Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2022, Vol. 16 Issue (11): 1659-1671   https://doi.org/10.1007/s11705-022-2173-z
  本期目录
Formation of CaCO3 hollow microspheres in carbonated distiller waste from Solvay soda ash plants
Wenjiao Xu, Huaigang Cheng(), Enze Li, Zihe Pan, Fangqin Cheng()
Institute of Resources and Environmental Engineering, Engineering Research Center of CO2 Emission Reduction and Resource Utilization, Ministry of Education of the People’s Republic of China, Shanxi University, Taiyuan 030006, China
 全文: PDF(12321 KB)   HTML
Abstract

For decades, distiller waste and CO2 were not the first choice for production of high valued products. Here, CaCO3 hollow microspheres, a high-value product was synthesized from such a reaction system. The synthetic methods, the formation mechanism and operational cost were discussed. When 2.5 L·min–1·L–1 CO2 was flowed into distiller waste (pH = 11.4), spheres with 4–13 μm diameters and about 2 μm shell thickness were obtained. It is found that there is a transformation of CaCO3 particles from solid-cubic nuclei to hollow spheres. Firstly, the Ca(OH)2 in the distiller waste stimulated the nucleation of calcite with a non-template effect and further maintained the calcite form and prevented the formation of vaterite. Therefore, in absence of auxiliaries, the formation of hollow structures mainly depended on the growth and aging of CaCO3. Studies on the crystal morphology and its changes during the growth process point to the inside–out Ostwald effect in the formation of hollow spheres. Change in chemical properties of the bulk solution caused changes in interfacial tension and interfacial energy, which promoted the morphological transformation of CaCO3 particles from cubic calcite to spherical clusters. Finally, the flow process for absorption of CO2 by distiller waste was designed and found profitable.

Key wordsdistiller waste    CO2    hollow microsphere    CaCO3    Ca(OH)2    inside−out Ostwald effect
收稿日期: 2022-01-28      出版日期: 2022-12-13
Corresponding Author(s): Huaigang Cheng,Fangqin Cheng   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2022, 16(11): 1659-1671.
Wenjiao Xu, Huaigang Cheng, Enze Li, Zihe Pan, Fangqin Cheng. Formation of CaCO3 hollow microspheres in carbonated distiller waste from Solvay soda ash plants. Front. Chem. Sci. Eng., 2022, 16(11): 1659-1671.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2173-z
https://academic.hep.com.cn/fcse/CN/Y2022/V16/I11/1659
Fig.1  
Fig.2  
Fig.3  
Reaction time/min pH of solution Concentration/(mol·L–1) Coefficient activity Activity/(mol·L–1) J
cC a2+ cO H γC a2+ γO H αC a2+ αO H
0 a) 11.4 0.85 2.51 × 10−3 1.19826 1.2079 1.018521 3.03 × 10−3 9.36 × 10−6
0 b) 11.4 0.85 2.51 × 10−3 0.30722 0.728888 0.261137 1.83 × 10−3 5.42 × 10−6
2 10.49 0.79 3.09 × 10−4 0.19488 0.652078 0.1539552 2.01 × 10−4 1.82 × 10−8
5 9.89 0.77 7.76 × 10−5 0.172587 0.634418 0.13289199 4.92 × 10−5 9.20 × 10−10
10 9.31 0.74 2.04 × 10−5 0.146964 0.612986 0.10875336 1.25 × 10−5 4.80 × 10−11
15 8.46 0.72 2.88 × 10−6 0.133638 0.601384 0.09621936 1.73 × 10−6 8.13 × 10−13
20 5.66 0.71 4.57 × 10−9 0.127701 0.596131 0.09066771 2.72 × 10−9 1.90 × 10−18
60 5.16 0.71 1.45 × 10−9 0.127701 0.596131 0.09066771 8.64 × 10−10 1.85 × 10−19
Tab.1  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Liquid value Water Distiller waste The solution after reaction for
5 min 10 min 20 min
θ/(° ) Test value 28.5 37.2 33.7 28.2 32.0
MD simulation results a) 35.6 26.2 31.5
γl g/(mN·m–1) 73.43 69.25 67.73 68.50 69.78
γl s/(mN·m–1) calc. 35.27 34.60 31.53 30.16 32.81
Tab.2  
Fig.9  
Fig.10  
Feedstock Input Price Cost estimated per ton distiller waste
Distiller waste 1 t·h–1 0 0
Flue gas 4.5 m3·h–1 0 0
Waste ammonia 20 L·h–1 CNY 2000 per ton CNY 40
Quicklime 0.8 kg·h–1 CNY 260 per ton CNY 0.2
Total CNY 40.2
Tab.3  
Product Output Price Yield estimated per ton distiller waste Profits estimated per ton distiller waste
CaCO3 hollow microspheres 80 kg·h–1 CNY 1500 per ton CNY 120 CNY 79.8
Tab.4  
XV the molar fractions of vaterite
XC the molar fractions of calcite
Ic104 104 crystal plane peak intensities of calcite
Iv110 110 crystal plane peak intensities of vaterite
VC O2 the total amount of CO2 consumed during the carbonation reaction for 1 h, L
V the volume of solution, L
Vm the standard molar volume of a gas, L·mol–1
nC a( OH)2 the amount of insoluble Ca(OH)2 reacted part at time t (negligible), mol
M molecular weight of Ca(OH)2, g·mol–1
n the amount of undissolved Ca(OH)2, mol
cC a02+ the initial concentration of Ca2+ in the solution, mol·L–1
cC at2+ the concentration of Ca2+ in the solution at time t, mol·L–1
cC a2+ the concentration of Ca2+, mol·L–1
cO H the concentration of OH, mol·L–1
J the activity products
K solubility product constant of Ca(OH)2, K = 5.6 × 10−6 (25 °C)
γC a2+ the activity coefficients of Ca2+
γO H the activity coefficients of OH
αC a2+ activity of Ca2+ in solution, mol·L–1
αO H activity of OH in solution, mol·L–1
θ contact angle between calcite and liquid, (°)
γl s solid–liquid interfacial tension, mN·m–1
γl g liquid–vapor interfacial tension, mN·m–1
γs g solid–vapor interfacial tension, mN·m–1, γs g= 43.5 mN·m–1
cC a20mi n2+ the concentration of Ca2+ in the system reacted for 20 min, mol·L–1
Y the output of CaCO3 hollow microspheres, kg
T cycle times of carbonation of distiller waste
V' the volume of distiller waste, L
M' the molecular weight of CaCO3, g·mol–1
  
1 M Trypuć, K Białowicz. CaCO3 production using liquid waste from Solvay method. Journal of Cleaner Production, 2011, 19( 6-7): 751– 756
https://doi.org/10.1016/j.jclepro.2010.11.009
2 T Calban, E Kavci. Removal of calcium from soda liquid waste containing calcium chloride. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2010, 32( 5): 407– 418
https://doi.org/10.1080/15567030903261816
3 B C Sun, X M Wang, J M Chen, G W Chu, J F Chen, L Shao. Synthesis of nano-CaCO3 by simultaneous absorption of CO2 and NH3 into CaCl2 solution in a rotating packed bed. Chemical Engineering Journal, 2011, 168( 2): 731– 736
https://doi.org/10.1016/j.cej.2011.01.068
4 C Z Gao, Y Dong, H J Zhang, J M Zhang. Utilization of distiller waste and residual mother liquor to prepare precipitated calcium carbonate. Journal of Cleaner Production, 2007, 15( 15): 1419– 1425
https://doi.org/10.1016/j.jclepro.2006.06.024
5 X Zhang, E Asselin, Z Li. CaCO3 precipitation kinetics in the system CaCl2−CO2−Mg(OH)2−H2O for comprehensive utilization of soda production wastes. ACS Sustainable Chemistry & Engineering, 2020, 9( 1): 398– 410
https://doi.org/10.1021/acssuschemeng.0c07467
6 X P Luo, X W Song, Y W Cao, L Song, X Z Bu. Investigation of calcium carbonate synthesized by steamed ammonia liquid waste without use of additives. RSC Advances, 2020, 10( 13): 7976– 7986
https://doi.org/10.1039/C9RA10460G
7 C Dong, X Song, Y Li, C Liu, H Chen, J Yu. Impurity ions effect on CO2 mineralization via coupled reaction−extraction−crystallization process of CaCl2 waste liquids. Journal of CO2 Utilization , 2018, 27 : 115– 128
8 X W Song, H Liu, J F Wang, Y W Cao, X P Luo. A study of the effects of NH4+ on the fast precipitation of vaterite CaCO3 formed from steamed ammonia liquid waste and K2CO3/Na2CO3. CrystEngComm, 2021, 23( 24): 4284– 4300
https://doi.org/10.1039/D1CE00365H
9 Z Yan, Y Wang, H Yue, C Liu, S Zhong, K Ma, W Liao, S Tang, B Liang. Integrated process of monoethanolamine-based CO2 absorption and CO2 mineralization with SFGD slag: process simulation and life-cycle assessment of CO2 emission. ACS Sustainable Chemistry & Engineering, 2021, 9( 24): 8238– 8248
https://doi.org/10.1021/acssuschemeng.1c02278
10 A Alamdari, A Alamdari, D Mowla. Kinetics of calcium carbonate precipitation through CO2 absorption from flue gas into distiller waste of soda ash plant. Journal of Industrial and Engineering Chemistry, 2014, 20( 5): 3480– 3486
https://doi.org/10.1016/j.jiec.2013.12.038
11 Y Li, X Song, G Chen, Z Sun, Y Xu, J Yu. Preparation of calcium carbonate and hydrogen chloride from distiller waste based on reactive extraction−crystallization process. Chemical Engineering Journal, 2015, 278 : 55– 61
https://doi.org/10.1016/j.cej.2014.12.058
12 F Sha, N Zhu, Y J Bai, Q Li, B Guo, T X Zhao, F Zhang, J B Zhang. Controllable synthesis of various CaCO3 morphologies based on a CCUS idea. ACS Sustainable Chemistry & Engineering, 2016, 4( 6): 3032– 3044
https://doi.org/10.1021/acssuschemeng.5b01793
13 Y Ma, Q Feng, X Bourrat. A novel growth process of calcium carbonate crystals in silk fibroin hydrogel system. Materials Science and Engineering C, 2013, 33( 4): 2413– 2420
https://doi.org/10.1016/j.msec.2013.02.006
14 T W Zheng, X Zhang, H H Yi. Spherical vaterite microspheres of calcium carbonate synthesized with poly(acrylic acid) and sodium dodecyl benzene sulfonate. Journal of Crystal Growth, 2019, 528( 15): 125275
https://doi.org/10.1016/j.jcrysgro.2019.125275
15 H G Chen, S L Leng. Rapid synthesis of hollow nano-structured hydroxyapatite rnicrospheres via microwave transformation method using hollow CaCO3 precursor microspheres. Ceramics International, 2015, 41( 2): 2209– 2213
https://doi.org/10.1016/j.ceramint.2014.10.021
16 T W Zheng, H H Yi, S Y Zhang, C G Wang. Preparation and formation mechanism of calcium carbonate hollow microspheres. Journal of Crystal Growth, 2020, 549 : 125870
https://doi.org/10.1016/j.jcrysgro.2020.125870
17 J Wang, J S Chen, J Y Zong, D Zhao, F Li, R X Zhuo, S X Cheng. Calcium carbonate/carboxymethyl chitosan hybrid microspheres and nanospheres for drug delivery. Journal of Physical Chemistry C, 2010, 114( 44): 18940– 18945
https://doi.org/10.1021/jp105906p
18 R J Park, F C Meldrum. Synthesis of single crystals of calcite with complex morphologies. Advanced Materials, 2002, 14( 16): 1167– 1169
https://doi.org/10.1002/1521-4095(20020816)14:16<1167::AID-ADMA1167>3.0.CO;2-X
19 S Kim, J W Ko, C B Park. Bio-inspired mineralization of CO2 gas to hollow CaCO3 microspheres and bone hydroxyapatite/polymer composites. Journal of Materials Chemistry, 2011, 21( 30): 11070– 11073
https://doi.org/10.1039/c1jm12616d
20 G W Yan, J H Huang, J F Zhang, C J Qian. Aggregation of hollow CaCO3 spheres by calcite nanoflakes. Materials Research Bulletin, 2008, 43( 8-9): 2069– 2077
https://doi.org/10.1016/j.materresbull.2007.09.014
21 G Hadiko, Y S Han, M Fuji, M Takahashi. Synthesis of hollow calcium carbonate particles by the bubble templating method. Materials Letters, 2005, 59( 19-20): 2519– 2522
https://doi.org/10.1016/j.matlet.2005.03.036
22 T Tomioka, M Fuji, M Takahashi, C Takai, M Utsuno. Hollow structure formation mechanism of calcium carbonate particles synthesized by the CO2 bubbling method. Crystal Growth & Design, 2012, 12( 2): 771– 776
https://doi.org/10.1021/cg201103z
23 P Yan, Y P Guo, Z Xu, Z C Wang. Influence of surfactant-polymer complexes on crystallization and aggregation of CaCO3. Chemical Research in Chinese Universities, 2012, 28( 4): 737– 742
24 H Watanabe, Y Mizuno, T Endo, X W Wang, M Fuji, M Takahashi. Effect of initial pH on formation of hollow calcium carbonate particles by continuous CO2 gas bubbling into CaCl2 aqueous solution. Advanced Powder Technology, 2009, 20( 1): 89– 93
https://doi.org/10.1016/j.apt.2008.10.004
25 J Chen, L Xiang. Controllable synthesis of calcium carbonate polymorphs at different temperatures. Powder Technology, 2009, 189( 1): 64– 69
https://doi.org/10.1016/j.powtec.2008.06.004
26 B Wang, Z H Pan, Z P Du, H G Cheng, F Q Cheng. Effect of impure components in flue gas desulfurization (FGD) gypsum on the generation of polymorph CaCO3 during carbonation reaction. Journal of Hazardous Materials, 2019, 369 : 236– 243
https://doi.org/10.1016/j.jhazmat.2019.02.002
27 E Z Li, Y Lu, F Q Cheng, X M Wang, J D Miller. Effect of oxidation on the wetting of coal surfaces by water: experimental and molecular dynamics simulation studies. Physicochemical Problems of Mineral Processing, 2018, 54( 4): 1039– 1051
28 C Marcolli. Technical note: fundamental aspects of ice nucleation via pore condensation and freezing including Laplace pressure and growth into macroscopic ice. Atmospheric Chemistry and Physics, 2020, 20( 5): 3209– 3230
https://doi.org/10.5194/acp-20-3209-2020
29 H G Cheng, X Wang, B Wang, J Zhao, Y Liu, F Q Cheng. Effect of ultrasound on the morphology of the CaCO3 precipitated from CaSO4−NH3−CO2−H2O system. Journal of Crystal Growth, 2017, 469 : 97– 105
https://doi.org/10.1016/j.jcrysgro.2016.10.017
30 Q J Chen, W J Ding, H J Sun, T J Peng, G H Ma. Utilization of phosphogypsum to prepare high-purity CaCO3 in the NH4Cl−NH4OH−CO2 system. ACS Sustainable Chemistry & Engineering, 2020, 8( 31): 11649– 11657
https://doi.org/10.1021/acssuschemeng.0c03070
31 H G Cheng, X X Zhang, H P Song. Morphological investigation of calcium carbonate during ammonification−carbonization process of low concentration calcium solution. Journal of Nanomaterials, 2014, 2014 : 1– 7
https://doi.org/10.1155/2014/503696
32 H W Nesbitt. Activity coefficients of ions in alkali and alkaline-earth chloride dominated waters including seawater. Chemical Geology, 1984, 43( 1-2): 127– 142
https://doi.org/10.1016/0009-2541(84)90143-8
33 T Fanghänel, V Neck, J I Kim. The ion product of H2O, dissociation constants of H2CO3 and Pitzer parameters in the system Na+/H+/OH/HCO3−/CO32−/ClO4−/H2O at 25 °C. Journal of Solution Chemistry, 1996, 25( 4): 327– 343
https://doi.org/10.1007/BF00972890
34 J A Dean. Lang’s Handbook of Chemistry. New York: The Kingsport Press, 1985, 5– 8
35 B Li, H C Zeng. Architecture and preparation of hollow catalytic devices. Advanced Materials, 2019, 31( 38): 1801104
https://doi.org/10.1002/adma.201801104
36 X Yang, J Fu, C Jin, J Chen, C Liang, M Wu, W Zhou. Formation mechanism of CaTiO3 hollow crystals with different microstructures. Journal of the American Chemical Society, 2010, 132( 40): 14279– 14287
https://doi.org/10.1021/ja106461u
37 W Ding, L Hu, Z Sheng, J Dai, X Zhu, X Tang, Z Hui, Y Sun. Magneto-acceleration of Ostwald ripening in hollow Fe3O4 nanospheres. CrystEngComm, 2016, 18( 33): 6134– 6137
https://doi.org/10.1039/C6CE01021K
38 W Weng, J Lin, Y Du, X Ge, X Zhou, J Bao. Template-free synthesis of metal oxide hollow micro-/nanospheres via Ostwald ripening for lithium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6( 22): 10168– 10175
https://doi.org/10.1039/C8TA03161D
39 W Zhao, C Zhang, F Geng, S Zhuo, B Zhang. Nanoporous hollow transition metal chalcogenide nanosheets synthesized via the anion-exchange reaction of metal hydroxides with chalcogenide ions. ACS Nano, 2014, 8( 10): 10909– 10919
https://doi.org/10.1021/nn504755x
40 Y D Yin, R M Rioux, C K Erdonmez, S Hughes, G A Somorjai, A P Alivisatos. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science, 2004, 304( 5671): 711– 714
https://doi.org/10.1126/science.1096566
41 H J Fan, U Gösele, M Zacharias. Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review. Small, 2007, 3( 10): 1660– 1671
https://doi.org/10.1002/smll.200700382
42 H J Fan, M Knez, R Scholz, K Nielsch, E Pippel, D Hesse, M Zacharias, U Gösele. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nature Materials, 2006, 5( 8): 627– 631
https://doi.org/10.1038/nmat1673
43 J N Gao, Q S Li, H B Zhao, L S Li, C L Liu, Q H Gong, L M Qi. One-pot synthesis of uniform Cu2O and CuS hollow spheres and their optical limiting properties. Chemistry of Materials, 2008, 20( 19): 6263– 6269
https://doi.org/10.1021/cm801407q
44 V R Gayevskii, V Z Kochmarskii, S G Gayevska. Nucleation and crystal growth of calcium sulfate dihydrate from aqueous solutions: speciation of solution components, kinetics of growth, and interfacial tension. Journal of Crystal Growth, 2020, 548 : 125844
https://doi.org/10.1016/j.jcrysgro.2020.125844
45 K S Keller, M H Olsson, M Yang, S L Stipp. Adsorption of ethanol and water on calcite: dependence on surface geometry and effect on surface behavior. Langmuir, 2015, 31( 13): 3847– 3853
https://doi.org/10.1021/la504319z
46 Z Gao, C Li, W Sun, Y Hu. Anisotropic surface properties of calcite: a consideration of surface broken bonds. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2017, 520 : 53– 61
https://doi.org/10.1016/j.colsurfa.2017.01.061
47 M A Tabar, Y Shafiei, M Shayesteh, A D Monfared, M H Ghazanfari. Wettability alteration of calcite rock from gas-repellent to gas-wet using a fluorinated nanofluid: a surface analysis study. Journal of Natural Gas Science and Engineering, 2020, 83 : 103613
https://doi.org/10.1016/j.jngse.2020.103613
48 U Ulusoy, C Hiçyılmaz, M Yekeler. Role of shape properties of calcite and barite particles on apparent hydrophobicity. Chemical Engineering and Processing, 2004, 43( 8): 1047– 1053
https://doi.org/10.1016/j.cep.2003.10.003
49 Z Q Chen. Colloid and Interface Chemistry. Peking: Higher Education Press, 2001, 95– 104 (In Chinese)
50 W R Tyson, W A Miller. Surface free energies of solid metals: estimation from liquid surface tension measurements. Surface Science, 1977, 62( 1): 267– 276
https://doi.org/10.1016/0039-6028(77)90442-3
51 S Y Pan, E E Chang, P C Chiang. Chiang P C. CO2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications. Aerosol and Air Quality Research , 2012, 12( 5): 770– 791
https://doi.org/10.4209/aaqr.2012.06.0149
52 J J Ruan, J X Huang, L P Dong, Z Huang. Environmentally friendly technology of recovering nickel resources and producing nano-Al2O3 from waste metal film resistors. ACS Sustainable Chemistry & Engineering, 2017, 5( 9): 8234– 8240
https://doi.org/10.1021/acssuschemeng.7b01900
[1] FCE-22001-OF-XW_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed