Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2022, Vol. 16 Issue (11): 1681-1687   https://doi.org/10.1007/s11705-022-2180-0
  本期目录
Gas marbles: ultra-long-lasting and ultra-robust bubbles formed by particle stabilization
Xuxin Zhao1, Kunling Yang1, Zhou Liu1(), Ho Cheung Shum2,3(), Tiantian Kong4,5()
1. College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518000, China
2. Department of Mechanical Engineering, University of Hong Kong, Hong Kong, China
3. Advanced Biomedical Instrumentation Centre, Hong Kong, China
4. Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518000, China
5. Department of Urology, The Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518000, China
 全文: PDF(8289 KB)   HTML
Abstract

Bubbles and foams are ubiquitous in daily life and industrial processes. Studying their dynamic behaviors is of key importance for foam manufacturing processes in food packaging, cosmetics and pharmaceuticals. Bare bubbles are inherently fragile and transient; enhancing their robustness and shelf lives is an ongoing challenge. Their rupture can be attributed to liquid evaporation, thin film drainage and the nuclei of environmental dust. Inspired by particle-stabilized interfaces in Pickering emulsions, armored bubbles and liquid marble, bubbles are protected by an enclosed particle-entrapping liquid thin film, and the resultant soft object is termed gas marble. The gas marble exhibits mechanical strength orders of magnitude higher than that of soap bubbles when subjected to overpressure and underpressure, owing to the compact particle monolayer straddling the surface liquid film. By using a water-absorbent glycerol solution, the resulting gas marble can persist for 465 d in normal atmospheric settings. This particle-stabilizing approach not only has practical implications for foam manufacturing processes but also can inspire the new design and fabrication of functional biomaterials and biomedicines.

Key wordsbubble    particles    interfaces    armored bubble    liquid marble    gas marble    Pickering emulsion
收稿日期: 2022-03-31      出版日期: 2022-12-13
Corresponding Author(s): Zhou Liu,Ho Cheung Shum,Tiantian Kong   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2022, 16(11): 1681-1687.
Xuxin Zhao, Kunling Yang, Zhou Liu, Ho Cheung Shum, Tiantian Kong. Gas marbles: ultra-long-lasting and ultra-robust bubbles formed by particle stabilization. Front. Chem. Sci. Eng., 2022, 16(11): 1681-1687.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2180-0
https://academic.hep.com.cn/fcse/CN/Y2022/V16/I11/1681
Fig.1  
Fig.2  
Fig.3  
1 J Wang, A V Nguyen, S Farrokhpay. A critical review of the growth, drainage and collapse of foams. Advances in Colloid and Interface Science, 2016, 228 : 55– 70
https://doi.org/10.1016/j.cis.2015.11.009
2 C Hill, J Eastoe. Foams: from nature to industry. Advances in Colloid and Interface Science, 2017, 247 : 496– 513
https://doi.org/10.1016/j.cis.2017.05.013
3 S D Lubetkin. The fundamentals of bubble evolution. Chemical Society Reviews, 1995, 24( 4): 243– 250
https://doi.org/10.1039/cs9952400243
4 B Dollet, P Marmottant, V Garbin. Bubble dynamics in soft and biological matter. Annual Review of Fluid Mechanics, 2019, 51( 1): 331– 355
https://doi.org/10.1146/annurev-fluid-010518-040352
5 G Debrégeas, Gennes P G de, F Brochard-Wyart. The life and death of “bare” viscous bubbles. Science, 1998, 279( 5357): 1704– 1707
https://doi.org/10.1126/science.279.5357.1704
6 S Frazier, X Jiang, J C Burton. How to make a giant bubble. Physical Review Fluids, 2020, 5( 1): 013304
https://doi.org/10.1103/PhysRevFluids.5.013304
7 L W Schwartz, R V Roy. Modeling draining flow in mobile and immobile soap films. Journal of Colloid and Interface Science, 1999, 218( 1): 309– 323
https://doi.org/10.1006/jcis.1999.6426
8 A Roux, A Duchesne, M Baudoin. Everlasting bubbles and liquid films resisting drainage, evaporation, and nuclei-induced bursting. Physical Review Fluids, 2022, 7( 1): L011601
https://doi.org/10.1103/PhysRevFluids.7.L011601
9 W Ramsden, F Gotch. Separation of solids in the surface-layers of solutions and ‘suspensions’; (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation); preliminary account. Proceedings of the Royal Society of London, 1904, 72( 477−486): 156– 164
10 S U Pickering. CXCVI—emulsions. Journal of the Chemical Society, Transactions, 1907, 91 : 2001– 2021
https://doi.org/10.1039/CT9079102001
11 M Cui, T Emrick, T P Russell. Stabilizing liquid drops in nonequilibrium shapes by the interfacial jamming of nanoparticles. Science, 2013, 342( 6157): 460– 463
https://doi.org/10.1126/science.1242852
12 A D Dinsmore, M F Hsu, M G Nikolaides, M Marquez, A R Bausch, D A Weitz. Colloidosomes: selectively permeable capsules composed of colloidal particles. Science, 2002, 298( 5595): 1006– 1009
https://doi.org/10.1126/science.1074868
13 D M Kaz, R McGorty, M Mani, M P Brenner, V N Manoharan. Physical ageing of the contact line on colloidal particles at liquid interfaces. Nature Materials, 2012, 11( 2): 138– 142
https://doi.org/10.1038/nmat3190
14 M Li, R L Harbron, J V M Weaver, B P Binks, S Mann. Electrostatically gated membrane permeability in inorganic protocells. Nature Chemistry, 2013, 5( 6): 529– 536
https://doi.org/10.1038/nchem.1644
15 Z Rozynek, A Mikkelsen, P Dommersnes, J O Fossum. Electroformation of Janus and patchy capsules. Nature Communications, 2014, 5( 1): 3945
https://doi.org/10.1038/ncomms4945
16 J Wu, G H Ma. Recent studies of pickering emulsions: particles make the difference. Small, 2016, 12( 34): 4633– 4648
https://doi.org/10.1002/smll.201600877
17 A Bala Subramaniam, M Abkarian, L Mahadevan, H A Stone. Non-spherical bubbles. Nature, 2005, 438( 7070): 930
https://doi.org/10.1038/438930a
18 A Bala Subramaniam, M Abkarian, L Mahadevan, H A Stone. Mechanics of interfacial composite materials. Langmuir, 2006, 22( 24): 10204– 10208
https://doi.org/10.1021/la061475s
19 A Bala Subramaniam, M Abkarian, H A Stone. Controlled assembly of jammed colloidal shells on fluid droplets. Nature Materials, 2005, 4( 7): 553– 556
https://doi.org/10.1038/nmat1412
20 A Huerre, M De Corato, V Garbin. Dynamic capillary assembly of colloids at interfaces with 10000 g accelerations. Nature Communications, 2018, 9( 1): 3620
https://doi.org/10.1038/s41467-018-06049-9
21 M Abkarian, A Bala Subramaniam, S H Kim, R J Larsen, S M Yang, H A Stone. Dissolution arrest and stability of particle-covered bubbles. Physical Review Letters, 2007, 99( 18): 188301
https://doi.org/10.1103/PhysRevLett.99.188301
22 J Pierre, B Dollet, V Leroy. Resonant acoustic propagation and negative density in liquid foams. Physical Review Letters, 2014, 112( 14): 148307
https://doi.org/10.1103/PhysRevLett.112.148307
23 N Taccoen, F Lequeux, D Z Gunes, C N Baroud. Probing the mechanical strength of an armored bubble and its implication to particle-stabilized foams. Physical Review X, 2016, 6( 1): 011010
https://doi.org/10.1103/PhysRevX.6.011010
24 P Aussillous, D Quéré. Liquid marbles. Nature, 2001, 411( 6840): 924– 927
https://doi.org/10.1038/35082026
25 L Mahadevan. Non-stick water. Nature, 2001, 411( 6840): 895– 896
https://doi.org/10.1038/35082164
26 X Rong, R Ettelaie, S V Lishchuk, H Cheng, N Zhao, F Xiao, F Cheng, H Yang. Liquid marble-derived solid−liquid hybrid superparticles for CO2 capture. Nature Communications, 2019, 10( 1): 1854
https://doi.org/10.1038/s41467-019-09805-7
27 Z Xin, T Skrydstrup. Liquid marbles: a promising and versatile platform for miniaturized chemical reactions. Angewandte Chemie International Edition, 2019, 58( 35): 11952– 11954
https://doi.org/10.1002/anie.201905204
28 M Anyfantakis, V S R Jampani, R Kizhakidathazhath, B P Binks, J P F Lagerwall. Responsive photonic liquid marbles. Angewandte Chemie International Edition, 2020, 59( 43): 19260– 19267
https://doi.org/10.1002/anie.202008210
29 J Vialetto, M Hayakawa, N Kavokine, M Takinoue, S N Varanakkottu, S Rudiuk, M Anyfantakis, M Morel, D Baigl. Magnetic actuation of drops and liquid marbles using a deformable paramagnetic liquid substrate. Angewandte Chemie International Edition, 2017, 56( 52): 16565– 16570
https://doi.org/10.1002/anie.201710668
30 L Sheng, J Zhang, J Liu. Diverse transformations of liquid metals between different morphologies. Advanced Materials, 2014, 26( 34): 6036– 6042
https://doi.org/10.1002/adma.201400843
31 R Hatti-Kaul. Aqueous two-phase systems. Molecular Biotechnology, 2001, 19( 3): 269– 277
https://doi.org/10.1385/MB:19:3:269
32 P E R Å Albertsson. Partition of proteins in liquid polymer-polymer two-phase systems. Nature, 1958, 182( 4637): 709– 711
https://doi.org/10.1038/182709a0
33 Y Chao, H C Shum. Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications. Chemical Society Reviews, 2020, 49( 1): 114– 142
https://doi.org/10.1039/C9CS00466A
34 G Balakrishnan, T Nicolai, L Benyahia, D Durand. Particles trapped at the droplet interface in water-in-water emulsions. Langmuir, 2012, 28( 14): 5921– 5926
https://doi.org/10.1021/la204825f
35 Y Song, U Shimanovich, T C T Michaels, Q Ma, J Li, T P J Knowles, H C Shum. Fabrication of fibrillosomes from droplets stabilized by protein nanofibrils at all-aqueous interfaces. Nature Communications, 2016, 7( 1): 12934
https://doi.org/10.1038/ncomms12934
36 Y Song, T C T Michaels, Q Ma, Z Liu, H Yuan, S Takayama, T P J Knowles, H C Shum. Budding-like division of all-aqueous emulsion droplets modulated by networks of protein nanofibrils. Nature Communications, 2018, 9( 1): 2110
https://doi.org/10.1038/s41467-018-04510-3
37 A M Cervantes-Álvarez, Y Y Escobar-Ortega, A Sauret, F Pacheco-Vázquez. Air entrainment and granular bubbles generated by a jet of grains entering water. Journal of Colloid and Interface Science, 2020, 574 : 285– 292
https://doi.org/10.1016/j.jcis.2020.04.009
38 Z Liu, T Yang, Y Huang, Y Liu, L Chen, L Deng, H C Shum, T Kong. Electrocontrolled liquid marbles for rapid miniaturized organic reactions. Advanced Functional Materials, 2019, 29( 19): 1901101
https://doi.org/10.1002/adfm.201901101
39 F Geyer, Y Asaumi, D Vollmer, H J Butt, Y Nakamura, S Fujii. Polyhedral liquid marbles. Advanced Functional Materials, 2019, 29( 25): 1808826
https://doi.org/10.1002/adfm.201808826
40 X Li, H Shi, Y Wang, R Wang, S Huang, J Huang, X Geng, D Zang. Liquid shaping based on liquid pancakes. Advanced Materials Interfaces, 2018, 5( 2): 1701139
https://doi.org/10.1002/admi.201701139
41 B P Binks T S Horozov. Colloidal Particles at Liquid Interfaces. Cambridge: Cambridge University Press, 2006
42 Z Sun, B Wu, Y Ren, Z Wang, C X Zhao, M Hai, D A Weitz, D Chen. Diverse particle carriers prepared by co-precipitation and phase separation: formation and applications. ChemPlusChem, 2021, 86( 1): 49– 58
https://doi.org/10.1002/cplu.202000497
43 J Fujiwara, F Geyer, H J Butt, T Hirai, Y Nakamura, S Fujii. Liquid marbles: shape-designable polyhedral liquid marbles/plasticines stabilized with polymer plates. Advanced Materials Interfaces, 2020, 7( 24): 2070133
https://doi.org/10.1002/admi.202070133
44 Z Sun, X Yan, Y Xiao, L Hu, M Eggersdorfer, D Chen, Z Yang, D A Weitz. Pickering emulsions stabilized by colloidal surfactants: role of solid particles. Particuology, 2022, 64 : 153– 163
https://doi.org/10.1016/j.partic.2021.06.004
45 B P Binks, P D I Fletcher. Particles adsorbed at the oil-water interface: a theoretical comparison between spheres of uniform wettability and “Janus” particles. Langmuir, 2001, 17( 16): 4708– 4710
https://doi.org/10.1021/la0103315
46 D Chen, E Amstad, C X Zhao, L Cai, J Fan, Q Chen, M Hai, S Koehler, H Zhang, F Liang, Z Yang, D A Weitz. Biocompatible amphiphilic hydrogel-solid dimer particles as colloidal surfactants. ACS Nano, 2017, 11( 12): 11978– 11985
https://doi.org/10.1021/acsnano.7b03110
47 Z Sun, C Yang, F Wang, B Wu, B Shao, Z Li, D Chen, Z Yang, K Liu. Biocompatible and pH-responsive colloidal surfactants with tunable shape for controlled interfacial curvature. Angewandte Chemie International Edition, 2020, 59( 24): 9365– 9369
https://doi.org/10.1002/anie.202001588
48 Y Timounay, O Pitois, F Rouyer. Gas marbles: much stronger than liquid marbles. Physical Review Letters, 2017, 118( 22): 228001
https://doi.org/10.1103/PhysRevLett.118.228001
49 Y Timounay, E Ou, E Lorenceau, F Rouyer. Low gas permeability of particulate films slows down the aging of gas marbles. Soft Matter, 2017, 13( 42): 7717– 7720
https://doi.org/10.1039/C7SM01444A
50 Z Liu, Y Zhang, C Chen, T Yang, J Wang, L Guo, P Liu, T Kong. Larger stabilizing particles make stronger liquid marble. Small, 2019, 15( 3): 1804549
51 J Saczek, X Yao, V Zivkovic, M Mamlouk, D Wang, S S Pramana, S Wang. Long-lived liquid marbles for green applications. Advanced Functional Materials, 2021, 31( 35): 2011198
https://doi.org/10.1002/adfm.202011198
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed