1. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 2. Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK 3. China Datang Corporation Renewable Energy Science and Technology Research Institute, Beijing 100052, China 4. Energy and Bioproducts Research Institute (EBRI), Aston University, Birmingham B4 7ET, UK
A simple method was developed to tune the porosity of coal-derived activated carbons, which provided a model adsorbent system to investigate the volumetric CO2 adsorption performance. Specifically, the method involved the variation of the activation temperature in a K2CO3 induced chemical activation process which could yield activated carbons with defined microporous (< 2 nm, including ultra-microporous < 1 nm) and meso-micro-porous structures. CO2 adsorption isotherms revealed that the microporous activated carbon has the highest measured CO2 adsorption capacity (6.0 mmol∙g–1 at 0 °C and 4.1 mmol∙g–1 at 25 °C), whilst ultra-microporous activated carbon with a high packing density exhibited the highest normalized capacity with respect to packing volume (1.8 mmol∙cm−3 at 0 °C and 1.3 mmol∙cm–3 at 25 °C), which is significant. Both experimental correlation analysis and molecular dynamics simulation demonstrated that (i) volumetric CO2 adsorption capacity is directly proportional to the ultra-micropore volume, and (ii) an increase in micropore sizes is beneficial to improve the volumetric capacity, but may lead a low CO2 adsorption density and thus low pore space utilization efficiency. The adsorption experiments on the activated carbons established the criterion for designing CO2 adsorbents with high volumetric adsorption capacity.
J Li, B Michalkiewicz, J Min, C Ma, X Chen, J Gong, E Mijowska, T Tang. Selective preparation of biomass-derived porous carbon with controllable pore sizes toward highly efficient CO2 capture. Chemical Engineering Journal, 2019, 360 : 250– 259 https://doi.org/10.1016/j.cej.2018.11.204
2
A M Kierzkowska, R Pacciani, C R Müller. CaO-based CO2 sorbents: from fundamentals to the development of new, highly effective materials. ChemSusChem, 2013, 6( 7): 1130– 1148 https://doi.org/10.1002/cssc.201300178
3
S Wang, X Li, H Wu, Z Tian, Q Xin, G He, D Peng, S Chen, Y Yin, Z Jiang, M D Guiver. Advances in high permeability polymer-based membrane materials for CO2 separations. Energy & Environmental Science, 2016, 9( 6): 1863– 1890 https://doi.org/10.1039/C6EE00811A
4
N Du, H B Park, M M Dal-Cin, M D Guiver. Advances in high permeability polymeric membrane materials for CO2 separations. Energy & Environmental Science, 2012, 5( 6): 7306– 7322 https://doi.org/10.1039/C1EE02668B
5
Q Yu, J P Delgado, R Veneman, D W F Brilman. Stability of a benzyl amine based CO2 capture adsorbent in view of regeneration strategies. Industrial & Engineering Chemistry Research, 2017, 56( 12): 3259– 3269 https://doi.org/10.1021/acs.iecr.6b04645
6
X Li, M Hou, Z Zhang, B Han, G Yang, X Wang, L Zou. Absorption of CO2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters. Green Chemistry, 2008, 10( 8): 879– 884 https://doi.org/10.1039/b801948g
7
Z H Lee, K T Lee, S Bhatia, A R Mohamed. Post-combustion carbon dioxide capture: evolution towards utilization of nanomaterials. Renewable & Sustainable Energy Reviews, 2012, 16( 5): 2599– 2609 https://doi.org/10.1016/j.rser.2012.01.077
8
A L Yaumi, M Z A Bakar, B H Hameed. Recent advances in functionalized composite solid materials for carbon dioxide capture. Energy, 2017, 124 : 461– 480 https://doi.org/10.1016/j.energy.2017.02.053
9
D Li, Y Chen, M Zheng, H Zhao, Y Zhao, Z Sun. Hierarchically structured porous nitrogen-doped carbon for highly selective CO2 capture. ACS Sustainable Chemistry & Engineering, 2016, 4( 1): 298– 304 https://doi.org/10.1021/acssuschemeng.5b01230
10
Z Qie, F Sun, J Gao, X Pi, L Wang, M Liu, Z Qu, G Zhao. Enhanced SO2 fluidized adsorption dynamic by hierarchically porous activated coke. Journal of the Energy Institute, 2020, 93( 2): 802– 810 https://doi.org/10.1016/j.joei.2019.05.002
11
J Kim, L C Lin, J A Swisher, M Haranczyk, B Smit. Predicting large CO2 adsorption in aluminosilicate zeolites for postcombustion carbon dioxide capture. Journal of the American Chemical Society, 2012, 134( 46): 18940– 18943 https://doi.org/10.1021/ja309818u
12
B A Al-Maythalony, O Shekhah, R Swaidan, Y Belmabkhout, I Pinnau, M Eddaoudi. Quest for anionic MOF membranes: continuous sod-ZMOF membrane with CO2 adsorption-driven selectivity. Journal of the American Chemical Society, 2015, 137( 5): 1754– 1757 https://doi.org/10.1021/ja511495j
13
G Qi, Y Wang, L Estevez, X Duan, N Anako, A H A Park, W Li, C W Jones, E P Giannelis. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules. Energy & Environmental Science, 2011, 4( 2): 444– 452 https://doi.org/10.1039/C0EE00213E
14
O Oginni, K Singh, G Oporto, B Dawson-Andoh, L McDonald, E Sabolsky. Influence of one-step and two-step KOH activation on activated carbon characteristics. Bioresource Technology Reports, 2019, 7 : 100266 https://doi.org/10.1016/j.biteb.2019.100266
15
H Deng, G Li, H Yang, J Tang, J Tang. Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation. Chemical Engineering Journal, 2010, 163( 3): 373– 381 https://doi.org/10.1016/j.cej.2010.08.019
16
O Oginni, K Singh, G Oporto, B Dawson-Andoh, L McDonald, E Sabolsky. Effect of one-step and two-step H3PO4 activation on activated carbon characteristics. Bioresource Technology Reports, 2019, 8 : 100307 https://doi.org/10.1016/j.biteb.2019.100307
17
R L Tseng. Physical and chemical properties and adsorption type of activated carbon prepared from plum kernels by NaOH activation. Journal of Hazardous Materials, 2007, 147( 3): 1020– 1027 https://doi.org/10.1016/j.jhazmat.2007.01.140
18
L Yue, Q Xia, L Wang, L Wang, H DaCosta, J Yang, X Hu. CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of urea-modified coconut shell. Journal of Colloid and Interface Science, 2018, 511 : 259– 267 https://doi.org/10.1016/j.jcis.2017.09.040
19
M J Kim, S W Choi, H Kim, S Mun, K B Lee. Simple synthesis of spent coffee ground-based microporous carbons using K2CO3 as an activation agent and their application to CO2 capture. Chemical Engineering Journal, 2020, 397 : 125404 https://doi.org/10.1016/j.cej.2020.125404
20
S Deng, H Wei, T Chen, B Wang, J Huang, G Yu. Superior CO2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures. Chemical Engineering Journal, 2014, 253 : 46– 54 https://doi.org/10.1016/j.cej.2014.04.115
21
N A Rashidi, S Yusup. An overview of activated carbons utilization for the post-combustion carbon dioxide capture. Journal of CO2 Utilization , 2016, 13 : 1– 16
22
J Jagiello, J Kenvin, A Celzard, V Fierro. Enhanced resolution of ultra micropore size determination of biochars and activated carbons by dual gas analysis using N2 and CO2 with 2D-NLDFT adsorption models. Carbon, 2019, 144 : 206– 215 https://doi.org/10.1016/j.carbon.2018.12.028
23
S Feng, W Li, Q Shi, Y Li, J Chen, Y Ling, A M Asiri, D Zhao. Synthesis of nitrogen-doped hollow carbon nanospheres for CO2 capture. Chemical Communications, 2014, 50( 3): 329– 331 https://doi.org/10.1039/C3CC46492J
24
J Kim, J Han, D Ha, S Kang. Synthesis of nitrogen and boron co-doped carbon (CNB) and their CO2 capture properties: from porous to hollow granule structure. Journal of Materials Chemistry A, 2014, 2( 39): 16645– 16651 https://doi.org/10.1039/C4TA03664F
25
X He, H Zhang, H Zhang, X Li, N Xiao, J Qiu. Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors. Journal of Materials Chemistry A, 2014, 2( 46): 19633– 19640 https://doi.org/10.1039/C4TA03323J
26
A Alabadi, S Razzaque, Y Yang, S Chen, B Tan. Highly porous activated carbon materials from carbonized biomass with high CO2 capturing capacity. Chemical Engineering Journal, 2015, 281 : 606– 612 https://doi.org/10.1016/j.cej.2015.06.032
27
Z Qie, Z Zhang, F Sun, L Wang, X Pi, J Gao, G Zhao. Effect of pore hierarchy and pore size on the combined adsorption of SO2 and toluene in activated coke. Fuel, 2019, 257 : 116090 https://doi.org/10.1016/j.fuel.2019.116090
28
S Deng, B Hu, T Chen, B Wang, J Huang, Y Wang, G Yu. Activated carbons prepared from peanut shell and sunflower seed shell for high CO2 adsorption. Adsorption, 2015, 21( 1-2): 125– 133 https://doi.org/10.1007/s10450-015-9655-y
29
D Li, J Zhou, Y Wang, Y Tian, L Wei, Z Zhang, Y Qiao, J Li. Effects of activation temperature on densities and volumetric CO2 adsorption performance of alkali-activated carbons. Fuel, 2019, 238 : 232– 239 https://doi.org/10.1016/j.fuel.2018.10.122
30
J Liu, X Liu, Y Sun, C Sun, H Liu, L A Stevens, K Li, C E Snape. High density and super ultra-microporous-activated carbon macrospheres with high volumetric capacity for CO2 capture. Advanced Sustainable Systems, 2018, 2( 2): 1700115 https://doi.org/10.1002/adsu.201700115
31
E Haffner-Staton, N Balahmar, R Mokaya. High yield and high packing density porous carbon for unprecedented CO2 capture from the first attempt at activation of air-carbonized biomass. Journal of Materials Chemistry A, 2016, 4( 34): 13324– 13335 https://doi.org/10.1039/C6TA06407H
32
L Guo, J Yang, G Hu, X Hu, L Wang, Y Dong, H DaCosta, M Fan. Role of hydrogen peroxide preoxidizing on CO2 adsorption of nitrogen-doped carbons produced from coconut shell. ACS Sustainable Chemistry & Engineering, 2016, 4( 5): 2806– 2813 https://doi.org/10.1021/acssuschemeng.6b00327
33
Z Fan, Z Cheng, J Feng, Z Xie, Y Liu, Y Wang. Ultrahigh volumetric performance of a free-standing compact N-doped holey graphene/PANI slice for supercapacitors. Journal of Materials Chemistry A, 2017, 5( 32): 16689– 16701 https://doi.org/10.1039/C7TA04384H
34
L Wang, F Sun, J Gao, X Pi, T Pei, Z Qie, G Zhao, Y Qin. A novel melt infiltration method promoting porosity development of low-rank coal derived activated carbon as supercapacitor electrode materials. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91 : 588– 596 https://doi.org/10.1016/j.jtice.2018.06.014
35
A Kommu, J K Singh. Separation of ethanol and water using graphene and hexagonal boron nitride slit pores: a molecular dynamics study. Journal of Physical Chemistry C, 2017, 121( 14): 7867– 7880 https://doi.org/10.1021/acs.jpcc.7b00172
36
H Zhou, J Xie, B Liu, S Ban. Molecular simulation of methane adsorption in activated carbon: the impact of pore structure and surface chemistry. Molecular Simulation, 2016, 42( 9): 776– 782 https://doi.org/10.1080/08927022.2015.1089995
37
A K Malde, L Zuo, M Breeze, M Stroet, D Poger, P C Nair, C Oostenbrink, A E Mark. An automated force field topology builder (ATB) and repository: version 1.0. Journal of Chemical Theory and Computation, 2011, 7( 12): 4026– 4037 https://doi.org/10.1021/ct200196m
38
D L Miller, K D Kubista, G M Rutter, M Ruan, W A De Heer, M Kindermann, P N First, J A Stroscio. Real-space mapping of magnetically quantized graphene states. Nature Physics, 2010, 6( 10): 811– 817 https://doi.org/10.1038/nphys1736
39
Z Qie, F Sun, Z Zhang, X Pi, Z Qu, J Gao, G Zhao. A facile trace potassium assisted catalytic activation strategy regulating pore topology of activated coke for combined removal of toluene/SO2/NO. Chemical Engineering Journal, 2020, 389 : 124262 https://doi.org/10.1016/j.cej.2020.124262
40
L Wang, F Sun, F Hao, Z Qu, J Gao, M Liu, K Wang, G Zhao, Y Qin. A green trace K2CO3 induced catalytic activation strategy for developing coal-converted activated carbon as advanced candidate for CO2 adsorption and supercapacitors. Chemical Engineering Journal, 2020, 383 : 123205 https://doi.org/10.1016/j.cej.2019.123205
41
F Sun, J Gao, Y Yang, Y Zhu, L Wang, X Pi, X Liu, Z Qu, S Wu, Y Qin. One-step ammonia activation of Zhundong coal generating nitrogen-doped microporous carbon for gas adsorption and energy storage. Carbon, 2016, 109 : 747– 754 https://doi.org/10.1016/j.carbon.2016.08.076
42
M G Plaza, A S González, J J Pis, F Rubiera, C Pevida. Production of microporous biochars by single-step oxidation: effect of activation conditions on CO2 capture. Applied Energy, 2014, 114 : 551– 562 https://doi.org/10.1016/j.apenergy.2013.09.058
43
D P Vargas, L Giraldo, A Erto, J C Moreno-Piraján. Chemical modification of activated carbon monoliths for CO2 adsorption. Journal of Thermal Analysis and Calorimetry, 2013, 114( 3): 1039– 1047 https://doi.org/10.1007/s10973-013-3086-3
44
X L Zhu, P Y Wang, C Peng, J Yang, X B Yan. Activated carbon produced from paulownia sawdust for high-performance CO2 sorbents. Chinese Chemical Letters, 2014, 25( 6): 929– 932 https://doi.org/10.1016/j.cclet.2014.03.039
45
M G Plaza, A S González, C Pevida, J J Pis, F Rubiera. Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications. Applied Energy, 2012, 99 : 272– 279 https://doi.org/10.1016/j.apenergy.2012.05.028
46
G K Parshetti, S Chowdhury, R Balasubramanian. Biomass derived low-cost microporous adsorbents for efficient CO2 capture. Fuel, 2015, 148 : 246– 254 https://doi.org/10.1016/j.fuel.2015.01.032
47
J Wang, A Heerwig, M R Lohe, M Oschatz, L Borchardt, S Kaskel. Fungi-based porous carbons for CO2 adsorption and separation. Journal of Materials Chemistry, 2012, 22( 28): 13911– 13913 https://doi.org/10.1039/c2jm32139d
48
M Sevilla, A B Fuertes. Sustainable porous carbons with a superior performance for CO2 capture. Energy & Environmental Science, 2011, 4( 5): 1765– 1771 https://doi.org/10.1039/c0ee00784f
49
A Silvestre-Albero, J Silvestre-Albero, M Martínez-Escandell, F Rodríguez-Reinoso. Micro/mesoporous activated carbons derived from polyaniline: promising candidates for CO2 adsorption. Industrial & Engineering Chemistry Research, 2014, 53( 40): 15398– 15405 https://doi.org/10.1021/ie5013129
50
L Wang, F Sun, J Gao, Y Zhu, T Pei, L Li, G Zhao, Y Qin. Pore reorganization of porous carbon during trace calcium-catalyzed coal activation for adsorption applications. Energy & Fuels, 2018, 32( 9): 9191– 9201 https://doi.org/10.1021/acs.energyfuels.8b01974