Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2022, Vol. 16 Issue (8): 1259-1267   https://doi.org/10.1007/s11705-021-2132-0
  本期目录
Engineering the grain boundary: a promising strategy to configure NiCoP4O12/NiCoP nanowire arrays for ultra-stable supercapacitor
Mengqi Cui1, Zining Wang1, Yuanye Jiang1, Hui Wang1,2()
1. State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
2. Guangdong Provincial Key Laboratory for Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, China
 全文: PDF(1897 KB)   HTML
Abstract

NiCoP4O12/NiCoP nanorod-like arrays with tunable grain boundary density and pores were synthesized by the processes composed of hydrothermal and pyrolysis, in which, the electron structure of Ni and Co atoms characterized by X-ray photoelectron spectroscopy was contemporaneous inverse manipulated. The optimized NiCoP4O12/NiCoP arrays have a high specific capacitance of 507.8 μAh∙cm–2 at 1 mA∙cm–2, and good rate ability of 64.7% retention at 30-folds increased current density. Importantly, an ultra-stable ability, 88.5% of retention after 10000 cycles, was achieved in an asymmetric cell assembled of the NiCoP4O12/NiCoP arrays with activated carbon. In addition, the energy and power densities of an asymmetric cell were higher than those of other work, demonstrating as-prepared NiCoP4O12/NiCoP arrays are promising electrodes for supercapacitors.

Key wordsNiCo    array electrode    grain boundary    stability    supercapacitor
收稿日期: 2021-07-09      出版日期: 2022-08-02
Corresponding Author(s): Hui Wang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2022, 16(8): 1259-1267.
Mengqi Cui, Zining Wang, Yuanye Jiang, Hui Wang. Engineering the grain boundary: a promising strategy to configure NiCoP4O12/NiCoP nanowire arrays for ultra-stable supercapacitor. Front. Chem. Sci. Eng., 2022, 16(8): 1259-1267.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-021-2132-0
https://academic.hep.com.cn/fcse/CN/Y2022/V16/I8/1259
Fig.1  
Fig.2  
Fig.3  
Fig.4  
1 F Chen, S Ji, Q Liu, H Wang, H Liu, D J L Brett, G Wang, R Wang. Rational design of hierarchically core-shell structured Ni3S2@NiMoO4 nanowires for electrochemical energy storage. Small, 2018, 14(27): 1800791
https://doi.org/10.1002/smll.201800791
2 D Cai, D Wang, B Liu, L Wang, Y Liu, H Li, Y Wang, Q Li, T Wang. Three-dimensional Co3O4@NiMoO4 core/shell nanowire arrays on Ni foam for electrochemical energy storage. ACS Applied Materials & Interfaces, 2014, 6(7): 5050–5055
https://doi.org/10.1021/am500060m
3 F Chen, H Wang, S Ji, V Linkov, R Wang. Core-shell structured Ni3S2@Co(OH)2 nano-wires grown on Ni foam as binder-free electrode for asymmetric supercapacitors. Chemical Engineering Journal, 2018, 345: 48–57
https://doi.org/10.1016/j.cej.2018.03.152
4 S Ji, Y Ma, H Wang, J Key, D J L Brett, R Wang. Cage-like MnO2-Mn2O3 hollow spheres with high specific capacitance and high rate capability as supercapacitor material. Electrochimica Acta, 2016, 219: 540–546
https://doi.org/10.1016/j.electacta.2016.10.058
5 Z Lu, Q Yang, W Zhu, Z Chang, J Liu, X Sun, D G Evans, X Duan. Hierarchical Co3O4@Ni-Co-O supercapacitor electrodes with ultrahigh specific capacitance per area. Nano Research, 2012, 5(5): 369–378
https://doi.org/10.1007/s12274-012-0217-2
6 G Chen, S S Liaw, B Li, Y Xu, M Dunwell, S Deng, H Fan, H Luo. Microwave-assisted synthesis of hybrid CoxNi1−x(OH)2 nanosheets: Tuning the composition for high performance supercapacitor. Journal of Power Sources, 2014, 251: 338–343
https://doi.org/10.1016/j.jpowsour.2013.11.070
7 H Chen, L Hu, Y Yan, R Che, M Chen, L Wu. One-step fabrication of ultrathin porous nickel hydroxide-manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance. Advanced Energy Materials, 2013, 3(12): 1636–1646
https://doi.org/10.1002/aenm.201300580
8 Y Liu, G Liu, X Nie, A Pan, S Liang, T Zhu. In situ formation of Ni3S2-Cu1.8S nanosheets to promote hybrid supercapacitor performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(18): 11044–11052
https://doi.org/10.1039/C9TA01880H
9 Z Wang, F Chen, P Kannan, S Ji, H Wang. Nickel phosphate nanowires directly grown on Ni foam as binder-free electrode for pseudocapacitors. Materials Letters, 2019, 257: 126743
https://doi.org/10.1016/j.matlet.2019.126742
10 Z Wang, H Wang, S Ji, X Wang, P Zhou, S Huo, V Linkov, R Wang. Hollow-structured NiCoP nanorods as high-performance electrodes for asymmetric supercapacitors. Materials & Design, 2020, 193: 108807
https://doi.org/10.1016/j.matdes.2020.108807
11 Z Wang, H Wang, S Ji, H Wang, D J L Brett, R Wang. Design and synthesis of tremella-like Ni-Co-S flakes on co-coated cotton textile as high-performance electrode for flexible supercapacitor. Journal of Alloys and Compounds, 2020, 814: 151789
https://doi.org/10.1016/j.jallcom.2019.151789
12 F Chen, H Wang, S Ji, V Linkov, R Wang. High-performance all-solid-state asymmetric supercapacitors based on sponge-like NiS/Ni3S2 hybrid nanosheets. Materials Today. Energy, 2019, 11: 211–217
https://doi.org/10.1016/j.mtener.2018.12.002
13 F Chen, H Wang, S Ji, V Linkov, R Wang. A 3D petal-like Ni3S2/CoNi2S4 hybrid grown on Ni foam as a binder-free electrode for energy storage. Sustainable Energy & Fuels, 2018, 2(8): 1791–1798
https://doi.org/10.1039/C8SE00130H
14 S Chen, W Xing, J Duan, X Hu, S Z Qiao. Nanostructured morphology control for efficient supercapacitor electrodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(9): 2941–2954
https://doi.org/10.1039/C2TA00627H
15 X Y Liu, Y Q Zhang, X H Xia, S J Shi, Y Lu, X L Wang, C D Gu, J P Tu. Self-assembled porous NiCo2O4 hetero-structure array for electrochemical capacitor. Journal of Power Sources, 2013, 239: 157–163
https://doi.org/10.1016/j.jpowsour.2013.03.106
16 L Zhang, H Wang, S Ji, X Wang, R Wang. Porous-sheet-assembled Ni(OH)2/NiS arrays with vertical in-plane edge structure for supercapacitors with high stability. Dalton Transactions (Cambridge, England), 2019, 48(46): 17364–17370
https://doi.org/10.1039/C9DT03675J
17 Z N Wang, S Ji, F S Liu, H Wang, X Y Wang, Q Z Wang, B G Pollet, R F Wang. Highly efficient and stable catalyst based on Co(OH)2@Ni electroplated on Cu-metallized cotton textile for water splitting. ACS Applied Materials & Interfaces, 2019, 11(33): 29791–29798
https://doi.org/10.1021/acsami.9b07371
18 X Shi, H Wang, P Kannan, J Ding, S Ji, F Liu, H Gai, R Wang. Rich-grain-boundary of Ni3Se2 nanowire arrays as multifunctional electrode for electrochemical energy storage and conversion applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(7): 3344–3352
https://doi.org/10.1039/C8TA10912E
19 W Thongsamrit, C Phrompet, K Maneesai, A Karaphun, W Tuichai, C Sriwong, C Ruttanapun. Effect of grain boundary interfaces on electrochemical and thermoelectric properties of a Bi2Te3/reduced graphene oxide composites. Materials Chemistry and Physics, 2020, 250(1): 123196
https://doi.org/10.1016/j.matchemphys.2020.123196
20 C Yuan, J Li, L Hou, J Lin, X Zhang, S Xiong. Polymer-assisted synthesis of a 3D hierarchical porous network-like spinel NiCo2O4 framework towards high-performance electrochemical capacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(37): 11145
https://doi.org/10.1039/c3ta11949a
21 H Wang, Z Liu, Y Ma, K Julian, S Ji, V Linkov, R Wang. Synthesis of carbon-supported PdSn-SnO2 nanoparticles with different degrees of interfacial contact and enhanced catalytic activities for formic acid oxidation. Physical Chemistry Chemical Physics, 2013, 15(33): 13999–14005
https://doi.org/10.1039/c3cp52101j
22 Y Ma, R Wang, H Wang, V Linkov, S Ji. Evolution of nanoscale amorphous, crystalline and phase-segregated PtNiP nanoparticles and their electrocatalytic effect on methanol oxidation reaction. Physical Chemistry Chemical Physics, 2014, 16(8): 3593–3602
https://doi.org/10.1039/c3cp54600d
23 Y Ma, H Wang, W Lv, S Ji, B G Pollet, S Li, R Wang. Amorphous PtNiP particle networks of different particle sizes for the electro-oxidation of hydrazine. RSC Advances, 2015, 5(84): 68655–68661
https://doi.org/10.1039/C5RA13774H
24 Y T Wu, H Wang, S Ji, B G Pollet, X Y Wang, R F Wang. Engineered porous Ni2P-nanoparticle/Ni2P-nanosheet arrays via the Kirkendall effect and Ostwald ripening towards efficient overall water splitting. Nano Research, 2020, 13(8): 2098–2105
https://doi.org/10.1007/s12274-020-2816-7
25 J F Moulder, W F Stickle, P C Sobol, K D Bomben. Handbook of X-Ray Photoelectron Spectroscopy. 2nd ed. Waltham: Perkin-Elmer Corporation, 1992, 1–262
26 X Shi, J Key, S Ji, V Linkov, F Liu, H Wang, H Gai, R Wang. Ni(OH)2 nanoflakes supported on 3D Ni3Se2 nanowire array as highly efficient electrodes for asymmetric supercapacitor and Ni/MH battery. Small, 2019, 15(29): 1802861
https://doi.org/10.1002/smll.201802861
27 K Sakamoto, F Hayashi, K Sato, M Hirano, N Ohtsu. XPS spectral analysis for a multiple oxide comprising NiO, TiO2, and NiTiO3. Applied Surface Science, 2020, 526: 146729
https://doi.org/10.1016/j.apsusc.2020.146729
28 O Bondarchuk, A P LaGrow, A Kvasha, T Thieu, E Ayerbe, I Urdampilleta. On the X-ray photoelectron spectroscopy analysis of LiNixMnyCozO2 material and electrodes. Applied Surface Science, 2021, 535: 147699
https://doi.org/10.1016/j.apsusc.2020.147699
29 Q Zong, H Yang, Q Wang, Q Zhang, J Xu, Y Zhu, H Wang, H Wang, F Zhang, Q Shen. NiCo2O4/NiCoP nanoflake-nanowire arrays: a homogeneous hetero-structure for high performance asymmetric hybrid supercapacitors. Dalton Transactions (Cambridge, England), 2018, 47(45): 16320–16328
https://doi.org/10.1039/C8DT03755H
30 Y Zhang, L Sun, L Zhang, X Li, J Gu, H Si, L Wu, Y Shi, C Sun, Y Zhang. Highly porous oxygen-doped NiCoP immobilized in reduced graphene oxide for supercapacitive energy storage. Composites. Part B, Engineering, 2020, 182: 107611
https://doi.org/10.1016/j.compositesb.2019.107611
31 J Xing, J Du, X Zhang, Y Shao, T Zhang, C A Xu. Ni-P@NiCo LDH core-shell nanorod-decorated nickel foam with enhanced areal specific capacitance for high-performance supercapacitors. Dalton Transactions (Cambridge, England), 2017, 46(30): 10064–10072
https://doi.org/10.1039/C7DT01910F
32 Y Lan, H Zhao, Y Zong, X Li, Y Sun, J Feng, Y Wang, X Zheng, Y Du. Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes. Nanoscale, 2018, 10(25): 11775–11781
https://doi.org/10.1039/C8NR01229F
33 Y Shao, Y Zhao, H Li, C Xu. Three-dimensional hierarchical NixCo1−xO/NiyCo2−yP@C hybrids on nickel foam for excellent supercapacitors. ACS Applied Materials & Interfaces, 2016, 8(51): 35368–35376
https://doi.org/10.1021/acsami.6b12881
34 W Kong, C Lu, W Zhang, J Pu, Z Wang. Homogeneous core-shell NiCo2S4 nanostructures supported on nickel foam for supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(23): 12452–12460
https://doi.org/10.1039/C5TA02432C
35 C Tang, Z Tang, H Gong. Hierarchically porous Ni-Co oxide for high reversibility asymmetric full-cell supercapacitors. Journal of the Electrochemical Society, 2012, 159(5): A651–A656
https://doi.org/10.1149/2.074205jes
36 X Chen, M Cheng, D Chen, R Wang. Shape-controlled synthesis of Co2P nanostructures and their application in supercapacitors. ACS Applied Materials & Interfaces, 2016, 8(6): 3892–3900
https://doi.org/10.1021/acsami.5b10785
[1] FCE-21066-OF-CM_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed