Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2022, Vol. 16 Issue (11): 1560-1583   https://doi.org/10.1007/s11705-022-2160-4
  本期目录
Ultrasonic emulsification: basic characteristics, cavitation, mechanism, devices and application
Chaoqun Yao1,3, Shuainan Zhao2, Lixue Liu1,4, Zhikai Liu1,3, Guangwen Chen1()
1. Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
2. School of Chemical Engineering, Northwest University, Xi’an 710069, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
4. School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
 全文: PDF(22509 KB)   HTML
Abstract

Emulsion systems are widely applied in agriculture, food, cosmetic, pharmaceutical and biomedical industries. Ultrasound has attracted much attention in emulsion preparation, especially for nanoemulsion, due to its advantages of being eco-friendly, cost-effective and energy-efficient. This review provides an overview for readers to the area of ultrasonic emulsification technology. It briefly introduces and summarizes knowledge of ultrasonic emulsification, including emulsion characteristics, acoustic cavitation, emulsification mechanism, ultrasonic devices and applications. The combination of microfluidics and ultrasound is highlighted with huge advantages in controlling cavitation phenomena and emulsification intensification. A novel scale of C0.6/μD0.33EV is proposed to be able to compare the energy efficiency of emulsion preparation in different devices.

Key wordsnanoemulsion    ultrasound    microreactor    multiphase    energy
收稿日期: 2021-11-30      出版日期: 2022-12-13
Corresponding Author(s): Guangwen Chen   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2022, 16(11): 1560-1583.
Chaoqun Yao, Shuainan Zhao, Lixue Liu, Zhikai Liu, Guangwen Chen. Ultrasonic emulsification: basic characteristics, cavitation, mechanism, devices and application. Front. Chem. Sci. Eng., 2022, 16(11): 1560-1583.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2160-4
https://academic.hep.com.cn/fcse/CN/Y2022/V16/I11/1560
Item Macroemulsion Nanoemulsion Microemulsion
Particle size (diameter) 1–100 μm 20–500 nm 10–100 nm
Particle shape Spherical Spherical Spherical, non-spherical
Particle structure (O/W) Oil core-hydrophobic surfactant tails-hydrophilic shell of surfactant groups Oil core-hydrophobic surfactant tails-hydrophilic shell of surfactant groups Oil molecules incorporated into a micelle as a separate core or between the surfactant tails
Stability Thermodynamically unstable, weakly kinetically stable Thermodynamically unstable, kinetically stable Thermodynamically stable
Preparation methods High & low energy methods High & low energy methods Low energy methods
Polydispersity High Low Very low
Surfactant amount Low High Very high
Optical properties Milk-like Translucent, transparent Transparent
Tab.1  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
1 A Gupta, H B Eral, T A Hatton, P S Doyle. Nanoemulsions: formation, properties and applications. Soft Matter, 2016, 12( 11): 2826– 2841
https://doi.org/10.1039/C5SM02958A
2 I Partheniadis R R Shah I Nikolakakis. Application of ultrasonics for nanosizing drugs and drug formulations. Journal of Dispersion Science and Technology, 2021, https://doi.org/10.1080/01932691.2021.1878035
3 R J Wilson, Y Li, G Yang, C X Zhao. Nanoemulsions for drug delivery. Particuology, 2021, 64 : 85– 97
https://doi.org/10.1016/j.partic.2021.05.009
4 T S Leong, G J Martin, M Ashokkumar. Ultrasonic encapsulation—a review. Ultrasonics Sonochemistry, 2017, 35 : 605– 614
https://doi.org/10.1016/j.ultsonch.2016.03.017
5 A Taha, E Ahmed, A Ismaiel, M Ashokkumar, X Xu, S Pan, H Hu. Ultrasonic emulsification: an overview on the preparation of different emulsifiers-stabilized emulsions. Trends in Food Science & Technology, 2020, 105 : 363– 377
https://doi.org/10.1016/j.tifs.2020.09.024
6 S M M Modarres-Gheisari, R Gavagsaz-Ghoachani, M Malaki, P Safarpour, M Zandi. Ultrasonic nano-emulsification—a review. Ultrasonics Sonochemistry, 2019, 52 : 88– 105
https://doi.org/10.1016/j.ultsonch.2018.11.005
7 T Leong, T Wooster, S Kentish, M Ashokkumar. Minimising oil droplet size using ultrasonic emulsification. Ultrasonics Sonochemistry, 2009, 16( 6): 721– 727
https://doi.org/10.1016/j.ultsonch.2009.02.008
8 S Mahdi Jafari, Y He, B Bhandari. Nano-emulsion production by sonication and microfluidization—a comparison. International Journal of Food Properties, 2006, 9( 3): 475– 485
https://doi.org/10.1080/10942910600596464
9 V S Periasamy, J Athinarayanan, A A Alshatwi. Anticancer activity of an ultrasonic nanoemulsion formulation of Nigella sativaL. essential oil on human breast cancer cells. Ultrasonics Sonochemistry, 2016, 31 : 449– 455
https://doi.org/10.1016/j.ultsonch.2016.01.035
10 S Kentish, T Wooster, M Ashokkumar, S Balachandran, R Mawson, L Simons. The use of ultrasonics for nanoemulsion preparation. Innovative Food Science & Emerging Technologies, 2008, 9( 2): 170– 175
https://doi.org/10.1016/j.ifset.2007.07.005
11 A S Peshkovsky, S Bystryak. Continuous-flow production of a pharmaceutical nanoemulsion by high-amplitude ultrasound: process scale-up. Chemical Engineering and Processing, 2014, 82 : 132– 136
https://doi.org/10.1016/j.cep.2014.05.007
12 N Agrawal, G L Maddikeri, A B Pandit. Sustained release formulations of citronella oil nanoemulsion using cavitational techniques. Ultrasonics Sonochemistry, 2017, 36 : 367– 374
https://doi.org/10.1016/j.ultsonch.2016.11.037
13 S G Gaikwad, A B Pandit. Ultrasound emulsification: effect of ultrasonic and physicochemical properties on dispersed phase volume and droplet size. Ultrasonics Sonochemistry, 2008, 15( 4): 554– 563
https://doi.org/10.1016/j.ultsonch.2007.06.011
14 M Sivakumar, S Y Tang, K W Tan. Cavitation technology—a greener processing technique for the generation of pharmaceutical nanoemulsions. Ultrasonics Sonochemistry, 2014, 21( 6): 2069– 2083
https://doi.org/10.1016/j.ultsonch.2014.03.025
15 V Ghosh, A Mukherjee, N Chandrasekaran. Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrasonics Sonochemistry, 2013, 20( 1): 338– 344
https://doi.org/10.1016/j.ultsonch.2012.08.010
16 S Abbas, K Hayat, E Karangwa, M Bashari, X Zhang. An overview of ultrasound-assisted food-grade nanoemulsions. Food Engineering Reviews, 2013, 5( 3): 139– 157
https://doi.org/10.1007/s12393-013-9066-3
17 T Awad, H Moharram, O Shaltout, D Asker, M Youssef. Applications of ultrasound in analysis, processing and quality control of food: a review. Food Research International, 2012, 48( 2): 410– 427
https://doi.org/10.1016/j.foodres.2012.05.004
18 V Akdeniz, A S Akalın. New approach for yoghurt and ice cream production: high-intensity ultrasound. Trends in Food Science & Technology, 2019, 86 : 392– 398
https://doi.org/10.1016/j.tifs.2019.02.046
19 S M Saani, J Abdolalizadeh, S Z Heris. Ultrasonic/sonochemical synthesis and evaluation of nanostructured oil in water emulsions for topical delivery of protein drugs. Ultrasonics Sonochemistry, 2019, 55 : 86– 95
https://doi.org/10.1016/j.ultsonch.2019.03.018
20 J Rao, D J McClements. Lemon oil solubilization in mixed surfactant solutions: rationalizing microemulsion & nanoemulsion formation. Food Hydrocolloids, 2012, 26( 1): 268– 276
https://doi.org/10.1016/j.foodhyd.2011.06.002
21 M M Fryd, T G Mason. Advanced nanoemulsions. Annual Review of Physical Chemistry, 2012, 63( 1): 493– 518
https://doi.org/10.1146/annurev-physchem-032210-103436
22 M Kong, X G Chen, D K Kweon, H J Park. Investigations on skin permeation of hyaluronic acid based nanoemulsion as transdermal carrier. Carbohydrate Polymers, 2011, 86( 2): 837– 843
https://doi.org/10.1016/j.carbpol.2011.05.027
23 N Anton, J P Benoit, P Saulnier. Design and production of nanoparticles formulated from nano-emulsion templates—a review. Journal of Controlled Release, 2008, 128( 3): 185– 199
https://doi.org/10.1016/j.jconrel.2008.02.007
24 D J McClements. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, 2012, 8( 6): 1719– 1729
https://doi.org/10.1039/C2SM06903B
25 S Davis, H Round, T Purewal. Ostwald ripening and the stability of emulsion systems: an explanation for the effect of an added third component. Journal of Colloid and Interface Science, 1981, 80( 2): 508– 511
https://doi.org/10.1016/0021-9797(81)90210-1
26 N Anton, T F Vandamme. Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharmaceutical Research, 2011, 28( 5): 978– 985
https://doi.org/10.1007/s11095-010-0309-1
27 W Thomson. 4. On the equilibrium of vapour at a curved surface of liquid. Proceedings of the Royal Society of Edinburgh, 1872, 7 : 63– 68
https://doi.org/10.1017/S0370164600041729
28 T Yotsuyanagi, W I Higuchi, A H Ghanem. Theoretical treatment of diffusional transport into and through an oil−water emulsion with an interfacial barrier at the oil−water interface. Journal of Pharmaceutical Sciences, 1973, 62( 1): 40– 43
https://doi.org/10.1002/jps.2600620106
29 J Davies. Drop sizes of emulsions related to turbulent energy dissipation rates. Chemical Engineering Science, 1985, 40( 5): 839– 842
https://doi.org/10.1016/0009-2509(85)85036-3
30 A Forgiarini, J Esquena, C Gonzalez, C Solans. Formation of nano-emulsions by low-energy emulsification methods at constant temperature. Langmuir, 2001, 17( 7): 2076– 2083
https://doi.org/10.1021/la001362n
31 J Davies. A physical interpretation of drop sizes in homogenizers and agitated tanks, including the dispersion of viscous oils. Chemical Engineering Science, 1987, 42( 7): 1671– 1676
https://doi.org/10.1016/0009-2509(87)80172-0
32 G I Taylor. The formation of emulsions in definable fields of flow. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1934, 146( 858): 501– 523
33 J O Hinze. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE Journal. American Institute of Chemical Engineers, 1955, 1( 3): 289– 295
https://doi.org/10.1002/aic.690010303
34 A Gupta, H B Eral, T A Hatton, P S Doyle. Controlling and predicting droplet size of nanoemulsions: scaling relations with experimental validation. Soft Matter, 2016, 12( 5): 1452– 1458
https://doi.org/10.1039/C5SM02051D
35 R V Calabrese, T Chang, P Dang. Drop breakup in turbulent stirred-tank contactors. Part I: Effect of dispersed-phase viscosity. AIChE Journal, 1986, 32( 4): 657– 666
https://doi.org/10.1002/aic.690320416
36 B Abismaïl, J Canselier, A Wilhelm, H Delmas, C Gourdon. Emulsification processes: on-line study by multiple light scattering measurements. Ultrasonics Sonochemistry, 2000, 7( 4): 187– 192
https://doi.org/10.1016/S1350-4177(00)00040-7
37 D F Rivas, P Cintas, H J Gardeniers. Merging microfluidics and sonochemistry: towards greener and more efficient micro-sono-reactors. Chemical Communications (Cambridge), 2012, 48( 89): 10935– 10947
https://doi.org/10.1039/c2cc33920j
38 M Ashokkumar, J Lee, S Kentish, F Grieser. Bubbles in an acoustic field: an overview. Ultrasonics Sonochemistry, 2007, 14( 4): 470– 475
https://doi.org/10.1016/j.ultsonch.2006.09.016
39 K Yasui. Influence of ultrasonic frequency on multibubble sonoluminescence. Journal of the Acoustical Society of America, 2002, 112( 4): 1405– 1413
https://doi.org/10.1121/1.1502898
40 L H Thompson, L Doraiswamy. Sonochemistry: science and engineering. Industrial & Engineering Chemistry Research, 1999, 38( 4): 1215– 1249
https://doi.org/10.1021/ie9804172
41 R Mettin. From a single bubble to bubble structures in acoustic cavitation. In: Oscillations, Waves and Interactions. Göttingen: University of Göttingen, 2007
42 P Tho, R Manasseh, A Ooi. Cavitation microstreaming patterns in single and multiple bubble systems. Journal of Fluid Mechanics, 2007, 576 : 191– 233
https://doi.org/10.1017/S0022112006004393
43 S Zhao, C Yao, Q Zhang, G Chen, Q Yuan. Acoustic cavitation and ultrasound-assisted nitration process in ultrasonic microreactors: the effects of channel dimension, solvent properties and temperature. Chemical Engineering Journal, 2019, 374 : 68– 78
https://doi.org/10.1016/j.cej.2019.05.157
44 S Zhao, C Yao, Z Dong, G Chen, Q Yuan. Role of ultrasonic oscillation in chemical processes in microreactors: a mesoscale issue. Particuology, 2020, 48 : 88– 99
https://doi.org/10.1016/j.partic.2018.08.009
45 T Leighton. The Acoustic Bubble. Cambridge, Massachusetts: Academic Press INC, 1997,
46 T E Faber. Fluid Dynamics for Physicists. London: Cambridge University Press, 1995,
47 D G Offin, P R Birkin, T G Leighton. An electrochemical and high-speed imaging study of micropore decontamination by acoustic bubble entrapment. Physical Chemistry Chemical Physics, 2014, 16( 10): 4982– 4989
https://doi.org/10.1039/c3cp55088e
48 S Zhao, C Yao, Z Dong, Y Liu, G Chen, Q Yuan. Intensification of liquid−liquid two-phase mass transfer by oscillating bubbles in ultrasonic microreactor. Chemical Engineering Science, 2018, 186 : 122– 134
https://doi.org/10.1016/j.ces.2018.04.042
49 M S Longuet-Higgins. Resonance in nonlinear bubble oscillations. Journal of Fluid Mechanics, 1991, 224 : 531– 549
https://doi.org/10.1017/S0022112091001866
50 E K Zholkovskij, V I Kovalchuk, V B Fainerman, G Loglio, J Krägel, R Miller, S A Zholob, S S Dukhin. Resonance behavior of oscillating bubbles. Journal of Colloid and Interface Science, 2000, 224( 1): 47– 55
https://doi.org/10.1006/jcis.1999.6669
51 M Minnaert. XVI. On musical air-bubbles and the sounds of running water. London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1933, 16( 104): 235– 248
https://doi.org/10.1080/14786443309462277
52 C Wang, S V Jalikop, S Hilgenfeldt. Efficient manipulation of microparticles in bubble streaming flows. Biomicrofluidics, 2012, 6( 1): 12801– 1280111
https://doi.org/10.1063/1.3654949
53 Z Dong, S Zhao, Y Zhang, C Yao, Q Yuan, G Chen. Mixing and residence time distribution in ultrasonic microreactors. AIChE Journal, 2017, 63( 4): 1404– 1418
https://doi.org/10.1002/aic.15493
54 C Wang, B Rallabandi, S Hilgenfeldt. Frequency dependence and frequency control of microbubble streaming flows. Physics of Fluids, 2013, 25( 2): 022002
https://doi.org/10.1063/1.4790803
55 J C Colmenares, G Chatel. Sonochemistry. Berlin: Springer, 2016, 225 : 254
56 Z Dong, D Fernandez Rivas, S Kuhn. Acoustophoretic focusing effects on particle synthesis and clogging in microreactors. Lab on a Chip, 2019, 19( 2): 316– 327
https://doi.org/10.1039/C8LC00675J
57 S N Zhao C Q Yao Z K Liu Q Zhang G W Chen Q Yuan. Process intensification of high viscosity extraction system in microreactor via ultrasound-driven microbubbles. CIESC Journal, 2020, 71(9): 4152– 4160 (in Chinese)
58 D Ahmed, X Mao, B K Juluri, T J Huang. A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles. Microfluidics and Nanofluidics, 2009, 7( 5): 727– 731
https://doi.org/10.1007/s10404-009-0444-3
59 D Ahmed, X Mao, J Shi, B K Juluri, T J Huang. A millisecond micromixer via single-bubble-based acoustic streaming. Lab on a Chip, 2009, 9( 18): 2738– 2741
https://doi.org/10.1039/b903687c
60 P H Huang, S Zhao, H Bachman, N Nama, Z Li, C Chen, S Yang, M Wu, S P Zhang, T J Huang. Acoustofluidic Synthesis of Particulate Nanomaterials. Advancement of Science, 2019, 6( 19): 1900913
61 Z Dong, C Yao, X Zhang, J Xu, G Chen, Y Zhao, Q Yuan. A high-power ultrasonic microreactor and its application in gas−liquid mass transfer intensification. Lab on a Chip, 2015, 15( 4): 1145– 1152
https://doi.org/10.1039/C4LC01431F
62 Y Iida, K Yasui, T Tuziuti, M Sivakumar, Y Endo. Ultrasonic cavitation in microspace. Chemical Communications (Cambridge), 2004, 20 : 2280– 2281
https://doi.org/10.1039/b410015h
63 Y Iida, T Tuziuti, K Yasui, A Towata, T Kozuka. Bubble motions confined in a microspace observed with stroboscopic technique. Ultrasonics Sonochemistry, 2007, 14( 5): 621– 626
https://doi.org/10.1016/j.ultsonch.2006.10.013
64 Z Dong, C Yao, Y Zhang, G Chen, Q Yuan, J Xu. Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors. AIChE Journal. American Institute of Chemical Engineers, 2016, 62( 4): 1294– 1307
https://doi.org/10.1002/aic.15091
65 F Xu, L Yang, Z Liu, G Chen. Numerical investigation on the hydrodynamics of Taylor flow in ultrasonically oscillating microreactors. Chemical Engineering Science, 2021, 235 : 116477
https://doi.org/10.1016/j.ces.2021.116477
66 K Mc Carogher, Z Dong, D S Stephens, M E Leblebici, R Mettin, S Kuhn. Acoustic resonance and atomization for gas−liquid systems in microreactors. Ultrasonics Sonochemistry, 2021, 75 : 105611
https://doi.org/10.1016/j.ultsonch.2021.105611
67 L Yang, F Xu, Q Zhang, Z Liu, G Chen. Gas−liquid hydrodynamics and mass transfer in microreactors under ultrasonic oscillation. Chemical Engineering Journal, 2020, 397 : 125411
https://doi.org/10.1016/j.cej.2020.125411
68 M Li, H Fogler. Acoustic emulsification. Part 1. The instability of the oil−water interface to form the initial droplets. Journal of Fluid Mechanics, 1978, 88( 3): 499– 511
https://doi.org/10.1017/S0022112078002232
69 M Li, H Fogler. Acoustic emulsification. Part 2. Breakup of the large primary oil droplets in a water medium. Journal of Fluid Mechanics, 1978, 88( 3): 513– 528
https://doi.org/10.1017/S0022112078002244
70 A Cucheval, R Chow. A study on the emulsification of oil by power ultrasound. Ultrasonics Sonochemistry, 2008, 15( 5): 916– 920
https://doi.org/10.1016/j.ultsonch.2008.02.004
71 T S Perdih, M Zupanc, M Dular. Revision of the mechanisms behind oil−water (O/W) emulsion preparation by ultrasound and cavitation. Ultrasonics Sonochemistry, 2019, 51 : 298– 304
https://doi.org/10.1016/j.ultsonch.2018.10.003
72 T Yamamoto, S V Komarov. Liquid jet directionality and droplet behavior during emulsification of two liquids due to acoustic cavitation. Ultrasonics Sonochemistry, 2020, 62 : 104874
https://doi.org/10.1016/j.ultsonch.2019.104874
73 W Lauterborn, T Kurz. Physics of bubble oscillations. Reports on Progress in Physics, 2010, 73( 10): 106501
https://doi.org/10.1088/0034-4885/73/10/106501
74 A Philipp, W Lauterborn. Cavitation erosion by single laser-produced bubbles. Journal of Fluid Mechanics, 1998, 361 : 75– 116
https://doi.org/10.1017/S0022112098008738
75 T Yamamoto, R Matsutaka, S V Komarov. High-speed imaging of ultrasonic emulsification using a water–gallium system. Ultrasonics Sonochemistry, 2021, 71 : 105387
https://doi.org/10.1016/j.ultsonch.2020.105387
76 U Orthaber, J Zevnik, M Dular. Cavitation bubble collapse in a vicinity of a liquid−liquid interface—basic research into emulsification process. Ultrasonics Sonochemistry, 2020, 68 : 105224
https://doi.org/10.1016/j.ultsonch.2020.105224
77 S Zhao, Z Dong, C Yao, Z Wen, G Chen, Q Yuan. Liquid−liquid two-phase flow in ultrasonic microreactors: cavitation, emulsification, and mass transfer enhancement. AIChE Journal. American Institute of Chemical Engineers, 2018, 64( 4): 1412– 1423
https://doi.org/10.1002/aic.16010
78 E Nieves, G Vite, A Kozina, L F Olguin. Ultrasound-assisted production and optimization of mini-emulsions in a microfluidic chip in continuous-flow. Ultrasonics Sonochemistry, 2021, 74 : 105556
https://doi.org/10.1016/j.ultsonch.2021.105556
79 Zwieten R van, B Verhaagen, K Schroën, D F Rivas. Emulsification in novel ultrasonic cavitation intensifying bag reactors. Ultrasonics Sonochemistry, 2017, 36 : 446– 453
https://doi.org/10.1016/j.ultsonch.2016.12.004
80 O Behrend, K Ax, H Schubert. Influence of continuous phase viscosity on emulsification by ultrasound. Ultrasonics Sonochemistry, 2000, 7( 2): 77– 85
https://doi.org/10.1016/S1350-4177(99)00029-2
81 T Kanda Y Kiyama K Suzumori. A nano emulsion generator using a microchannel and a bolt blamped type transducer. In: 2013 IEEE International Ultrasonics Symposium (IUS). New York: IEEE, 2013
82 M Kaci, S Meziani, E Arab-Tehrany, G Gillet, I Desjardins-Lavisse, S Desobry. Emulsification by high frequency ultrasound using piezoelectric transducer: formation and stability of emulsifier free emulsion. Ultrasonics Sonochemistry, 2014, 21( 3): 1010– 1017
https://doi.org/10.1016/j.ultsonch.2013.11.006
83 S Hübner, S Kressirer, D Kralisch, C Bludszuweit-Philipp, K Lukow, I Jänich, A Schilling, H Hieronymus, C Liebner, K Jähnisch. Ultrasound and microstructures—a promising combination?. ChemSusChem, 2012, 5( 2): 279– 288
https://doi.org/10.1002/cssc.201100369
84 S Freitas, G Hielscher, H P Merkle, B Gander. Continuous contact-and contamination-free ultrasonic emulsification—a useful tool for pharmaceutical development and production. Ultrasonics Sonochemistry, 2006, 13( 1): 76– 85
https://doi.org/10.1016/j.ultsonch.2004.10.004
85 S Aljbour, H Yamada, T Tagawa. Ultrasound-assisted phase transfer catalysis in a capillary microreactor. Chemical Engineering and Processing, 2009, 48( 6): 1167– 1172
https://doi.org/10.1016/j.cep.2009.04.004
86 Z Dong, A P Udepurkar, S Kuhn. Synergistic effects of the alternating application of low and high frequency ultrasound for particle synthesis in microreactors. Ultrasonics Sonochemistry, 2020, 60 : 104800
https://doi.org/10.1016/j.ultsonch.2019.104800
87 J J John T Van Gerven. Effect of ultrasound on parallel flow in a microchannel. Chemical Engineering and Processing, 2021, 171: 108465
88 Z Dong, S D Zondag, M Schmid, Z Wen, T Noël. A meso-scale ultrasonic milli-reactor enables gas−liquid−solid photocatalytic reactions in flow. Chemical Engineering Journal, 2022, 428 : 130968
https://doi.org/10.1016/j.cej.2021.130968
89 A Lenshof, M Evander, T Laurell, J Nilsson. Acoustofluidics 5: building microfluidic acoustic resonators. Lab on a Chip, 2012, 12( 4): 684– 695
https://doi.org/10.1039/c1lc20996e
90 S L Peshkovsky, A S Peshkovsky. Shock-wave model of acoustic cavitation. Ultrasonics Sonochemistry, 2008, 15( 4): 618– 628
https://doi.org/10.1016/j.ultsonch.2007.07.006
91 A S Peshkovsky, S L Peshkovsky, S Bystryak. Scalable high-power ultrasonic technology for the production of translucent nanoemulsions. Chemical Engineering and Processing, 2013, 69 : 77– 82
https://doi.org/10.1016/j.cep.2013.02.010
92 N Ezeanowi T Koiranen. Effect of process parameters on a novel modular continuous crystallizer. In: Proceedings of the 2nd International Process Intensification Conference (IPIC2). Leuven: European Federation of Chemical Engineering, 2019
93 C Delacour, D S Stephens, C Lutz, R Mettin, S Kuhn. Design and characterization of a scaled-up ultrasonic flow reactor. Organic Process Research & Development, 2020, 24( 10): 2085– 2093
https://doi.org/10.1021/acs.oprd.0c00148
94 T Tadros, P Izquierdo, J Esquena, C Solans. Formation and stability of nano-emulsions. Advances in Colloid and Interface Science, 2004, 108 : 303– 318
https://doi.org/10.1016/j.cis.2003.10.023
95 S M Gharibzahedi S M Jafari. Fabrication of nanoemulsions by ultrasonication. In: Nanoemulsions. Amsterdam: Elsevier, 2018
96 J Canselier, H Delmas, A Wilhelm, B Abismail. Ultrasound emulsification—an overview. Journal of Dispersion Science and Technology, 2002, 23( 1-3): 333– 349
https://doi.org/10.1080/01932690208984209
97 Q Zhang, Z Dong, S Zhao, Z Liu, G Chen. Ultrasound-assisted gas-liquid mass transfer process in microreactors: the influence of surfactant, channel size and ultrasound frequency. Chemical Engineering Journal, 2021, 405 : 126720
https://doi.org/10.1016/j.cej.2020.126720
98 S Merouani, O Hamdaoui, Y Rezgui, M Guemini. Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles—theoretical study. Ultrasonics Sonochemistry, 2013, 20( 3): 815– 819
https://doi.org/10.1016/j.ultsonch.2012.10.015
99 A Brotchie, F Grieser, M Ashokkumar. Effect of power and frequency on bubble-size distributions in acoustic cavitation. Physical Review Letters, 2009, 102( 8): 084302
https://doi.org/10.1103/PhysRevLett.102.084302
100 N Pokhrel, P K Vabbina, N Pala. Sonochemistry: science and engineering. Ultrasonics Sonochemistry, 2016, 29 : 104– 128
https://doi.org/10.1016/j.ultsonch.2015.07.023
101 S M Jafari, Y He, B Bhandari. Production of sub-micron emulsions by ultrasound and microfluidization techniques. Journal of Food Engineering, 2007, 82( 4): 478– 488
https://doi.org/10.1016/j.jfoodeng.2007.03.007
102 D M Higgins, D M Skauen. Influence of power on quality of emulsions prepared by ultrasound. Journal of Pharmaceutical Sciences, 1972, 61( 10): 1567– 1570
https://doi.org/10.1002/jps.2600611004
103 S Y Tang, S Manickam, T K Wei, B Nashiru. Formulation development and optimization of a novel Cremophore EL-based nanoemulsion using ultrasound cavitation. Ultrasonics Sonochemistry, 2012, 19( 2): 330– 345
https://doi.org/10.1016/j.ultsonch.2011.07.001
104 J Raso, P Manas, R Pagan, F J Sala. Influence of different factors on the output power transferred into medium by ultrasound. Ultrasonics Sonochemistry, 1999, 5( 4): 157– 162
https://doi.org/10.1016/S1350-4177(98)00042-X
105 L Salvia-Trujillo, A Rojas-Graü, R Soliva-Fortuny, O Martín-Belloso. Physicochemical characterization of lemongrass essential oil−alginate nanoemulsions: effect of ultrasound processing parameters. Food and Bioprocess Technology, 2013, 6( 9): 2439– 2446
https://doi.org/10.1007/s11947-012-0881-y
106 L Salvia-Trujillo, M A Rojas-Graü, R Soliva-Fortuny, O Martín-Belloso. Impact of microfluidization or ultrasound processing on the antimicrobial activity against Escherichia coli of lemongrass oil-loaded nanoemulsions. Food Control, 2014, 37 : 292– 297
https://doi.org/10.1016/j.foodcont.2013.09.015
107 S Y Tang, P Shridharan, M Sivakumar. Impact of process parameters in the generation of novel aspirin nanoemulsions—comparative studies between ultrasound cavitation and microfluidizer. Ultrasonics Sonochemistry, 2013, 20( 1): 485– 497
https://doi.org/10.1016/j.ultsonch.2012.04.005
108 B Tal-Figiel. The formation of stable w/o, o/w, w/o/w cosmetic emulsions in an ultrasonic field. Chemical Engineering Research & Design, 2007, 85( 5): 730– 734
https://doi.org/10.1205/cherd06199
109 S Reddy, H Fogler. Emulsion stability of acoustically formed emulsions. Journal of Physical Chemistry, 1980, 84( 12): 1570– 1575
https://doi.org/10.1021/j100449a027
110 K Nakabayashi, F Amemiya, T Fuchigami, K Machida, S Takeda, K Tamamitsu, M Atobe. Highly clear and transparent nanoemulsion preparation under surfactant-free conditions using tandem acoustic emulsification. Chemical Communications (Cambridge), 2011, 47( 20): 5765– 5767
https://doi.org/10.1039/c1cc10558b
111 K Kamogawa, G Okudaira, M Matsumoto, T Sakai, H Sakai, M Abe. Preparation of oleic acid/water emulsions in surfactant-free condition by sequential processing using midsonic— megasonic waves. Langmuir, 2004, 20( 6): 2043– 2047
https://doi.org/10.1021/la030160z
112 K Nakabayashi, T Fuchigami, M Atobe. Tandem acoustic emulsion, an effective tool for the electrosynthesis of highly transparent and conductive polymer films. Electrochimica Acta, 2013, 110 : 593– 598
https://doi.org/10.1016/j.electacta.2013.03.120
113 S M Jafari, E Assadpoor, Y He, B Bhandari. Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids, 2008, 22( 7): 1191– 1202
https://doi.org/10.1016/j.foodhyd.2007.09.006
114 N Vankova, S Tcholakova, N D Denkov, I B Ivanov, V D Vulchev, T Danner. Emulsification in turbulent flow: 1. Mean and maximum drop diameters in inertial and viscous regimes. Journal of Colloid and Interface Science, 2007, 312( 2): 363– 380
https://doi.org/10.1016/j.jcis.2007.03.059
115 P Walstra. Principles of emulsion formation. Chemical Engineering Science, 1993, 48( 2): 333– 349
https://doi.org/10.1016/0009-2509(93)80021-H
116 W Li, T S Leong, M Ashokkumar, G J Martin. A study of the effectiveness and energy efficiency of ultrasonic emulsification. Physical Chemistry Chemical Physics, 2018, 20( 1): 86– 96
https://doi.org/10.1039/C7CP07133G
117 B H Yap, G J Dumsday, P J Scales, G J Martin. Energy evaluation of algal cell disruption by high pressure homogenisation. Bioresource Technology, 2015, 184 : 280– 285
https://doi.org/10.1016/j.biortech.2014.11.049
118 O Behrend, H Schubert. Influence of hydrostatic pressure and gas content on continuous ultrasound emulsification. Ultrasonics Sonochemistry, 2001, 8( 3): 271– 276
https://doi.org/10.1016/S1350-4177(01)00088-8
119 J J John, S Kuhn, L Braeken, T Van Gerven. Ultrasound assisted liquid-liquid extraction with a novel interval-contact reactor. Chemical Engineering and Processing, 2017, 113 : 35– 41
https://doi.org/10.1016/j.cep.2016.09.008
120 N Dasgupta, S Ranjan, M Gandhi. Nanoemulsions in food: market demand. Environmental Chemistry Letters, 2019, 17( 2): 1003– 1009
https://doi.org/10.1007/s10311-019-00856-2
121 D J McClements, L Bai, C Chung. Recent advances in the utilization of natural emulsifiers to form and stabilize emulsions. Annual Review of Food Science and Technology, 2017, 8( 1): 205– 236
https://doi.org/10.1146/annurev-food-030216-030154
122 X Sui, S Bi, B Qi, Z Wang, M Zhang, Y Li, L Jiang. Impact of ultrasonic treatment on an emulsion system stabilized with soybean protein isolate and lecithin: its emulsifying property and emulsion stability. Food Hydrocolloids, 2017, 63 : 727– 734
https://doi.org/10.1016/j.foodhyd.2016.10.024
123 A Shanmugam, M Ashokkumar. Ultrasonic preparation of stable flax seed oil emulsions in dairy systems—physicochemical characterization. Food Hydrocolloids, 2014, 39 : 151– 162
https://doi.org/10.1016/j.foodhyd.2014.01.006
124 A Taha, E Ahmed, T Hu, X Xu, S Pan, H Hu. Effects of different ionic strengths on the physicochemical properties of plant and animal proteins-stabilized emulsions fabricated using ultrasound emulsification. Ultrasonics Sonochemistry, 2019, 58 : 104627
https://doi.org/10.1016/j.ultsonch.2019.104627
125 A R Jambrak, Z Herceg, D Šubarić, J Babić, M Brnčić, S R Brnčić, T Bosiljkov, D Čvek, B Tripalo, J Gelo. Ultrasound effect on physical properties of corn starch. Carbohydrate Polymers, 2010, 79( 1): 91– 100
https://doi.org/10.1016/j.carbpol.2009.07.051
126 L Zhang, X Ye, T Ding, X Sun, Y Xu, D Liu. Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin. Ultrasonics Sonochemistry, 2013, 20( 1): 222– 231
https://doi.org/10.1016/j.ultsonch.2012.07.021
127 K B Sutradhar, M L Amin. Nanoemulsions: increasing possibilities in drug delivery. European Journal of Nanomedicine, 2013, 5( 2): 97– 110
https://doi.org/10.1515/ejnm-2013-0001
128 W Jiang, B Y Kim, J T Rutka, W C Chan. Nanoparticle-mediated cellular response is size-dependent. Nature Nanotechnology, 2008, 3( 3): 145– 150
https://doi.org/10.1038/nnano.2008.30
129 P Foroozandeh, A A Aziz. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Research Letters, 2018, 13( 1): 1– 12
https://doi.org/10.1186/s11671-018-2728-6
130 M Danaei, M Dehghankhold, S Ataei, F Hasanzadeh Davarani, R Javanmard, A Dokhani, S Khorasani, M Mozafari. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 2018, 10( 2): 57
https://doi.org/10.3390/pharmaceutics10020057
131 M Diril, Y Karasulu, M Toskas, I Nikolakakis. Development and permeability testing of self-emulsifying atorvastatin calcium pellets and tablets of compressed pellets. Processes, 2019, 7( 6): 365
https://doi.org/10.3390/pr7060365
132 Araújo S C de, Mattos A C A de, H F Teixeira, P M Z Coelho, D L Nelson, Oliveira M C de. Improvement of in vitroefficacy of a novel schistosomicidal drug by incorporation into nanoemulsions. International Journal of Pharmaceutics, 2007, 337( 1-2): 307– 315
https://doi.org/10.1016/j.ijpharm.2007.01.009
133 F Li, T Wang, H B He, X Tang. The properties of bufadienolides-loaded nano-emulsion and submicro-emulsion during lyophilization. International Journal of Pharmaceutics, 2008, 349( 1-2): 291– 299
https://doi.org/10.1016/j.ijpharm.2007.08.011
134 H J Doh, Y Jung, P Balakrishnan, H J Cho, D D Kim. A novel lipid nanoemulsion system for improved permeation of granisetron. Colloids and Surfaces B: Biointerfaces, 2013, 101 : 475– 480
https://doi.org/10.1016/j.colsurfb.2012.07.019
135 P Verma, J G Meher, S Asthana, V K Pawar, M Chaurasia, M K Chourasia. Perspectives of nanoemulsion assisted oral delivery of docetaxel for improved chemotherapy of cancer. Drug Delivery, 2016, 23( 2): 479– 488
https://doi.org/10.3109/10717544.2014.920430
136 K S Suslick, G J Price. Applications of ultrasound to materials chemistry. Annual Review of Materials Science, 1999, 29( 1): 295– 326
https://doi.org/10.1146/annurev.matsci.29.1.295
137 B M Teo, S W Prescott, M Ashokkumar, F Grieser. Ultrasound initiated miniemulsion polymerization of methacrylate monomers. Ultrasonics Sonochemistry, 2008, 15( 1): 89– 94
https://doi.org/10.1016/j.ultsonch.2007.01.009
138 J J John, S Kuhn, L Braeken, T Van Gerven. Ultrasound assisted liquid-liquid extraction in microchannels—a direct contact method. Chemical Engineering and Processing, 2016, 102 : 37– 46
https://doi.org/10.1016/j.cep.2016.01.003
139 S H Sonawane, B M Teo, A Brotchie, F Grieser, M Ashokkumar. Sonochemical synthesis of ZnO encapsulated functional nanolatex and its anticorrosive performance. Industrial & Engineering Chemistry Research, 2010, 49( 5): 2200– 2205
https://doi.org/10.1021/ie9015039
140 G J Price. Ultrasonically enhanced polymer synthesis. Ultrasonics Sonochemistry, 1996, 3( 3): S229– S238
https://doi.org/10.1016/S1350-4177(96)00031-4
141 H Liu, T Begley. Comprehensive Natural Products. 3rd ed. Asmterdan: Elsevier, 2020, 263 : 236
142 C Agarwal, K Máthé, T Hofmann, L Csóka. Ultrasound-assisted extraction of cannabinoids from Cannabis sativa L. optimized by response surface methodology. Journal of Food Science, 2018, 83( 3): 700– 710
https://doi.org/10.1111/1750-3841.14075
143 D J McClements, J Rao. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical Reviews in Food Science and Nutrition, 2011, 51( 4): 285– 330
https://doi.org/10.1080/10408398.2011.559558
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed