Zulhairun, A F Ismail, N Hilal. Contemporary antibiofouling modifications of reverse osmosis desalination membrane: a review. Desalination, 2019, 468: 114072
https://doi.org/10.1016/j.desal.2019.114072
102 Q Liu, G R Xu. Graphene oxide (GO) as functional material in tailoring polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes. Desalination, 2016, 394: 162–175
https://doi.org/10.1016/j.desal.2016.05.017
103 H R Chae, J Lee, C H Lee, I C Kim, P K Park. Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance. Journal of Membrane Science, 2015, 483: 128–135
https://doi.org/10.1016/j.memsci.2015.02.045
104 A A Aziz, K C Wong, P S Goh, A F Ismail, I W Azelee. Tailoring the surface properties of carbon nitride incorporated thin film nanocomposite membrane for forward osmosis desalination. Journal of Water Process Engineering, 2020, 33: 101005
https://doi.org/10.1016/j.jwpe.2019.101005
105 G D Kang, C J Gao, W D Chen, X M Jie, Y M Cao, Q Yuan. Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane. Journal of Membrane Science, 2007, 300(1–2): 165–171
https://doi.org/10.1016/j.memsci.2007.05.025
106 N P Soice, A C Maladono, D Y Takigawa, A D Norman, W B Krantz, A R Greenberg. Oxidative degradation of polyamide reverse osmosis membranes: studies of molecular model compounds and selected membranes. Journal of Applied Polymer Science, 2003, 90(5): 1173–1184
https://doi.org/10.1002/app.12774
107 C Y Tang, Y N Kwon, J O Leckie. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes. I. FTIR and XPS characterization of polyamide and coating layer chemistry. Desalination, 2009, 242(1–3): 149–167
https://doi.org/10.1016/j.desal.2008.04.003
108 Y Xie, S Gao, M Eslamian. Fundamental study on the effect of spray parameters on characteristics of P3HT: PCBM active layers made by spray coating. Coatings, 2015, 5(3): 488–510
https://doi.org/10.3390/coatings5030488
109 J Saqib, I H Aljundi. Membrane fouling and modification using surface treatment and layer-by-layer assembly of polyelectrolytes: state-of-the-art review. Journal of Water Process Engineering, 2016, 11: 68–87
https://doi.org/10.1016/j.jwpe.2016.03.009
110 P S Goh, A F Ismail. Chemically functionalized polyamide thin film composite membranes: the art of chemistry. Desalination, 2020, 495: 114655
https://doi.org/10.1016/j.desal.2020.114655
111 X J Lee, P L Show, T Katsuda, W H Chen, J S Chang. Surface grafting techniques on the improvement of membrane bioreactor: state-of-the-art advances. Bioresource Technology, 2018, 269: 489–502
https://doi.org/10.1016/j.biortech.2018.08.090
112 Z Yan, Y Zhang, H Yang, G Fan, A Ding, H Liang, G Li, N Ren, B Van der Bruggen. Mussel-inspired polydopamine modification of polymeric membranes for the application of water and wastewater treatment: a review. Chemical Engineering Research & Design, 2020, 157: 195–214
https://doi.org/10.1016/j.cherd.2020.03.011
113 A F Faria, C Liu, M Xie, F Perreault, L D Nghiem, J Ma, M Elimelech. Thin-film composite forward osmosis membranes functionalized with graphene oxide-silver nanocomposites for biofouling control. Journal of Membrane Science, 2017, 525: 146–156
https://doi.org/10.1016/j.memsci.2016.10.040
114 F Perreault, M E Tousley, M Elimelech. Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environmental Science & Technology Letters, 2014, 1(1): 71–76
https://doi.org/10.1021/ez4001356
115 B Lego, M François, W G Skene, S Giasson. Polymer brush covalently attached to OH-functionalized mica surface via surface-initiated ATRP: control of grafting density and polymer chain length. Langmuir, 2009, 25(9): 5313–5321
https://doi.org/10.1021/la804060s
116 W W Yue, H J Li, T Xiang, H Qin, S D Sun, C S Zhao. Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility. Journal of Membrane Science, 2013, 446: 79–91
https://doi.org/10.1016/j.memsci.2013.06.029
117 M B El-Arnaouty, A M Abdel-Ghaffar, M Eid, M E Aboulfotouh, N H Taher, E S Soliman. Nano-modification of polyamide thin film composite reverse osmosis membranes by radiation grafting. Journal of Radiation Research and Applied Sciences, 2018, 11(3): 204–216
https://doi.org/10.1016/j.jrras.2018.01.005
118 Y H Teow, A W Mohammad. New generation nanomaterials for water desalination: a review. Desalination, 2019, 451: 2–17
https://doi.org/10.1016/j.desal.2017.11.041
119 Y Wang, Z Wang, J Wang. Lab-scale and pilot-scale fabrication of amine-functional reverse osmosis membrane with improved chlorine resistance and antimicrobial property. Journal of Membrane Science, 2018, 554: 221–231
https://doi.org/10.1016/j.memsci.2018.02.062
120 T Zhang, K Zhang, J Li, X Yue. Simultaneously enhancing hydrophilicity, chlorine resistance and anti-biofouling of APA-TFC membrane surface by densely grafting quaternary ammonium cations and salicylaldimines. Journal of Membrane Science, 2017, 528: 296–302
https://doi.org/10.1016/j.memsci.2017.01.013
121 Y Wang, H Zhang, C Song, C Gao, G Zhu. Effect of aminophend/formaldehyde resin polymeric nanospheres as nanofiller on polyamide thin film nanocomposite membranes for reverse osmosis application. Journal of Membrane Science, 2020, 614: 118496
https://doi.org/10.1016/j.memsci.2020.118496
122 M Liu, C Yu, Z Dong, P Jiang, Z Lü, S Yu, C Gao. Improved separation performance and durability of polyamide reverse osmosis membrane in tertiary treatment of textile effluent through grafting monomethoxy-poly(ethylene glycol) brushes. Separation and Purification Technology, 2019, 209: 443–451
https://doi.org/10.1016/j.seppur.2018.07.072
123 Y Hu, K Lu, F Yan, Y Shi, P Yu, S Yu, S Li, C Gao. Enhancing the performance of aromatic polyamide reverse osmosis membrane by surface modification via covalent attachment of polyvinyl alcohol (PVA). Journal of Membrane Science, 2016, 501: 209–219
https://doi.org/10.1016/j.memsci.2015.12.003
124 S Gholami, A Rezvani, V Vatanpour, J L Cortina. Improving the chlorine resistance property of polyamide TFC RO membrane by polyethylene glycol diacrylate (PEGDA) coating. Desalination, 2018, 443: 245–255
https://doi.org/10.1016/j.desal.2018.06.004
125 W Yan, L Liu, C Dong, S Xie, X Zhao, C Gao. Surface modification of reverse osmosis membrane with tannic acid for improving chlorine resistance. Desalination, 2021, 498: 114639
https://doi.org/10.1016/j.desal.2020.114639
126 W Yan, Z Wang, S Zhao, J Wang, P Zhang, X Cao. Combining co-solvent-optimized interfacial polymerization and protective coating-controlled chlorination for highly permeable reverse osmosis membranes with high rejection. Journal of Membrane Science, 2019, 572: 61–72
https://doi.org/10.1016/j.memsci.2018.10.084
127 S Cao, G Zhang, C Xiong, S Long, X Wang, J Yang. Preparation and characterization of thin-film-composite reverse-osmosis polyamide membrane with enhanced chlorine resistance by introducing thioether units into polyamide layer. Journal of Membrane Science, 2018, 564: 473–482
https://doi.org/10.1016/j.memsci.2018.07.052
128 H Huang, S Lin, L Zhang, L Hou. Chlorine-resistant polyamide reverse osmosis membrane with monitorable and regenerative sacrificial layers. ACS Applied Materials & Interfaces, 2017, 9(11): 10214–10223
https://doi.org/10.1021/acsami.6b16462
129 X Zhang, H Huang, Q Li, H Yu, X Tian, M Zhao, H Zhang. Facile dual-functionalization of polyamide reverse osmosis membrane by a natural polypeptide to improve the antifouling and chlorine-resistant properties. Journal of Membrane Science, 2020, 604: 118044
https://doi.org/10.1016/j.memsci.2020.118044
130 T S Chung, M L Chng, K P Pramoda, Y Xiao. PAMAM dendrimer-induced cross-linking modification of polyimide membranes. Langmuir, 2004, 20(7): 2966–2969
https://doi.org/10.1021/la034610z
131 S Nagandran, P S Goh, A F Ismail, T W Wong, W R Z Wan-Dagang. The recent progress in modification of polymeric membranes using organic macromolecules for water treatment. Symmetry, 2020, 12(2): 239
https://doi.org/10.3390/sym12020239
132 F Asempour, S Akbari, M H Kanani-Jazi, A Atashgar, T Matsuura, B Kruczek. Chlorine-resistant TFN RO membranes containing modified poly(amidoamine) dendrimer-functionalized halloysite nanotubes. Journal of Membrane Science, 2021, 623: 119039
https://doi.org/10.1016/j.memsci.2020.119039
133 V Vatanpour, A Sanadgol. Surface modification of reverse osmosis membranes by grafting of polyamidoamine dendrimer containing graphene oxide nanosheets for desalination improvement. Desalination, 2020, 491: 114442
https://doi.org/10.1016/j.desal.2020.114442
134 S Lin, H Huang, Y Zeng, L Zhang, L Hou. Facile surface modification by aldehydes to enhance chlorine resistance of polyamide thin film composite membranes. Journal of Membrane Science, 2016, 518: 40–49
https://doi.org/10.1016/j.memsci.2016.06.032
135 S Liu, Z X Low, H M Hegab, Z Xie, R Ou, G Yang, G P Simon, X Zhang, L Zhang, H Wang. Enhancement of desalination performance of thin-film nanocomposite membrane by cellulose nanofibers. Journal of Membrane Science, 2019, 592: 117363
https://doi.org/10.1016/j.memsci.2019.117363
136 A T Smith, A M LaChance, S Zeng, B Liu, L Sun. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science, 2019, 1(1): 31–47
https://doi.org/10.1016/j.nanoms.2019.02.004
137 G Hamdy, A Taher. Enhanced chlorine-resistant and low biofouling reverse osmosis polyimide-graphene oxide thin film nanocomposite membranes for water desalination. Polymer Engineering and Science, 2020, 60(10): 2567–2580
https://doi.org/10.1002/pen.25495
138 H J Kim, M Y Lim, K H Jung, D G Kim, J C Lee. High-performance reverse osmosis nanocomposite membranes containing the mixture of carbon nanotubes and graphene oxides. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(13): 6798–6809
https://doi.org/10.1039/C4TA06080F
139 S An, J Wu, Y Nie, W Li, J D Fortner. Free chlorine induced phototransformation of graphene oxide in water: reaction kinetics and product characterization. Chemical Engineering Journal, 2020, 381: 122609
https://doi.org/10.1016/j.cej.2019.122609
140 H M Hegab, L Zou. Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification. Journal of Membrane Science, 2015, 484: 95–106
https://doi.org/10.1016/j.memsci.2015.03.011
141 F Shao, L Dong, H Dong, Q Zhang, M Zhao, L Yu, B Pang, Y Chen. Graphene oxide modified polyamide reverse osmosis membranes with enhanced chlorine resistance. Journal of Membrane Science, 2017, 525: 9–17
https://doi.org/10.1016/j.memsci.2016.12.001
142 F Shao, X Su, X Shen, S Ren, H Wang, Z Yi, C Xu, L Yu, L Dong. Highly improved chlorine resistance of polyamide reverse membrane by grafting layers of graphene oxide. Separation and Purification Technology, 2021, 254: 1–9
https://doi.org/10.1016/j.seppur.2020.117586
143 M Abbaszadeh, D Krizak, S Kundu. Layer-by-layer assembly of graphene oxide nanoplatelets embedded desalination membranes with improved chlorine resistance. Desalination, 2019, 470: 114116
https://doi.org/10.1016/j.desal.2019.114116
144 Z Yi, F Shao, L Yu, N Song, H Dong, B Pang, J Yu, J Feng, L Dong. Chemical grafting N-GOQD of polyamide reverse osmosis membrane with improved chlorine resistance, water flux and NaCl rejection. Desalination, 2020, 479: 114341
https://doi.org/10.1016/j.desal.2020.114341
145 M Ge, X Wang, S Wu, Y Long, Y Yang, J Zhang. Highly antifouling and chlorine resistance polyamide reverse osmosis membranes with g-C3N4 nanosheets as nanofiller. Separation and Purification Technology, 2021, 258: 117980
https://doi.org/10.1016/j.seppur.2020.117980
146 J Zhu, P Xiao, H Li, S A C Carabineiro. Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Applied Materials & Interfaces, 2014, 6(19): 16449–16465
https://doi.org/10.1021/am502925j
147 P Niu, L Zhang, G Liu, H M Cheng. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Advanced Functional Materials, 2012, 22(22): 4763–4770
https://doi.org/10.1002/adfm.201200922
148 C Xu, F Shao, Z Yi, H Dong, Q Zhang, J Yu, J Feng, X Wu, Q Zhang, L Yu, L Dong. Highly chlorine resistance polyamide reverse osmosis membranes with oxidized graphitic carbon nitride by ontology doping method. Separation and Purification Technology, 2019, 223: 178–185
https://doi.org/10.1016/j.seppur.2019.04.073
149 D L Zhao, W S Yeung, Q Zhao, T S Chung. Thin-film nanocomposite membranes incorporated with UiO-66-NH2 nanoparticles for brackish water and seawater desalination. Journal of Membrane Science, 2020, 604: 118039 doi:10.1016/j.memsci.2020.118039
150 X Zhang, H Huang, X Li, J Wang, Y Wei, H Zhang. Bioinspired chlorine-resistant tailoring for polyamide reverse osmosis membrane based on tandem oxidation of natural α-lipoic acid on the surface. Journal of Membrane Science, 2021, 618: 118521
https://doi.org/10.1016/j.memsci.2020.118521
151 P Yang, J Y Deng, W T Yang. Confined photo-catalytic oxidation: a fast surface hydrophilic modification method for polymeric materials. Polymer, 2003, 44(23): 7157–7164
https://doi.org/10.1016/j.polymer.2003.09.010
152 S Bing, J Wang, H Xu, Y Zhao, Y Zhou, L Zhang, C Gao, L Hou. Polyamide thin-film composite membrane modified with persulfate for improvement of perm-selectivity and chlorine-resistance. Journal of Membrane Science, 2018, 555: 318–326
https://doi.org/10.1016/j.memsci.2018.03.073
153 L Ni, J Meng, X Li, Y Zhang. Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement. Journal of Membrane Science, 2014, 451: 205–215
https://doi.org/10.1016/j.memsci.2013.09.040
154 K Qu, K Huang, Z Xu. Recent progress in the design and fabrication of MXene-based membranes. Frontiers of Chemical Science and Engineering, 2021, 15(4): 820–836
https://doi.org/10.1007/s11705-020-1997-7
155 Y A J Al-Hamadani, B M Jun, M Yoon, N Taheri-Qazvini, S A Snyder, M Jang, J Heo, Y Yoon. Applications of MXene-based membranes in water purification: a review. Chemosphere, 2020, 254: 126821
https://doi.org/10.1016/j.chemosphere.2020.126821
156 X Wang, Q Li, J Zhang, H Huang, S Wu, Y Yang. Novel thin-film reverse osmosis membrane with MXene Ti3C2Txembedded in polyamide to enhance the water flux, anti-fouling and chlorine resistance for water desalination. Journal of Membrane Science, 2020, 603: 118036
https://doi.org/10.1016/j.memsci.2020.118036
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed