Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (1): 1-14   https://doi.org/10.1007/s11705-022-2176-9
  本期目录
Influence of surface modified mixed metal oxide nanoparticles on the electrochemical and mechanical properties of polyurethane matrix
Joseph Raj Xavier()
Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai-602 105, India
 全文: PDF(13418 KB)   HTML
Abstract

Newly synthesized functional nanoparticles, 3-amino-1,2,4-triazole (ATA)/SiO2–TiO2 were introduced to the polyurethane (PU) matrix. Electrochemical techniques were used to investigate the barrier properties of the synthesized PU–ATA/SiO2–TiO2 nanocomposite coated steel specimen. In natural seawater, electrochemical impedance spectroscopy experiments indicated outstanding protective behaviour for the PU–ATA/SiO2–TiO2 coated steel. The coating resistance (Rcoat) of PU–ATA/SiO2–TiO2 was determined to be 2956.90 kΩ·cm–2. The Rcoat of the PU–ATA/SiO2–TiO2 nanocomposite coating was found to be over 50% higher than the PU coating. The current measured along the scratched surface of the PU–ATA/SiO2–TiO2 coating was found to be very low (1.65 nA). The enhanced ATA/SiO2–TiO2 nanoparticles inhibited the entry of electrolytes into the coating interface, as revealed by scanning electron microscopy/energy dispersive X-ray spectroscopy and X-ray diffraction analysis of the degradation products. Water contact angle testing validated the hydrophobic nature of the PU–ATA/SiO2–TiO2 coating (θ = 115.4°). When the concentration of ATA/SiO2−TiO2 nanoparticles was 2 wt %, dynamic mechanical analysis revealed better mechanical properties. Therefore, the newly synthesised PU–ATA/SiO2–TiO2 nanocomposite provided excellent barrier and mechanical properties due to the addition of ATA/SiO2–TiO2 nanoparticles to the polyurethane, which inhibited material degradation and aided in the prolongation of the coated steel’s life.

Key wordsSiO2/TiO2 nanoparticle    nanocomposite coatings    dynamic mechanical analysis    electrochemical techniques    corrosion    colloids and interfaces
收稿日期: 2022-01-27      出版日期: 2023-02-21
Corresponding Author(s): Joseph Raj Xavier   
作者简介:

Qingyong Zheng and Ya Gao contributed equally to this work.

 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(1): 1-14.
Joseph Raj Xavier. Influence of surface modified mixed metal oxide nanoparticles on the electrochemical and mechanical properties of polyurethane matrix. Front. Chem. Sci. Eng., 2023, 17(1): 1-14.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2176-9
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I1/1
  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Sample Time/h Rs/(?·cm–2) Rcoat/(k?·cm–2) CPEcoat /μF nc Rct/(k?·cm–2) CPEdl/μF ndl
Bare mild steel 1 115 30.45 585.45 0.68
120 92 21.11 898.50 0.65
240 77 10.35 1245.87 0.62
360 67 0.82 1512.62 0.59
PU coating 1 123 58.12 56.42 0.75 65.90 408.90 0.81
120 117 32.45 98.74 0.73 43.54 649.32 0.79
240 105 10.70 121.35 0.71 16.25 815.96 0.77
360 91 1.15 154.98 0.69 1.22 1001.67 0.75
PU?SiO2/TiO2 coating 1 156 1970.17 44.10 0.82 2556.42 356.80 0.88
120 134 1575.74 75.87 0.80 2278.90 511.45 0.86
240 129 1285.12 101.65 0.78 1998.65 678.78 0.84
360 118 998.92 121.80 0.76 1785.10 815.75 0.82
PU–ATA/SiO2–TiO2 coating 1 175 2956.90 89.15 0.86 3250.45 598.15 0.92
120 159 2840.15 125.40 0.84 3175.32 756.40 0.91
240 138 2770.17 167.38 0.82 3010.50 908.66 0.89
360 127 2653.70 267.95 0.80 2890.95 1178.50 0.87
Tab.1  
Fig.5  
Sample Time/h Ecorr/mV icorr/(μA·cm–2) βa/(mV·dec–1) βc/(mV·dec–1) Rp/(k?·cm–2) CR/mmpy
Bare mild steel 1 599 50.15 901.78 345.97 40.56 0.9496
120 723 69.16 765.31 275.58 31.21 1.7942
240 848 87.24 662.35 219.76 77.32 2.1054
360 972 108.65 570.11 162.65 07.88 2.4897
PU coating 1 401 9.11 380.53 275.48 119.80 0.1264
120 448 13.98 261.44 212.45 76.15 0.1385
240 502 22.10 181.20 149.90 27.13 0.1473
360 569 27.21 161.24 111.24 2.37 0.1619
PU–SiO2/TiO2 coating 1 199 1.28 240.80 196.57 4526.75 0.0152
120 247 3.45 168.67 141.70 3854.77 0.0245
240 301 4.92 149.12 117.79 3283.90 0.0312
360 348 7.12 107.15 88.45 2784.14 0.0418
PU–ATA/SiO2–TiO2 coating 1 105 0.15 203.15 154.85 6207.53 0.0017
120 128 0.38 151.26 129.58 5915.63 0.0034
240 154 0.52 115.11 109.20 5580.81 0.0062
360 179 0.75 88.40 81.09 5244.78 0.0076
Tab.2  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Coatings substrate ATA/SiO2–TiO2 nanoparticles in PU matrix/(wt %) Tensile moduli σ/MPa ε/% Peel strength, A/(N·cm–1)
E′/GPa E/GPa
PU 0 2.29 1.88 ± 0.11 50 ± 3 8.8 ± 0.9 380 ± 10
1 2.98 2.25 ± 0.13 57 ± 2 405 ± 12 400 ± 12
2 3.98 3.92 ± 0.11 98 ± 2 988 ± 11 991 ± 12
3 3.45 3.16 ± 0.12 63 ± 2 580 ± 11 855 ± 10
Tab.3  
Coatings substrate Immersion time/h Tensile moduli σ/MPa ε/% Peel strength, A/(N·cm–1)
E′/GPa E/GPa
PU coating 1 2.29 1.88 ± 0.12 50 ± 3 8.8 ± 0.9 380 ± 10
120 2.14 1.83 ± 0.15 46 ± 2 7.9 ± 0.5 355 ± 12
240 2.05 1.71 ± 0.12 40 ± 2 6.8 ± 0.6 320 ± 10
360 1.85 1.58 ± 0.15 32 ± 3 5.2 ± 0.9 272 ± 14
PU/SiO2–TiO2 1 2.91 2.39 ± 0.14 69 ± 3 490 ± 12 485 ± 10
120 2.87 2.23 ± 0.10 66 ± 2 475 ± 15 460 ± 12
240 2.78 2.09 ± 0.15 63 ± 3 460 ± 11 440 ± 14
360 2.66 1.95 ± 0.11 60 ± 2 440 ± 12 425 ± 17
PU–ATA/SiO2–TiO2 1 3.98 3.92 ± 0.10 98 ± 2 988 ± 11 991 ± 12
120 3.93 3.85 ± 0.12 96 ± 3 980 ± 13 985 ± 10
240 3.85 3.78 ± 0.11 94 ± 2 972 ± 12 979 ± 15
360 3.80 3.70 ± 0.12 92 ± 2 965 ± 14 975 ± 11
Tab.4  
1 W Ding, A Bonk, T Bauer. Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: a review. Frontiers of Chemical Science and Engineering, 2018, 12( 3): 564– 576
https://doi.org/10.1007/s11705-018-1720-0
2 M Mobin, J Aslam, R Alam. Corrosion protection of poly(aniline-co-N-ethylaniline)/ZnO nanocomposite coating on mild steel. Arabian Journal for Science and Engineering, 2017, 42( 1): 209– 224
https://doi.org/10.1007/s13369-016-2234-z
3 X J Raj, T Nishimura. Evaluation of the corrosion protection performance of epoxy-coated high manganese steel by SECM and EIS techniques. Journal of Failure Analysis and Prevention, 2016, 16( 3): 417– 426
https://doi.org/10.1007/s11668-016-0102-5
4 S I Bhat, S Ahmad. Castor oil–TiO2 hyperbranched poly(ester amide) nanocomposite: a sustainable, green precursor-based anticorrosive nanocomposite coatings. Progress in Organic Coatings, 2018, 123 : 326– 336
https://doi.org/10.1016/j.porgcoat.2018.06.010
5 S Habib, E Fayyad, M Nawaz, A Khan, R A Shakoor, R Kahraman, A Abdullah. Cerium dioxide nanoparticles as smart carriers for self-healing coatings nanomaterials. Nanomaterials, 2020, 10( 4): 791
https://doi.org/10.3390/nano10040791
6 J R Xavier. Investigation on the effect of nano-ceria on the epoxy coatings for corrosion protection of mild steel in natural seawater. Anti-Corrosion Methods and Materials, 2018, 65( 1): 38– 45
https://doi.org/10.1108/ACMM-04-2017-1784
7 D Yang, S Wang, R Zhong, W Liu, X Qiu. Preparation of lignin/TiO2 nanocomposites and their application in aqueous polyurethane coatings. Frontiers of Chemical Science and Engineering, 2019, 13( 1): 59– 69
https://doi.org/10.1007/s11705-018-1712-0
8 J R Xavier, R Nallaiyan. Application of EIS and SECM studies for investigation of anticorrosion properties of epoxy coatings containing ZrO2 nanoparticles on mild steel in 3.5% NaCl solution. Journal of Failure Analysis and Prevention, 2016, 16( 6): 1082– 1091
https://doi.org/10.1007/s11668-016-0187-x
9 L Pinho, M Rojas, M J Mosquera. Mosquera. Ag–SiO2–TiO2 nanocomposite coatings with enhanced photoactivity for self-cleaning application on building materials. Applied Catalysis B: Environmental , 2015, 178 : 144– 154
https://doi.org/10.1016/j.apcatb.2014.10.002
10 J Yang, Y Xu, C Su, S Nie, Z Li. Synthesis of hierarchical nanohybrid CNT@Ni-PS and its applications in enhancing the tribological, curing and thermal properties of epoxy nanocomposites. Frontiers of Chemical Science and Engineering, 2021, 15( 5): 1281– 1295
https://doi.org/10.1007/s11705-020-2007-9
11 D K Chattopadhyay, K V S N Raju. Structural engineering of polyurethane coatings for high performance applications. Progress in Polymer Science, 2007, 32( 3): 352– 418
https://doi.org/10.1016/j.progpolymsci.2006.05.003
12 J R Xavier. Electrochemical, mechanical and adhesive properties of surface modified NiO-epoxy nanocomposite coatings on mild steel. Materials Science and Engineering B, 2020, 260 : 114639
https://doi.org/10.1016/j.mseb.2020.114639
13 H Hasannejad, T Shahrabi, M Jafarian. Synthesis and properties of high corrosion resistant Ni-cerium oxide nanocomposite coating. Materials and Corrosion, 2013, 64( 12): 1104– 1113
https://doi.org/10.1002/maco.201106484
14 Y Xu, Z Petrovic, S Das, G L Wilkes. Morphology and properties of thermoplastic polyurethane with dangling chain in ricinoleate-based soft segment. Polymer, 2008, 49( 19): 4248– 4258
https://doi.org/10.1016/j.polymer.2008.07.027
15 A Teimouri, N Soltani, A N Chermahini. Synthesis of mono and bis-4-methylpiperidiniummethyl-urea as corrosion inhibitors for steel in acidic media. Frontiers of Chemical Science and Engineering, 2011, 5( 1): 43– 50
https://doi.org/10.1007/s11705-010-0532-7
16 M F Montemor, W Trabelsi, S V Lamaka, K A Yasakau, M L Zheludkevich, A C Bastos, M G S Ferreira. The synergistic combination of bis-silane and CeO2–ZrO2 nanoparticles on the electrochemical behaviour of galvanised steel in NaCl solutions. Electrochimica Acta, 2008, 53( 20): 5913– 5922
https://doi.org/10.1016/j.electacta.2008.03.069
17 T A Nguyen, H Nguyen, T V Nguyen, H Thai, X Shi. Effect of nanoparticles on the thermal and mechanical properties of epoxy coatings. Journal of Nanoscience and Nanotechnology, 2016, 16( 9): 9874– 9881
https://doi.org/10.1166/jnn.2016.12162
18 J R Xavier. Effect of surface modified WO3 nanoparticle on the epoxy coatings for the adhesive and anticorrosion properties of mild steel. Journal of Applied Polymer Science, 2020, 137( 5): 48323
https://doi.org/10.1002/app.48323
19 J R Xavier. Investigation on the anticorrosion, adhesion and mechanical performance of epoxy nanocomposite coatings containing epoxy-silane treated nano-MoO3 on mild steel. Journal of Adhesion Science and Technology, 2020, 34( 2): 115– 134
https://doi.org/10.1080/01694243.2019.1661658
20 Ü Erten, H İ Ünal, S Zor, Ş H Atapek. Structural and electrochemical characterization of Zn–TiO2 and Zn–WO3 nanocomposite coatings electrodeposited on St 37 steel. Journal of Applied Electrochemistry, 2015, 45( 9): 991– 1003
https://doi.org/10.1007/s10800-015-0865-5
21 V M Mannari, J L Massingill. Two-component high-solid polyurethane coating system based on soy polyols. Journal of Coatings Technology and Research, 2006, 3( 2): 151– 157
https://doi.org/10.1007/s11998-006-0018-1
22 Z Fandi, N Ameur, F T Brahimi, S Bedrane, R Bachir. Photocatalytic and corrosion inhibitor performances of CeO2 nanoparticles decorated by noble metals: Au, Ag, Pt. Journal of Environmental Chemical Engineering, 2020, 8( 5): 104346
https://doi.org/10.1016/j.jece.2020.104346
23 J Yeh, H Huang, C Chen, W Su, Y Yu. Siloxane modifed epoxy resin-clay nanocomposite coatings with advanced anticorrosive properties prepared by a solution dispersion approach. Surface and Coatings Technology, 2006, 200( 8): 2753– 2763
https://doi.org/10.1016/j.surfcoat.2004.11.008
24 M Alam, N M Alandis, F Zafar, E Sharmin, Y M Al-Mohammadi. Polyurethane–TiO2 nanocomposite coatings from sunflower-oil-based amide diol as soft segment. Journal of Macromolecular Science: Part A, 2018, 55 : 698– 708
25 A Davis, Y H Yeong, A Steele, I S Bayer, E Loth. Superhydrophobic nanocomposite surface topography and ice adhesion. ACS Applied Materials & Interfaces, 2014, 6( 12): 9272– 9279
https://doi.org/10.1021/am501640h
26 L P Sung, J Comer, A M Forster, H Hu, B Floryancic, L Brickweg, R H Fernando. Scratch behavior of nano-alumina/polyurethane coatings. Journal of Coatings Technology and Research, 2008, 5( 4): 419– 430
https://doi.org/10.1007/s11998-008-9110-z
27 S Li, S Wang, X Du, H Wang, X Cheng, Z Du. Waterborne polyurethane coating based on tannic acid functionalized Ce-MMT nanocomposites for the corrosion protection of carbon steel. Progress in Organic Coatings, 2022, 163 : 106613
https://doi.org/10.1016/j.porgcoat.2021.106613
28 J B Cambon, J Esteban, F Ansart, J P Bonino, V Turq, S H Santagneli, C V Santilli, S H Pulcinelli. Effect of cerium on structure modifications of a hybrid sol–gel coating, its mechanical properties and anti-corrosion behaviour. Materials Research Bulletin, 2012, 47( 11): 3170– 3176
https://doi.org/10.1016/j.materresbull.2012.08.034
29 J R Xavier. Electrochemical and mechanical investigation of newly synthesized NiO–ZrO2 nanoparticle-grafted polyurethane nanocomposite coating on mild steel in chloride media. Journal of Materials Engineering and Performance, 2021, 30( 2): 1554– 1566
https://doi.org/10.1007/s11665-020-05448-8
30 J R Xavier. Electrochemical and dynamic mechanical studies of newly synthesized polyurethane/SiO2–Al2O3 mixed oxide nanocomposite coated steel immersed in 3.5% NaCl solution. Surfaces and Interfaces, 2021, 22 : 100848
https://doi.org/10.1016/j.surfin.2020.100848
31 D Qi, M Wu, L Yang, J Shao, Y Baoet. Dispersion of “guava-like” silica/polyacrylate nanocomposite particles in polyacrylate matrix. Frontiers of Chemical Science and Engineering, 2008, 2 : 127– 134
32 Y Liu, L Wang, C Zhang, K Zhang, G Liu. A hollow porous Mn2O3 microcontainer for encapsulation and release of corrosion inhibitors. ECS Electrochemistry Letters, 2013, 2( 10): 39– 42
https://doi.org/10.1149/2.003310eel
33 H T Yang, B M Chen, Z C Guo, H R Liu, Y C Zhang, H Huang, R D Xu, R C Fu. Effects of current density on preparation and performance of Al/conductive coating/α-PbO2–CeO2–TiO2/β-PbO2–MnO2–WC–ZrO2 composite electrode materials. Transactions of Nonferrous Metals Society of China, 2014, 24( 10): 3394– 3404
https://doi.org/10.1016/S1003-6326(14)63482-8
34 H Wang, J Xu, X Du, Z Du, X Cheng, H Wang. A self-healing polyurethane-based composite coating with high strength and anti-corrosion properties for metal protection. Composites Part B: Engineering, 2021, 225 : 109273
https://doi.org/10.1016/j.compositesb.2021.109273
35 M Ibrahim, K Kannan, H Parangusan, S Eldeib, O Shehata, M Ismail, R Zarandah, K K Sadasivuni. Enhanced corrosion protection of epoxy/ZnO–NiO nanocomposite coatings on steel. Coatings, 2020, 10( 8): 783
https://doi.org/10.3390/coatings10080783
36 Y Cai, X Quan, G Li, N Gao. Anticorrosion and scale behaviors of nanostructured ZrO2–TiO2 coatings in simulated geothermal water. Industrial & Engineering Chemistry Research, 2016, 55( 44): 11480– 11494
https://doi.org/10.1021/acs.iecr.6b02920
37 A K Bhosale, P S Shinde, N L Tarwal, R C Pawar, P M Kadam, P S Patil. Synthesis and characterization of highly stable optically passive CeO2–ZrO2 counter electrode. Electrochimica Acta, 2010, 55( 6): 1900– 1906
https://doi.org/10.1016/j.electacta.2009.11.005
38 J I Iribarren, E Armelin, F Liesa, J Casanovas, C Aleman. On the use of conducting polymers to improve the resistance against corrosion of paints based on polyurethane resins. Materials and Corrosion, 2006, 57( 9): 683– 688
https://doi.org/10.1002/maco.200503952
39 R Wenzel. Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936, 28( 8): 988– 994
https://doi.org/10.1021/ie50320a024
40 G C Psarras, S Siengchin, P K Karahaliou, S N Georga, C A Krontiras, J Karger-Kocsis. Dielectric relaxation phenomena and dynamics in polyoxymethylene/polyurethane/alumina hybrid nanocomposites. Polymer International, 2011, 60( 12): 1715– 1721
https://doi.org/10.1002/pi.3136
41 V Mathur, P K Arya. Dynamic mechanical analysis of PVC/TiO2 nanocomposites. Advanced Composites and Hybrid Materials, 2018, 1( 4): 741– 747
https://doi.org/10.1007/s42114-018-0051-4
42 C Y Wan, X Y Qiao, Y Zhang, Y X Zhang. Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites. Polymer Testing, 2003, 22( 4): 453– 461
https://doi.org/10.1016/S0142-9418(02)00126-5
[1] FCE-22004-OF-XJR_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed