Theoretical and experimental study on the fluidity performance of hard-to-fluidize carbon nanotubes-based CO2 capture sorbents
Mahsa Javidi Nobarzad1, Maryam Tahmasebpoor1(), Mohammad Heidari1, Covadonga Pevida2()
1. Faculty of Chemical & Petroleum Engineering, University of Tabriz, Tabriz 51666-16471, Iran 2. Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Oviedo 33011, Spain
Carbon nanotubes-based materials have been identified as promising sorbents for efficient CO2 capture in fluidized beds, suffering from insufficient contact with CO2 for the high-level CO2 capture capacity. This study focuses on promoting the fluidizability of hard-to-fluidize pure and synthesized silica-coated amine-functionalized carbon nanotubes. The novel synthesized sorbent presents a superior sorption capacity of about 25 times higher than pure carbon nanotubes during 5 consecutive adsorption/regeneration cycles. The low-cost fluidizable-SiO2 nanoparticles are used as assistant material to improve the fluidity of carbon nanotubes-based sorbents. Results reveal that a minimum amount of 7.5 and 5 wt% SiO2 nanoparticles are required to achieve an agglomerate particulate fluidization behavior for pure and synthesized carbon nanotubes, respectively. Pure carbon nanotubes + 7.5 wt% SiO2 and synthesized carbon nanotubes + 5 wt% SiO2 indicates an agglomerate particulate fluidization characteristic, including the high-level bed expansion ratio, low minimum fluidization velocity (1.5 and 1.6 cm·s–1), high Richardson−Zakin index (5.2 and 5.3 > 5), and low Π value (83.2 and 84.8 < 100, respectively). Chemical modification of carbon nanotubes causes not only enhanced CO 2 uptake capacity but also decreases the required amount of silica additive to reach a homogeneous fluidization behavior for synthesized carbon nanotubes sorbent.
. [J]. Frontiers of Chemical Science and Engineering, 2022, 16(10): 1460-1475.
Mahsa Javidi Nobarzad, Maryam Tahmasebpoor, Mohammad Heidari, Covadonga Pevida. Theoretical and experimental study on the fluidity performance of hard-to-fluidize carbon nanotubes-based CO2 capture sorbents. Front. Chem. Sci. Eng., 2022, 16(10): 1460-1475.
F Sattari, M Tahmasebpoor, J M Valverde, C Ortiz, M Mohammadpourfard. Modelling of a fluidized bed carbonator reactor for post-combustion CO2 capture considering bed hydrodynamics and sorbent characteristics. Chemical Engineering Journal, 2021, 406 : 126762 https://doi.org/10.1016/j.cej.2020.126762
2
S Roussanaly, M Vitvarova, R Anantharaman, D Berstad, B Hagen, J Jakobsen, V Novotny, G Skaugen. Techno-economic comparison of three technologies for pre-combustion CO2 capture from a lignite-fired IGCC. Frontiers of Chemical Science and Engineering, 2020, 14( 3): 436– 452 https://doi.org/10.1007/s11705-019-1870-8
3
S Hafeez, T Safdar, E Pallari, G Manos, E Aristodemou, Z Zhang, S Al-Salem, A Constantinou. CO2 capture using membrane contactors: a systematic literature review. Frontiers of Chemical Science and Engineering, 2021, 15( 4): 720– 754 https://doi.org/10.1007/s11705-020-1992-z
4
S Rama, Y Zhang, F Tchuenbou-Magaia, Y Ding, Y Li. Encapsulation of 2-amino-2-methyl-1-propanol with tetraethyl orthosilicate for CO2 capture. Frontiers of Chemical Science and Engineering, 2019, 13( 4): 672– 683 https://doi.org/10.1007/s11705-019-1856-6
5
G Xiao, P Xiao, A Hoadley, P Webley. Integrated adsorption and absorption process for post-combustion CO2 capture. Frontiers of Chemical Science and Engineering, 2021, 15( 3): 483– 492 https://doi.org/10.1007/s11705-020-1964-3
6
M Ghahramaninezhad, F Mohajer, M N Shahrak. Improved CO2 capture performances of ZIF-90 through sequential reduction and lithiation reactions to form a hard/hard structure. Frontiers of Chemical Science and Engineering, 2020, 14( 3): 425– 435 https://doi.org/10.1007/s11705-019-1873-5
7
Z Xu, T Jiang, H Zhang, Y Zhao, X Ma, S Wang. Efficient MgO-doped CaO sorbent pellets for high temperature CO2 capture. Frontiers of Chemical Science and Engineering, 2021, 15( 3): 698– 708 https://doi.org/10.1007/s11705-020-1981-2
8
Q Xiao, X Tang, Y Liu, Y Zhong, W Zhu. Comparison study on strategies to prepare nanocrystalline Li2ZrO3-based absorbents for CO2 capture at high temperatures. Frontiers of Chemical Science and Engineering, 2013, 7( 3): 297– 302 https://doi.org/10.1007/s11705-013-1346-1
9
M J Nobarzad, M Tahmasebpoor, M Imani, C Pevida, S Z Heris. Improved CO2 adsorption capacity and fluidization behavior of silica-coated amine-functionalized multi-walled carbon nanotubes. Journal of Environmental Chemical Engineering, 2021, 9( 4): 105786 https://doi.org/10.1016/j.jece.2021.105786
10
M Heidari, M Tahmasebpoor, S B Mousavi, C Pevida. CO2 capture activity of a novel CaO adsorbent stabilized with (ZrO2 + Al2O3 + CeO2)-based additive under mild and realistic calcium looping conditions. Journal of CO2 Utilization , 2021, 53 : 101747
11
C Gu, Y Liu, W Wang, J Liu, J Hu. Effects of functional groups for CO2 capture using metal organic frameworks. Frontiers of Chemical Science and Engineering, 2021, 15( 2): 437– 449 https://doi.org/10.1007/s11705-020-1961-6
12
Y Ban, M Zhao, W Yang. Metal-organic framework-based CO2 capture: from precise material design to high-efficiency membranes. Frontiers of Chemical Science and Engineering, 2020, 14( 2): 188– 215 https://doi.org/10.1007/s11705-019-1872-6
13
L Keller, B Ohs, J Lenhart, L Abduly, P Blanke, M Wessling. High capacity polyethylenimine impregnated microtubes made of carbon nanotubes for CO2 capture. Carbon, 2018, 126 : 338– 345 https://doi.org/10.1016/j.carbon.2017.10.023
14
C Lu, H Bai, B Wu, F Su, J F Hwang. Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites. Energy & Fuels, 2008, 22( 5): 3050– 3056 https://doi.org/10.1021/ef8000086
15
S B Mousavi, S Zeinali Heris. Experimental investigation of ZnO nanoparticles effects on thermophysical and tribological properties of diesel oil. International Journal of Hydrogen Energy, 2020, 45( 43): 23603– 23614 https://doi.org/10.1016/j.ijhydene.2020.05.259
16
S S Seyedi, M R Shabgard, S B Mousavi, S Z Heris. The impact of SiC, Al2O3, and B2O3 abrasive particles and temperature on wear characteristics of 18Ni (300) maraging steel in abrasive flow machining (AFM). International Journal of Hydrogen Energy, 2021, 46( 68): 33991– 34001 https://doi.org/10.1016/j.ijhydene.2021.04.051
17
S B Mousavi, Heris S Zeinali, P Estellé. Viscosity, tribological and physicochemical features of ZnO and MoS2 diesel oil-based nanofluids: an experimental study. Fuel, 2021, 293 : 120481 https://doi.org/10.1016/j.fuel.2021.120481
18
S Hu, X Liu. Development of a hydrodynamic model and the corresponding virtual software for dual-loop circulating fluidized beds. Frontiers of Chemical Science and Engineering, 2021, 15( 3): 579– 590 https://doi.org/10.1007/s11705-020-1953-6
19
M Heidari, M Tahmasebpoor, A Antzaras, A A Lemonidou. CO2 capture and fluidity performance of CaO-based sorbents: effect of Zr, Al and Ce additives in tri-, bi- and mono-metallic configurations. Process Safety and Environmental Protection, 2020, 144 : 349– 365 https://doi.org/10.1016/j.psep.2020.07.041
20
B Azimi, M Tahmasebpoor, P E Sanchez-Jimenez, A Perejon, J M Valverde. Multicycle CO2 capture activity and fluidizability of Al-based synthesized CaO sorbents. Chemical Engineering Journal, 2019, 358 : 679– 690 https://doi.org/10.1016/j.cej.2018.10.061
21
R Atif, F Inam. Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein Journal of Nanotechnology, 2016, 7( 1): 1174– 1196 https://doi.org/10.3762/bjnano.7.109
22
W Yao, G Guangsheng, W Fei, W Jun. Fluidization and agglomerate structure of SiO2 nanoparticles. Powder Technology, 2002, 124( 1): 152– 159 https://doi.org/10.1016/S0032-5910(01)00491-0
23
O Amjadi, M Tahmasebpoor. Improving fluidization behavior of cohesive Ca(OH)2 adsorbent using hydrophilic silica nanoparticles: parametric investigation. Particuology, 2018, 5 : 52– 61 https://doi.org/10.1016/j.partic.2017.12.004
24
S W Kim. Effect of particle size on carbon nanotube aggregates behavior in dilute phase of a fluidized bed. Processes, 2018, 6( 8): 121 https://doi.org/10.3390/pr6080121
25
O Amjadi, M Tahmasebpoor, H Aghdasinia. Fluidization behavior of cohesive Ca(OH)2 powders mixed with hydrophobic silica nanoparticles. Chemical Engineering & Technology, 2019, 42( 2): 287– 296 https://doi.org/10.1002/ceat.201800007
26
Y Rahimvandi Noupoor, M Tahmasebpoor. A novel internal assistance method for enhanced fluidization of nanoparticles. Korean Journal of Chemical Engineering, 2019, 36( 8): 1377– 1387 https://doi.org/10.1007/s11814-019-0318-7
27
M Tahmasebpoor, Y R Noupoor, P Badamchizadeh. Fluidity enhancement of hard-to-fluidize nanoparticles by mixing with hydrophilic nanosilica and fluid catalytic cracking particles: experimental and theoretical study. Physics of Fluids, 2019, 31( 7): 073301 https://doi.org/10.1063/1.5100064
28
H Yu, Q Zhang, G Gu, Y Wang, G Luo, F Wei. Hydrodynamics and gas mixing in a carbon nanotube agglomerate fluidized bed. AIChE Journal. American Institute of Chemical Engineers, 2006, 52( 12): 4110– 4123 https://doi.org/10.1002/aic.11031
29
M S Lee, S J Park. Silica-coated multi-walled carbon nanotubes impregnated with polyethyleneimine for carbon dioxide capture under the flue gas condition. Journal of Solid State Chemistry, 2015, 226 : 17– 23 https://doi.org/10.1016/j.jssc.2015.01.031
30
M Tahmasebpoor, R Ghasemi Seif Abadi, Y Rahimvandi Noupoor, P Badamchizadeh. Model based on electrostatic repulsion and hydrogen bond forces to estimate the size of nanoparticle agglomerates in fluidization. Industrial & Engineering Chemistry Research, 2016, 55( 50): 12939– 12948 https://doi.org/10.1021/acs.iecr.6b02792
31
Y Shao, Z Li, W Zhong, Z Bian, A Yu. Minimum fluidization velocity of particles with different size distributions at elevated pressures and temperatures. Chemical Engineering Science, 2020, 216 : 115555 https://doi.org/10.1016/j.ces.2020.115555
L F Hakim, J L Portman, M D Casper, A W Weimer. Aggregation behavior of nanoparticles in fluidized beds. Powder Technology, 2005, 160( 3): 149– 160 https://doi.org/10.1016/j.powtec.2005.08.019
34
J Yang, T Zhou, L Song. Agglomerating vibro-fluidization behavior of nano-particles. Advanced Powder Technology, 2009, 20( 2): 158– 163 https://doi.org/10.1016/j.apt.2008.06.002
35
J B Romero, L N Johanson. Factors affecting fluidized bed quality. Chemical Engineering Progress Symposium Series, 1958, 58 : 28– 37
36
C Zhu, Q Yu, R N Dave, R Pfeffer. Gas fluidization characteristics of nanoparticle agglomerates. AIChE Journal. American Institute of Chemical Engineers, 2005, 51( 2): 426– 439 https://doi.org/10.1002/aic.10319
37
L Aljerf. High-efficiency extraction of bromocresol purple dye and heavy metals as chromium from industrial effluent by adsorption onto a modified surface of zeolite: kinetics and equilibrium study. Journal of Environmental Management, 2018, 225 : 120– 132 https://doi.org/10.1016/j.jenvman.2018.07.048
38
Amaral Montanheiro T L do, F H Cristóvan, J P B Machado, D B Tada, N Durán, A P Lemes. Effect of MWCNT functionalization on thermal and electrical properties of PHBV/MWCNT nanocomposites. Journal of Materials Research, 2015, 30( 1): 55– 65 https://doi.org/10.1557/jmr.2014.303
39
S C Hsu, C Lu, F Su, W Zeng, W Chen. Thermodynamics and regeneration studies of CO2 adsorption on multi-walled carbon nanotubes. Chemical Engineering Science, 2010, 65( 4): 1354– 1361 https://doi.org/10.1016/j.ces.2009.10.005
40
N Janakiraman, M Johnson. Functional groups of tree ferns (Cyathea) using FTIR: chemotaxonomic implications. Romanian Journal of Biophysics, 2015, 25( 2): 131– 141
41
M Sianipar, S H Kim, F Iskandar, I G Wenten. Functionalized carbon nanotube (CNT) membrane: progress and challenges. RSC Advances, 2017, 7( 81): 51175– 51198 https://doi.org/10.1039/C7RA08570B
42
M Pumera, A Ambrosi, E L K Chng. Impurities in graphenes and carbon nanotubes and their influence on the redox properties. Chemical Science (Cambridge), 2012, 3( 12): 3347– 3355 https://doi.org/10.1039/c2sc21374e
43
D Tasis, N Tagmatarchis, A Bianco, M Prato. Chemistry of carbon nanotubes. Chemical Reviews, 2006, 106( 3): 1105– 1136 https://doi.org/10.1021/cr050569o
44
J Yang, Y Xu, C Su, S Nie, Z Li. Synthesis of hierarchical nanohybrid CNT@Ni-PS and its applications in enhancing the tribological, curing and thermal properties of epoxy nanocomposites. Frontiers of Chemical Science and Engineering, 2021, 15( 5): 1– 15 https://doi.org/10.1007/s11705-020-2007-9
45
A H Berger, A S Bhown. Comparing physisorption and chemisorption solid sorbents for use separating CO2 from flue gas using temperature swing adsorption. Energy Procedia, 2011, 4 : 562– 567 https://doi.org/10.1016/j.egypro.2011.01.089
46
K S Sánchez-Zambrano, Duarte L Lima, Maia D A Soares, E Vilarrasa-García, M Bastos-Neto, E Rodríguez-Castellón, de Azevedo D C Silva. CO2 capture with mesoporous silicas modified with amines by double functionalization: assessment of adsorption/desorption cycles. Materials, 2018, 11( 6): 887 https://doi.org/10.3390/ma11060887
47
H Krupp, G Sperling. Theory of adhesion of small particles. Journal of Applied Physics, 1966, 37( 11): 4176– 4180 https://doi.org/10.1063/1.1707996
48
X Zhu, Q Zhang, C Huang, Y Wang, C Yang, F Wei. Validation of surface coating with nanoparticles to improve the flowability of fine cohesive powders. Particuology, 2017, 30 : 53– 61 https://doi.org/10.1016/j.partic.2016.09.001
49
C Xu, J-X Zhu. Effects of gas type and temperature on fine particle fluidization. China Particuology, 2006, 4( 3−4): 114– 121
50
Q Guo, J Zhang, J Hao. Flow characteristics in an acoustic bubbling fluidized bed at high temperature. Chemical Engineering and Processing, 2011, 50( 3): 331– 337 https://doi.org/10.1016/j.cep.2010.10.003