Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2022, Vol. 16 Issue (8): 1211-1223   https://doi.org/10.1007/s11705-022-2145-3
  本期目录
Ultrasound-assisted co-precipitation synthesis of mesoporous Co3O4–CeO2 composite oxides for highly selective catalytic oxidation of cyclohexane
Shangjun Fu1, Kuiyi You1,2(), Zhenpan Chen1(), Taobo Liu1, Qiong Wang1, Fangfang Zhao1, Qiuhong Ai1,2, Pingle Liu1,2, He’an Luo1,2
1. School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
2. National & Local United Engineering Research Center for Chemical Process Simulation and Intensification, Xiangtan University, Xiangtan 411105, China
 全文: PDF(3359 KB)   HTML
Abstract

The one-step highly selective oxidation of cyclohexane into cyclohexanone and cyclohexanol as the essential intermediates of nylon-6 and nylon-66 is considerably challenging. Therefore, an efficient and low-cost catalyst must be urgently developed to improve the efficiency of this process. In this study, a Co3O4–CeO2 composite oxide catalyst was successfully prepared through ultrasound-assisted co-precipitation. This catalyst exhibited a higher selectivity to KA-oil, which was benefited from the synergistic effects between Co3+/Co2+ and Ce4+/Ce3+ redox pairs, than bulk CeO2 and/or Co3O4. Under the optimum reaction conditions, 89.6% selectivity to KA-oil with a cyclohexane conversion of 5.8% was achieved over Co3O4–CeO2. Its catalytic performance remained unchanged after five runs. Using the synergistic effects between the redox pairs of different transition metals, this study provides a feasible strategy to design high-performance catalysts for the selective oxidation of alkanes.

Key wordsCo3O4–CeO2 composite oxides    cyclohexanone    cyclohexanol    ultrasonic-assisted co-precipitation    selective oxidation    solvent-free
收稿日期: 2021-08-13      出版日期: 2022-08-02
Corresponding Author(s): Kuiyi You,Zhenpan Chen   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2022, 16(8): 1211-1223.
Shangjun Fu, Kuiyi You, Zhenpan Chen, Taobo Liu, Qiong Wang, Fangfang Zhao, Qiuhong Ai, Pingle Liu, He’an Luo. Ultrasound-assisted co-precipitation synthesis of mesoporous Co3O4–CeO2 composite oxides for highly selective catalytic oxidation of cyclohexane. Front. Chem. Sci. Eng., 2022, 16(8): 1211-1223.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2145-3
https://academic.hep.com.cn/fcse/CN/Y2022/V16/I8/1211
Entry Catalyst Conversion/% Selectivity/%b)
A K KA-oil CHHP Acid Ester
1 None 2.3 15.2 27.7 42.9 55.8 1.0 0.3
2 CeO2 c) 5.3 47.9 25.9 73.8 13.9 7.9 4.3
3 Co3O4 d) 7.5 39.8 28.9 68.7 2.3 9.6 19.4
4 Co3O4 e) 5.8 53.6 24.5 78.1 4.9 7.3 9.7
5 NiO–CeO2 6.6 44.3 29.8 74.1 10.7 7.0 8.3
6 Fe2O3–CeO2 6.4 38.4 24.0 62.9 22.6 6.2 8.2
7 MnO2–CeO2 6.5 48.2 27.4 75.6 9.5 6.9 7.9
8 Al2O3–Co3O4 6.6 39.6 23.0 62.6 23.0 6.8 7.5
9 MoO3–Co3O4 5.6 31.4 38.9 70.3 5.2 14.7 9.8
10 Co3O4–CeO2 5.8 60.2 29.4 89.6 0 5.7 4.7
11 Co3O4–CeO2 f) 5.9 54.5 28.4 82.9 0.1 7.2 9.9
12 Co3O4+CeO2 g) 6.4 46.6 24.1 70.7 14.3 6.7 8.3
13 Co3O4+CeO2 h) 4.5 44.2 17.5 61.7 23.9 7.9 6.5
14 Co3O4–CeO2 i) 1.7 38.3 23.8 62.1 0 10.3 27.5
15 Co3O4–CeO2 j) 5.9 53.1 35.1 88.2 0 6.4 5.4
Tab.1  
Entry Ce/Co (molar ratio) Conversion/% Selectivity/%
A K KA-oil CHHP Acid Ester
1 1∶5 6.0 57.6 27.7 85.3 1.8 6.8 6.2
2 1∶2 5.7 54.6 30.3 84.9 1.5 8.7 4.9
3 1∶1 5.5 59.3 25.7 85.0 2.7 7.0 5.3
4 2∶1 5.8 60.2 29.4 89.6 0 5.7 4.7
5 4∶1 6.0 54.1 32.6 86.7 0.5 6.7 6.1
6 b) 1∶5 7.2 49.4 33.4 82.8 0.8 7.3 9.1
7 b) 1∶2 7.5 52.2 29.1 81.3 0.7 7.5 10.5
8 b) 1∶1 7.8 54.4 29.0 83.4 1.6 8.1 7.0
9 b) 2∶1 7.2 54.0 31.1 85.1 0 6.4 8.0
10 b) 4∶1 7.6 50.2 33.3 83.5 0 6.0 10.4
Tab.2  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Sample Ce 3d binding energy/eV Contents of Ce species a)
V U V' U' V'' U'' V''' U''' Ce3+ Ce4+
Fresh sample 882.4 900.8 885.7 904.1 888.8 907.1 898.4 916.5 26.0 74.0
Used sample 882.2 900.6 885.5 903.9 888.8 907.1 898.1 916.5 25.7 74.3
Tab.3  
Sample O 1s binding energy/eV Percentages of different oxygen species a)
OL OV OC OL OV OC
Fresh sample 529.2 531.2 532.3 65.4 19.5 15.1
Used sample 529.2 531.2 532.3 46.8 27.0 26.2
Tab.4  
Fig.6  
Fig.7  
Catalysts Ce:Co (mole ratio) Surface area/(cm2?g−1) Pore volume/(cm3?g−1) Pore diameter/nm
Theory ICP-AES
Co3O4 31 0.11 3.77
CeO2 104 0.27 9.72
Fresh Co3O4–CeO2 2:1 2.10:1 145 0.24 6.19
Used Co3O4–CeO2 2:1 2.15:1 131 0.22 6.16
Tab.5  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
1 S Tang, J She, Z Fu, S Zhang, Z Tang, C Zhang, Y Liu, D Yin, J Li. Study on the formation of photoactive species in XPMo12−nVnO40-HCl system and its effect on photocatalysis oxidation of cyclohexane by dioxygens under visible light irradiation. Applied Catalysis B, 2017, 214 : 89– 99
https://doi.org/10.1016/j.apcatb.2017.05.027
2 J M Thomas, R Raja, G Sankar, R G Bell. Molecular-sieve catalysts for the selective oxidation of linear alkanes by molecular oxygen. Nature, 1999, 398( 6724): 227– 230
https://doi.org/10.1038/18417
3 F Recupero, C Punta. Free radical functionalization of organic compounds catalyzed by N-hydroxyphthalimide. Chemical Reviews, 2007, 107( 9): 3800– 3842
https://doi.org/10.1021/cr040170k
4 J Jian, K You, X Duan, H Gao, Q Luo, R Deng, P Liu, Q Ai, H Luo. Boosting one-step conversion of cyclohexane to adipic acid by NO2 and VPO composite catalysts. Chemical Communications, 2016, 52( 16): 3320– 3323
https://doi.org/10.1039/C5CC09840H
5 M Balamurugan, R Mayilmurugan, E Suresh, M Palaniandavar. Nickel (II) complexes of tripodal 4N ligands as catalysts for alkane oxidation using m-CPBA as oxidant: ligand stereoelectronic effects on catalysis. Dalton Transactions (Cambridge, England), 2011, 40( 37): 9413– 9424
https://doi.org/10.1039/c1dt10902b
6 X H Lu, H Y Yuan, J Lei, J L Zhang, A A Yu, D Zhou, Q H Xia. Selective oxidation of cyclohexane to KA-oil with oxygen over active Co3O4 in a solvent-free system. Indian Journal of Chemistry, 2012, 51 : 420– 427
7 P R Makgwane, S S Ray. Efficient room temperature oxidation of cyclohexane over highly active hetero-mixed WO3/V2O5 oxide catalyst. Catalysis Communications, 2014, 54 : 118– 123
https://doi.org/10.1016/j.catcom.2014.05.031
8 X Tan, X Wang, Q Liu, J Zhou, P Zhang, S Zheng, S Miao. Bio-gel template synthesis of CoFe2O4 nano-catalysts and application in aerobic oxidation of cyclohexane. International Journal of Hydrogen Energy, 2017, 42( 30): 19001– 19009
https://doi.org/10.1016/j.ijhydene.2017.05.072
9 M Wu, W Zhan, Y Guo, Y Guo, Y Wang, L Wang, G Lu. An effective Mn–Co mixed oxide catalyst for the solvent-free selective oxidation of cyclohexane with molecular oxygen. Applied Catalysis A, 2016, 523 : 97– 106
https://doi.org/10.1016/j.apcata.2016.06.001
10 H Yu, F Peng, J Tan, X Hu, H Wang, J Yang, W Zheng. Selective catalysis of the aerobic oxidation of cyclohexane in the liquid phase by carbon nanotubes. Angewandte Chemie International Edition, 2011, 50( 17): 3978– 3982
https://doi.org/10.1002/anie.201007932
11 X R Niu, J Li, L Zhang, Z T Lei, X L Zhao, C H Yang. ZSM-5 functionalized in situ with manganese ions for the catalytic oxidation of cyclohexane. RSC Advances, 2017, 7( 80): 50619– 50625
https://doi.org/10.1039/C7RA10771D
12 K Wu, B Li, C Han, J Liu. Synthesis, characterization of MCM-41 with high vanadium content in the framework and its catalytic performance on selective oxidation of cyclohexane. Applied Catalysis A, 2014, 479 : 70– 75
https://doi.org/10.1016/j.apcata.2014.04.004
13 L Zhou, J Xu, C Chen, F Wang, X Li. Synthesis of Fe, Co, and Mn substituted AlPO-5 molecular sieves and their catalytic activities in the selective oxidation of cyclohexane. Journal of Porous Materials, 2006, 15( 1): 7– 12
https://doi.org/10.1007/s10934-006-9045-7
14 A A Alshaheri, M I M Tahir, M B A Rahman, T Begum, T A Saleh. Synthesis, characterisation and catalytic activity of dithiocarbazate Schiff base complexes in oxidation of cyclohexane. Journal of Molecular Liquids, 2017, 240 : 486– 496
https://doi.org/10.1016/j.molliq.2017.05.081
15 Y Xie, F Zhang, P Liu, F Hao, H Luo. Synthesis and catalytic properties of trans-A2B2-type metalloporphyrins in cyclohexane oxidation. Canadian Journal of Chemistry, 2014, 92( 1): 49– 53
https://doi.org/10.1139/cjc-2013-0400
16 N V Maksimchuk, K A Kovalenko, V P Fedin, O A Kholdeeva. Cyclohexane selective oxidation over metal-organic frameworks of MIL-101 family: superior catalytic activity and selectivity. Chemical Communications, 2012, 48( 54): 6812– 6814
https://doi.org/10.1039/c2cc31877f
17 A Shahzeydi, M Ghiaci, H Farrokhpour, A Shahvar, M Sun, M Saraji. Facile and green synthesis of copper nanoparticles loaded on the amorphous carbon nitride for the oxidation of cyclohexane. Chemical Engineering Journal, 2019, 370 : 1310– 1321
https://doi.org/10.1016/j.cej.2019.03.227
18 N Imanaka, T Masui, K Jyoko. Selective liquid phase oxidation of cyclohexane over Pt/CeO2–ZrO2–SnO2/SiO2 catalysts with molecular oxygen. Journal of Advanced Ceramics, 2015, 4( 2): 111– 117
https://doi.org/10.1007/s40145-015-0138-0
19 N Sammah, M Ghiaci. Synthesis and characterization of oligomeric ionic liquid/heteropoly acid composite as a new heterogeneous catalyst through anion-exchange method for selective cyclohexane oxidation with molecular oxygen under solvent-free conditions. Industrial & Engineering Chemistry Research, 2017, 56( 38): 10597– 10604
https://doi.org/10.1021/acs.iecr.7b03071
20 A F Masters, J K Beattie, A L Roa. Synthesis of a CrCoAPO-5 (AFI) molecular sieve and its activity in cyclohexane oxidation in the liquid phase. Catalysis Letters, 2001, 75( 3/4): 159– 162
https://doi.org/10.1023/A:1016763224751
21 P Zhang, H Lu, Y Zhou, L Zhang, Z Wu, S Yang, H Shi, Q Zhu, Y Chen, S Dai. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons. Nature Communications, 2015, 6( 1): 1– 10
https://doi.org/10.1038/ncomms9446
22 Q Zhang, C Chen, M Wang, J Cai, J Xu, C Xia. Facile preparation of highly-dispersed cobalt-silicon mixed oxide nanosphere and its catalytic application in cyclohexane selective oxidation. Nanoscale Research Letters, 2011, 6( 1): 1– 7
https://doi.org/10.1186/1556-276X-6-586
23 H Huang, X Wang, E Tervoort, G Zeng, T Liu, X Chen, A Sologubenko, M Niederberger. Nano-sized structurally disordered metal oxide composite aerogels as high-power anodes in hybrid supercapacitors. ACS Nano, 2018, 12( 3): 2753– 2763
https://doi.org/10.1021/acsnano.7b09062
24 X An, C Hu, H Lan, H Liu, J Qu. Strongly coupled metal oxide/reassembled carbon nitride/Co–Pi heterostructures for efficient photoelectrochemical water splitting. ACS Applied Materials & Interfaces, 2018, 10( 7): 6424– 6432
https://doi.org/10.1021/acsami.8b01070
25 H Saravaia, H Gupta, P Popat, P Sodha, V Kulshrestha. Single-step synthesis of magnesium-doped lithium manganese oxide nanosorbent and their polymer composite beads for selective heavy metal removal. ACS Applied Materials & Interfaces, 2018, 10( 50): 44059– 44070
https://doi.org/10.1021/acsami.8b17141
26 S M Vickers, R Gholami, K J Smith, M J MacLachlan. Mesoporous Mn- and La-doped cerium oxide/cobalt oxide mixed metal catalysts for methane oxidation. ACS Applied Materials & Interfaces, 2015, 7( 21): 11460– 11466
https://doi.org/10.1021/acsami.5b02367
27 L F Liotta, G D Carlo, G Pantaleo, G Deganello. Catalytic performance of Co3O4/CeO2 and Co3O4/CeO2–ZrO2 composite oxides for methane combustion: influence of catalyst pretreatment temperature and oxygen concentration in the reaction mixture. Applied Catalysis B, 2007, 70( 1-4): 314– 322
https://doi.org/10.1016/j.apcatb.2005.12.023
28 I C Silva, F A Sigoli, I O Mazali. Reversible oxygen vacancy generation on pure CeO2 nanorods evaluated by in situ raman spectroscopy. Journal of Physical Chemistry C, 2017, 121( 23): 12928– 12935
https://doi.org/10.1021/acs.jpcc.7b03155
29 G Wang, Y Meng, L Wang, J Xia, F Zhu, Y Zhang. Yolk-shell Co3O4–CoO/carbon composites for lithium-ion batteries with enhanced electrochemical properties. International Journal of Electrochemical Science, 2017, 12 : 2618– 2627
https://doi.org/10.20964/2017.04.73
30 J Mei, J Xie, Y Sun, Z Qu, N Yan. Design of Co3O4/CeO2–Co3O4 hierarchical binary oxides for the catalytic oxidation of dibromomethane. Journal of Industrial and Engineering Chemistry, 2019, 73 : 134– 141
https://doi.org/10.1016/j.jiec.2019.01.016
31 L Li, F Chen, J Q Lu, M F Luo. Study of defect sites in Ce1−xMxO2−δ (x = 0.2) solid solutions using Raman spectroscopy. Journal of Physical Chemistry A, 2011, 115( 27): 7972– 7977
https://doi.org/10.1021/jp203921m
32 D Li, B Cen, C Fang, X Leng, W Wang, Y Wang, J Chen, M Luo. High performance cobalt nanoparticle catalysts supported by carbon for ozone decomposition: the effects of the cobalt particle size and hydrophobic carbon support. New Journal of Chemistry, 2021, 45( 2): 561– 568
https://doi.org/10.1039/D0NJ04876C
33 W Zhou, K Huang, M Cao, F Sun, M He, Z Chen. Selective oxidation of toluene to benzaldehyde in liquid phase over CoAl oxides prepared from hydrotalcite-like precursors. Reaction Kinetics, Mechanisms and Catalysis, 2015, 115( 1): 341– 353
https://doi.org/10.1007/s11144-015-0833-4
34 P Burroughs, A Hamnett, A F Orchard, G Thornton. Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium. Journal of the Chemical Society, Dalton Transactions (Cambridge, England), 1976, 17( 17): 1686– 1698
https://doi.org/10.1039/dt9760001686
35 M Alexandrou, R M Nix. The growth, structure and stability of ceria overlayers on Pd (111). Surface Science, 1994, 321( 1-2): 47– 57
https://doi.org/10.1016/0039-6028(94)90025-6
36 G K Reddy, T C Peck, C A Roberts. CeO2–MxOy (M = Fe, Co, Ni, and Cu)-based oxides for direct NO decomposition. Journal of Physical Chemistry A, 2019, 123 : 28695– 28706
37 L F Liotta, G D Carlo, G Pantaleo, A M Venezia, G Deganello. Co3O4/CeO2 composite oxides for methane emissions abatement: relationship between Co3O4–CeO2 interaction and catalytic activity. Applied Catalysis B, 2006, 66( 3-4): 217– 227
https://doi.org/10.1016/j.apcatb.2006.03.018
38 S A Abdullah, M Z Sahdan, N Nayan, Z Embong, C R C Hak, F Adriyanto. Neutron beam interaction with rutile TiO2 single crystal (111): Raman and XPS study on Ti3+-oxygen vacancy formation. Materials Letters, 2020, 263 : 127143
https://doi.org/10.1016/j.matlet.2019.127143
39 H Inaba, H Tagawa. Ceria-based solid electrolytes. Solid State Ionics, 1996, 83( 1-2): 1– 16
https://doi.org/10.1016/0167-2738(95)00229-4
40 B Wang, X Wang, L Lu, C Zhou, Z Xin, J Wang, X Ke, G Sheng, S Yan, Z Zou. Oxygen-vacancy-activated CO2 splitting over amorphous oxide semiconductor photocatalyst. ACS Catalysis, 2018, 8( 1): 516– 525
https://doi.org/10.1021/acscatal.7b02952
41 J Y Luo, M Meng, X Li, X G Li, Y Q Zha, T D Hu, Y N Xie, J Zhang. Mesoporous Co3O4–CeO2 and Pd/Co3O4–CeO2 catalysts: synthesis, characterization and mechanistic study of their catalytic properties for low-temperature CO oxidation. Journal of Catalysis, 2008, 254( 2): 310– 324
https://doi.org/10.1016/j.jcat.2008.01.007
42 J Xu, G Lu, Y Guo, Y Guo, X Q Gong. A highly effective catalyst of Co–CeO2 for the oxidation of diesel soot: the excellent NO oxidation activity and NOx storage capacity. Applied Catalysis A, 2017, 535 : 1– 8
https://doi.org/10.1016/j.apcata.2017.02.005
43 S Akram, Z Wang, L Chen, Q Wang, G Shen, N Han, Y Chen, G Ge. Low-temperature efficient degradation of ethyl acetate catalyzed by lattice-doped CeO2–CoOx nanocomposites. Catalysis Communications, 2016, 73 : 123– 127
https://doi.org/10.1016/j.catcom.2015.10.024
44 F L S Carvalho, Y J O Asencios, J D A Bellido, E M Assaf. Bio-ethanol steam reforming for hydrogen production over Co3O4/CeO2 catalysts synthesized by one-step polymerization method. Fuel Processing Technology, 2016, 142 : 182– 191
https://doi.org/10.1016/j.fuproc.2015.10.010
45 C Yuan, H G Wang, J Liu, Q Wu, Q Duan, Y Li. Facile synthesis of Co3O4–CeO2 composite oxide nanotubes and their multifunctional applications for lithium ion batteries and CO oxidation. Journal of Colloid and Interface Science, 2017, 494 : 274– 281
https://doi.org/10.1016/j.jcis.2017.01.074
46 P Liu, K You, R Deng, Z Chen, J Jian, F Zhao, P Liu, Q Ai, H Luo. Hydrotalcite-derived Co–MgAlO mixed metal oxides as efficient and stable catalyst for the solvent-free selective oxidation of cyclohexane with molecular oxygen. Molecular Catalysis, 2019, 466 : 130– 137
https://doi.org/10.1016/j.mcat.2019.01.019
47 S Wu, Y He, C Wang, C Zhu, J Shi, Z Chen, Y Wan, F Hao, W Xiong, P Liu, H Luo. Selective Cl-decoration on nanocrystal facets of hematite for high-efficiency catalytic oxidation of cyclohexane: identification of the newly formed Cl–O as active sites. ACS Applied Materials & Interfaces, 2020, 12( 23): 26733– 26745
https://doi.org/10.1021/acsami.0c06870
48 Y J Hao, B Liu, L G Tian, F T Li, J Ren, S J Liu, Y Liu, J Zhao, X J Wang. Synthesis of {111} facet-exposed MgO with surface oxygen vacancies for reactive oxygen species generation in the dark. ACS Applied Materials & Interfaces, 2017, 9( 14): 12687– 12693
https://doi.org/10.1021/acsami.6b16856
49 J Liao, K Li, H Ma, F Dong, X Zeng, Y Sun. Oxygen vacancies on the BiOCl surface promoted photocatalytic complete NO oxidation via superoxide radicals. Chinese Chemical Letters, 2020, 31( 10): 2737– 274
https://doi.org/10.1016/j.cclet.2020.03.081
50 H Yu, F Peng, J Tan, X Hu, H Wang, J Yang, W Zheng. Selective catalysis of the aerobic oxidation of cyclohexane in the liquid phase by carbon nanotubes. Angewandate Chemie-International Edition, 2011, 50 : 3978– 3982
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed