Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2022, Vol. 16 Issue (12): 1818-1825   https://doi.org/10.1007/s11705-022-2182-y
  本期目录
Continuous deacylation of amides in a high-temperature and high-pressure microreactor
Pengcheng Zou, Kai Wang(), Guangsheng Luo
State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
 全文: PDF(7151 KB)   HTML
Abstract

The deacylation of amides, which is widely employed in the pharmaceutical industry, is not a fast reaction under normal conditions. To intensify this reaction, a high-temperature and high-pressure continuous microreaction technology was developed, whose space-time yield was 49.4 times that of traditional batch reactions. Using the deacylation of acetanilide as a model reaction, the effects of the temperature, pressure, reaction time, molar ratio of reactants, and water composition on acetanilide conversion were carefully studied. Based on the rapid heating and cooling capabilities, the kinetics of acetanilide deacylation at high temperatures were investigated to determine the orders of reactants and activation energy. This microreaction technology was further applied to a variety of other amides to understand the influence of substituents and steric hindrance on the deacylation reaction.

Key wordsamide deacylation    microreactor    flow chemistry    reaction intensification
收稿日期: 2022-03-25      出版日期: 2022-12-19
Corresponding Author(s): Kai Wang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2022, 16(12): 1818-1825.
Pengcheng Zou, Kai Wang, Guangsheng Luo. Continuous deacylation of amides in a high-temperature and high-pressure microreactor. Front. Chem. Sci. Eng., 2022, 16(12): 1818-1825.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2182-y
https://academic.hep.com.cn/fcse/CN/Y2022/V16/I12/1818
  
  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Cacetanilide,0/(mol·L–1) CNaOH,0/(mol·L–1) T/ºC k/(L·mol–1·min–1)
0.5 0.5 150 0.1313 ± 0.0025
0.5 0.6 150 0.1216 ± 0.0002
0.5 1.0 150 0.1442 ± 0.0026
0.5 0.5 140 0.0800 ± 0.0018
0.5 0.6 140 0.0922 ± 0.0004
0.5 1.0 140 0.0941 ± 0.0032
Tab.1  
Reactor Cacetanilide,0/ (mol·L–1) Vreactor/ mL T/°C t/min b) Xacetanilide STY/ (mol·L–1·min–1)
Batch reactor 0.5 50 150 50 95.2% 0.0038
Batch reactor 0.5 50 150 60 99.6% 0.0033
Batch reactor 0.5 50 150 75 100% 0.0027
Microreactor 0.5 15 150 30 96.4% 0.0129
Microreactor 0.5 15 190 5 97.0% 0.0776
Microreactor 0.5 15 200 5 99.0% 0.0792
Microreactor 0.5 15 240 3 100% 0.133 c)
Tab.2  
Fig.5  
1 V R Pattabiraman, J W Bode. Rethinking amide bond synthesis. Nature, 2011, 480( 7378): 471– 479
https://doi.org/10.1038/nature10702
2 D G Brown, J Bostrom. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? Miniperspective. Journal of Medicinal Chemistry, 2016, 59( 10): 4443– 4458
https://doi.org/10.1021/acs.jmedchem.5b01409
3 P Etayo, A Vidal-Ferran. Rhodium-catalysed asymmetric hydrogenation as a valuable synthetic tool for the preparation of chiral drugs. Chemical Society Reviews, 2013, 42( 2): 728– 754
https://doi.org/10.1039/C2CS35410A
4 C B Yu, J Wang, Y G Zhou. Facile synthesis of chiral indolines through asymmetric hydrogenation of in situ generated indoles. Organic Chemistry Frontiers, 2018, 5( 19): 2805– 2809
https://doi.org/10.1039/C8QO00710A
5 I Kreituss, Y Murakami, M Binanzer, J W Bode. Kinetic resolution of nitrogen heterocycles with a reusable polymer-supported reagent. Angewandte Chemie International Edition, 2012, 51( 42): 10660– 10663
https://doi.org/10.1002/anie.201204991
6 P B Arockiam, C Bruneau, P H Dixneuf. Ruthenium (II)-catalyzed C–H bond activation and functionalization. Chemical Reviews, 2012, 112( 11): 5879– 5918
https://doi.org/10.1021/cr300153j
7 S Rej, N Chatani. Rhodium-catalyzed C(sp2)– or C(sp3)–H bond functionalization assisted by removable directing groups. Angewandte Chemie International Edition, 2019, 58( 25): 8304– 8329
https://doi.org/10.1002/anie.201808159
8 X G Zhang, H X Dai, M Wasa, J Q Yu. Pd (II)-catalyzed ortho trifluoromethylation of arenes and insights into the coordination mode of acidic amide directing groups. Journal of the American Chemical Society, 2012, 134( 29): 11948– 11951
https://doi.org/10.1021/ja305259n
9 R Y Zhu, M E Farmer, Y Q Chen, J Q Yu. A simple and versatile amide directing group for C–H functionalizations. Angewandte Chemie International Edition, 2016, 55( 36): 10578– 10599
https://doi.org/10.1002/anie.201600791
10 F Zhang, D R Spring. Arene C–H functionalization using a removable/modifiable or a traceless directing group strategy. Chemical Society Reviews, 2014, 43( 20): 6906– 6919
https://doi.org/10.1039/C4CS00137K
11 J Y Wong, G Barker. Recent advances in benzylic and heterobenzylic lithiation. Tetrahedron, 2020, 76( 50): 131704
https://doi.org/10.1016/j.tet.2020.131704
12 A Dey, S K Sinha, T K Achar, D Maiti. Accessing remote meta- and para-C(sp2)-H bonds with covalently attached directing groups. Angewandte Chemie International Edition, 2019, 58( 32): 10820– 10843
https://doi.org/10.1002/anie.201812116
13 R L Schowen, H Jayaraman, L Kershner. Catalytic efficiencies in amide hydrolysis. The two-step mechanism. Journal of the American Chemical Society, 1966, 88( 14): 3373– 3375
https://doi.org/10.1021/ja00966a034
14 M L Bender, R D Ginger. Intermediates in the reactions of carboxylic acid derivatives. IV. The hydrolysis of benzamide. Journal of the American Chemical Society, 1955, 77( 2): 348– 351
https://doi.org/10.1021/ja01607a032
15 I Meloche, K J Laidler. Substituent effects in the acid and base hydrolyses of aromatic amides. Journal of the American Chemical Society, 1951, 73( 4): 1712– 1714
https://doi.org/10.1021/ja01148a084
16 R L Schowen, G W Zuorick. Amide hydrolysis. Superimposed general base catalysis in the cleavage of anilides. Journal of the American Chemical Society, 1966, 88( 6): 1223– 1225
https://doi.org/10.1021/ja00958a025
17 P Duan, L Dai, P E Savage. Kinetics and mechanism of N-substituted amide hydrolysis in high-temperature water. Journal of Supercritical Fluids, 2010, 51( 3): 362– 368
https://doi.org/10.1016/j.supflu.2009.09.012
18 Z Yu, K Geisler, T Leontidou, R Young, S Vonlanthen, S Purton, C Abell, A Smith. Droplet-based microfluidic screening and sorting of microalgal populations for strain engineering applications. Algal Research, 2021, 56 : 102293
https://doi.org/10.1016/j.algal.2021.102293
19 Z Yang, Y Yang, X Zhang, W Du, J Zhang, G Qian, X Duan, X Zhou. High-yield production of p-diethynylbenzene through consecutive bromination/dehydrobromination in a microreactor system. AIChE Journal, 2022, 68( 2): e17498
https://doi.org/10.1002/aic.17498
20 Y Feng, M Zhang, H Zhang, J Wang, Y Yang. Continuous synthesis of isobutylaluminoxanes in a compact and integrated approach. Chemical Engineering Journal, 2021, 425 : 131750
https://doi.org/10.1016/j.cej.2021.131750
21 S Marre, A Adamo, S Basak, C Aymonier, K F Jensen. Design and packaging of microreactors for high pressure and high temperature applications. Industrial & Engineering Chemistry Research, 2010, 49( 22): 11310– 11320
https://doi.org/10.1021/ie101346u
22 K Qin, K Wang, R Luo, Y Li, T Wang. Dispersion of supercritical carbon dioxide to [Emim] [BF4] with a T-junction tubing connector. Chemical Engineering and Processing, 2018, 127 : 58– 64
https://doi.org/10.1016/j.cep.2018.03.003
23 A K Goodwin, G L Rorrer. Reaction rates for supercritical water gasification of xylose in a micro-tubular reactor. Chemical Engineering Journal, 2010, 163( 1–2): 10– 21
https://doi.org/10.1016/j.cej.2010.07.013
24 H Kawanami, M Sato, M Chatterjee, N Otabe, T Tuji, Y Ikushima, T Ishizaka, T Yokoyama, T M Suzuki. Highly selective non-catalytic Claisen rearrangement in a high-pressure and high-temperature water microreaction system. Chemical Engineering Journal, 2011, 167( 2–3): 572– 577
https://doi.org/10.1016/j.cej.2010.09.084
25 A Adeyemi, J Bergman, J Branalt, J Sävmarker, M Larhed. Continuous flow synthesis under high-temperature/high-pressure conditions using a resistively heated flow reactor. Organic Process Research & Development, 2017, 21( 7): 947– 955
https://doi.org/10.1021/acs.oprd.7b00063
26 K F Jensen. Flow chemistry—microreaction technology comes of age. AIChE Journal, 2017, 63( 3): 858– 869
https://doi.org/10.1002/aic.15642
27 H P Gemoets, Y Su, M Shang, V Hessel, R Luque, T Noel. Liquid phase oxidation chemistry in continuous-flow microreactors. Chemical Society Reviews, 2016, 45( 1): 83– 117
https://doi.org/10.1039/C5CS00447K
28 D Liu, Y Jing, K Wang, Y Wang, G Luo. Reaction study of α-phase NaYF4:Yb,Er generation via a tubular microreactor: discovery of an efficient synthesis strategy. Nanoscale, 2019, 11( 17): 8363– 8371
https://doi.org/10.1039/C8NR09957J
29 D Liu, J Yan, K Wang, Y Wang, G Luo. Continuous synthesis of ultrasmall core-shell upconversion nanoparticles via a flow chemistry method. Nano Research, 2022, 15( 2): 1199– 1204
https://doi.org/10.1007/s12274-021-3625-3
30 M Shang, T Noël, Y Su, V Hessel. Kinetic study of hydrogen peroxide decomposition at high temperatures and concentrations in two capillary microreactors. AIChE Journal, 2017, 63( 2): 689– 697
https://doi.org/10.1002/aic.15385
31 A Tanimu, S Jaenicke, K Alhooshani. Heterogeneous catalysis in continuous flow microreactors: a review of methods and applications. Chemical Engineering Journal, 2017, 327 : 792– 821
https://doi.org/10.1016/j.cej.2017.06.161
32 Y Li, K Wang, K Qin, T Wang. Beckmann rearrangement reaction of cyclohexanone oxime in sub/supercritical water: byproduct and selectivity. RSC Advances, 2015, 5( 32): 25365– 25371
https://doi.org/10.1039/C5RA01929J
33 B Li, R Li, P Dorff, J C McWilliams, R M Guinn, S M Guinness, L Han, K Wang, S Yu. Deprotection of N-Boc groups under continuous-flow high-temperature conditions. Journal of Organic Chemistry, 2019, 84( 8): 4846– 4855
https://doi.org/10.1021/acs.joc.8b02909
34 A Polyzoidis, T Altenburg, M Schwarzer, S Loebbecke, S Kaskel. Continuous microreactor synthesis of ZIF-8 with high space-time-yield and tunable particle size. Chemical Engineering Journal, 2016, 283 : 971– 977
https://doi.org/10.1016/j.cej.2015.08.071
35 J Sui, J Yan, K Wang, G Luo. Efficient synthesis of lithium rare-earth tetrafluoride nanocrystals via a continuous flow method. Nano Research, 2020, 13( 10): 2837– 2846
https://doi.org/10.1007/s12274-020-2938-y
36 H Zhang, Q Jin, R Xu, L Yan, Z Lin. Kinetic studies of xylan hydrolysis of corn stover in a dilute acid cycle spray flow-through reactor. Frontiers of Chemical Science and Engineering, 2011, 5( 2): 252– 257
https://doi.org/10.1007/s11705-010-1010-y
37 S H Jin, J H Jung, S G Jeong, J Kim, T J Park, C S Lee. Microfluidic dual loops reactor for conducting a multistep reaction. Frontiers of Chemical Science and Engineering, 2018, 12( 2): 239– 246
https://doi.org/10.1007/s11705-017-1680-9
38 H Shang, P Ye, Y Yue, T Wang, W Zhang, S Omar, J Wang. Experimental and theoretical study of microwave enhanced catalytic hydrodesulfurization of thiophene in a continuous-flow reactor. Frontiers of Chemical Science and Engineering, 2019, 13( 4): 744– 758
https://doi.org/10.1007/s11705-019-1839-7
39 S Lu, K Wang. Kinetic study of TBD catalyzed delta-valerolactone polymerization using a gas-driven droplet flow reactor. Reaction Chemistry & Engineering, 2019, 4( 7): 1189– 1194
https://doi.org/10.1039/C9RE00046A
40 X Lin, K Wang, B Zhou, G Luo. A microreactor-based research for the kinetics of polyvinyl butyral (PVB) synthesis reaction. Chemical Engineering Journal, 2020, 383 : 123181
https://doi.org/10.1016/j.cej.2019.123181
41 M Mansour, Z Liu, G Janiga, K D Nigam, K Sundmacher, D Thévenin, K Zähringer. Numerical study of liquid–liquid mixing in helical pipes. Chemical Engineering Science, 2017, 172 : 250– 261
https://doi.org/10.1016/j.ces.2017.06.015
42 D Zahn. On the role of water in amide hydrolysis. European Journal of Organic Chemistry, 2004, 2004( 19): 4020– 4023
https://doi.org/10.1002/ejoc.200400316
43 R L Schowen, H Jayaraman, L Kershner. Kinetic evidence for a two-step mechanism of amide hydrolysis. Tetrahedron Letters, 1966, 7( 5): 497– 500
https://doi.org/10.1016/S0040-4039(00)72910-8
44 J W Barnett, C O’Connor. Evidence for a first order mechanism in amide hydrolysis. Journal of the Chemical Society. Chemical Communications, 1972, ( 9): 525– 525
https://doi.org/10.1039/c39720000525
45 C O’Connor. Acidic and basic amide hydrolysis. Quarterly Review of the Chemical Society, 1970, 24( 4): 553– 564
https://doi.org/10.1039/qr9702400553
46 H Slebocka-Tilk, A J Bennet, J W Keillor, R S Brown, J P Guthrie, A Jodhan. Oxygen-18 exchange accompanying the basic hydrolysis of primary, secondary, and tertiary toluamides. The importance of amine leaving abilities from the anionic tetrahedral intermediate. Journal of the American Chemical Society, 1990, 112( 23): 8507– 8514
https://doi.org/10.1021/ja00179a040
47 S S Biechler, R W Jr Taft. The effect of structure on kinetics and mechanism of the alkaline hydrolysis of anilides. Journal of the American Chemical Society, 1957, 79( 18): 4927– 4935
https://doi.org/10.1021/ja01575a028
48 R H DeWolfe, R C Newcomb. Hydrolysis of formanilides in alkaline solutions. Journal of Organic Chemistry, 1971, 36( 25): 3870– 3878
https://doi.org/10.1021/jo00824a005
49 M L Bender, R J Thomas. The concurrent alkaline hydrolysis and isotopic oxygen exchange of a series of p-substituted acetanilides. Journal of the American Chemical Society, 1961, 83( 20): 4183– 4189
https://doi.org/10.1021/ja01481a021
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed