Rare-earth separation based on the differences of ionic magnetic moment via quasi-liquid strategy
Na Wang1,2, Fujian Li2,3(), Bangyu Fan2,3,4, Suojiang Zhang2,3, Lu Bai2,3, Xiangping Zhang2,3()
1. College of Chemical and Engineering, Zhengzhou University, Zhengzhou 450001, China 2. CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering and Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China 3. Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China 4. College of Chemistry, Nanchang University, Nanchang 330031, China
The separation of rare earth elements is particularly difficult due to their similar physicochemical properties. Based on the tiny differences of ionic radius, solvent extraction has been developed as the “mass method” in industry with hundreds of stages, extremely intensive chemical consumption and large capital investments. The differences of the ionic magnetic moment among rare earths are greater than that of ionic radius. Herein, a novel method based on the large ionic magnetic moment differences of rare earth elements was proposed to promote the separation efficiency. Rare earths were firstly dissolved in the ionic liquid, then the ordering degree of them was improved with the Z-bond effect, and finally the magnetic moment differences between paramagnetic and diamagnetic rare earths in quasi-liquid system were enhanced. Taking the separation of Er/Y, Ho/Y and Er/Ho as examples, the results showed that Er(III) and Ho(III) containing ionic liquids had obvious magnetic response, while ionic liquids containing Y(III) had no response. The separation factors of Er/Y and Ho/Y were achieved at 9.0 and 28.82, respectively. Magnetic separation via quasi-liquid system strategy provides a possibility of the novel, green, and efficient method for rare earth separation.
. [J]. Frontiers of Chemical Science and Engineering, 2022, 16(11): 1584-1594.
Na Wang, Fujian Li, Bangyu Fan, Suojiang Zhang, Lu Bai, Xiangping Zhang. Rare-earth separation based on the differences of ionic magnetic moment via quasi-liquid strategy. Front. Chem. Sci. Eng., 2022, 16(11): 1584-1594.
S V Eliseeva, J C G Bünzli. Rare earths: jewels for functional materials of the future. New Journal of Chemistry, 2011, 35( 6): 1165– 1176 https://doi.org/10.1039/c0nj00969e
2
Q Jiang, J Y Cheng, Z Q Gao. Direct synthesis of dimethyl carbonate over rare earth oxide supported catalyst. Frontiers of Chemical Engineering in China, 2007, 1( 3): 300– 303 https://doi.org/10.1007/s11705-007-0055-z
3
S Massari, M Ruberti. Rare earth elements as critical raw materials: focus on international markets and future strategies. Resources Policy, 2013, 38( 1): 36– 43 https://doi.org/10.1016/j.resourpol.2012.07.001
F Xie, T A Zhang, D Dreisinger, F Doyle. A critical review on solvent extraction of rare earths from aqueous solutions. Minerals Engineering, 2014, 56 : 10– 28 https://doi.org/10.1016/j.mineng.2013.10.021
6
A Rout, K Binnemans. Liquid–liquid extraction of europium(III) and other trivalent rare-earth ions using a non-fluorinated functionalized ionic liquid. Dalton Transactions (Cambridge, England), 2014, 43( 4): 1862– 1872 https://doi.org/10.1039/C3DT52285G
7
D Depuydt, W Dehaen, K Binnemans. Solvent extraction of scandium(III) by an aqueous biphasic system with a nonfluorinated functionalized ionic liquid. Industrial & Engineering Chemistry Research, 2015, 54( 36): 8988– 8996 https://doi.org/10.1021/acs.iecr.5b01910
Y H Chen, H Y Wang, Y C Pei, J J Wang. A green separation strategy for neodymium(III) from cobalt(II) and nickel(II) using an ionic liquid-based aqueous two-phase system. Talanta, 2018, 182 : 450– 455 https://doi.org/10.1016/j.talanta.2018.02.018
10
X Hérès, V Blet, Natale P Di, A Ouaattou, H Mazouz, D Dhiba, F Cuer. Selective extraction of rare earth elements from phosphoric acid by ion exchange resins. Metals, 2018, 8( 9): 682– 698 https://doi.org/10.3390/met8090682
11
F J Li, Y L Wang, X Su, X Q Sun. Towards zero-consumption of acid and alkali recycling rare earths from scraps: a precipitation-stripping-saponification extraction strategy using CYANEX®572. Journal of Cleaner Production, 2019, 228 : 692– 702 https://doi.org/10.1016/j.jclepro.2019.04.318
12
F J Li, J J Yan, X P Zhang, N Wang, H F Dong, L Bai, H S Gao. Removal of trace aluminum impurity for high-purity GdCl3 preparation using an amine-group-functionalized ionic liquid. Industrial & Engineering Chemistry Research, 2021, 60( 30): 11241– 11250 https://doi.org/10.1021/acs.iecr.1c00870
13
J Zhang B D Zhao B Schreiner. Separation Hydrometallurgy of Rare Earth Elements. Heidelberg: Springer, 2016: 5– 7
14
X L Wang, W Li, S Meng, D Q Li. The extraction of rare earths using mixtures of acidic phosphorus-based reagents or their thio-analogues. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2006, 81( 5): 761– 766 https://doi.org/10.1002/jctb.1532
15
T Moeller. The Chemistry of the Lanthanides. Oxford: Pergamon Press, 1973: 6– 9
16
H J Yang, F Peng, D E Schier, S A Markotic, X Zhao, A N Hong, Y X Wang, P Y Feng, X H Bu. Selective crystallization of rare-earth ions into cationic metal–organic frameworks for rare-earth separation. Angewandte Chemie International Edition, 2021, 60( 20): 11148– 11152 https://doi.org/10.1002/anie.202017042
17
Noddack W, Noddack I, Wicht E. Separate the rare earths in the inhomogeneous magnetic field. Zeitschrift fur elektrochemie, 1958, 62(1): 77–85 (In German)
18
R F Higgins, T Cheisson, B E Cole, B C Manor, P J Carroll, E J Schelter. Magnetic field directed rare-earth separations. Angewandte Chemie International Edition, 2020, 59( 5): 1851– 1856 https://doi.org/10.1002/anie.201911606
19
X G Yang, K Tschulik, M Uhlemann, S Odenbach, K Eckert. Enrichment of paramagnetic ions from homogeneous solutions in inhomogeneous magnetic fields. Journal of Physical Chemistry Letters, 2012, 3( 23): 3559– 3564 https://doi.org/10.1021/jz301561q
20
N Faris, R Ram, J Tardio, S Bhargava, M I Pownceby. Characterisation of a ferruginous rare earth bearing lateritic ore and implications for rare earth mineral processing. Minerals Engineering, 2019, 134 : 23– 36 https://doi.org/10.1016/j.mineng.2019.01.019
21
G Pearse J Borduas T Gervais D Menard D Seddaoui B Ung. Method and system for magnetic separation of rare earths. US Patent, 166788A1, 2014– 06-19
22
K Y Wang, H Adidharma, M Radosz, P Y Wan, X Xu, C K Russell, H J Tian, M H Fan, J Yu. Recovery of rare earth elements with ionic liquids. Green Chemistry, 2017, 19( 19): 4469– 4493 https://doi.org/10.1039/C7GC02141K
H Machida, R Taguchi, A Sato, L J Florusse, C J Peters, R L Jr Smith. Measurement and correlation of supercritical CO2 and ionic liquid systems for design of advanced unit operations. Frontiers of Chemical Engineering in China, 2009, 3( 1): 12– 19 https://doi.org/10.1007/s11705-009-0151-3
S N Zhang, X Y Wang, J Yao, H R Li. Electron paramagnetic resonance studies of the chelate-based ionic liquid in different solvents. Green Energy & Environment, 2020, 5( 3): 341– 346 https://doi.org/10.1016/j.gee.2020.06.018
27
A A Shamsuri, K Abdan, S N A M Jamil. Properties and applications of cellulose regenerated from cellulose/imidazolium-based ionic liquid/co-solvent solutions: a short review. e-Polymers, 2021, 21 : 869– 880
28
S Hayashi, H O Hamaguchi. Discovery of a magnetic ionic liquid [bmim]FeCl4. Chemistry Letters, 2004, 33( 12): 1590– 1591 https://doi.org/10.1246/cl.2004.1590
29
S Hayashi, S Saha, H O Hamaguchi. A new class of magnetic fluids: [bmim]FeCl4 and n[bmim]FeCl4 ionic liquids. IEEE Transactions on Magnetics, 2006, 42( 1): 12– 14 https://doi.org/10.1109/TMAG.2005.854875
S J Zhang, J Sun, X C Zhang, J Y Xin, Q Q Miao, J J Wang. Ionic liquid-based green processes for energy production. Chemical Society Reviews, 2014, 43( 22): 7838– 7869 https://doi.org/10.1039/C3CS60409H
32
S J Zhang, Y L Wang, H Y He, F Huo, Y M Lu, X C Zhang, K Dong. A new era of precise liquid regulation: quasi-liquid. Green Energy & Environment, 2017, 2( 4): 329– 330 https://doi.org/10.1016/j.gee.2017.09.001
33
Y L Wang, H Y He, C L Wang, Y Lu, K Dong, F Huo, S J Zhang. Insights into ionic liquids: from Z-bonds to quasi-liquids. Journal of the American Chemical Society Au, 2022, 2( 3): 543– 561 https://doi.org/10.1021/jacsau.1c00538
34
Y M Lu, W Chen, Y L Wang, F Huo, L Zhang, H He, S J Zhang. A space-confined strategy toward large-area two-dimensional crystals of ionic liquid. Physical Chemistry Chemical Physics, 2020, 22( 4): 1820– 1825 https://doi.org/10.1039/C9CP04467A
35
F Kubota, E Shigyo, W Yoshidai, M Goto. Extraction and separation of Pt and Pd by an imidazolium-based ionic liquid combined with phosphonium chloride. Solvent Extraction Research and Development, Japan, 2017, 24( 2): 97– 104 https://doi.org/10.15261/serdj.24.97
36
I D Hughes, M Dane, A Ernst, W Hergert, M Luders, J Poulter, J B Staunton, A Svane, Z Szotek, W M Temmerman. Lanthanide contraction and magnetism in the heavy rare earth elements. Nature, 2007, 446( 7136): 650– 653 https://doi.org/10.1038/nature05668
37
Y T Li, Y J Li, Z X Yang, X J Zhang, F M Zeng, C Li, H Lin, Z M Su, C K Mahadevan, J H Liu. The structure and liquid flow effect of melt during NaCl crystal growth. Crystal Research and Technology, 2020, 55( 7): 1900229 https://doi.org/10.1002/crat.201900229
38
S Hayashi, R Ozawa, H O Hamaguchi. Raman spectra, crystal polymorphism, and structure of a prototype ionic-liquid [bmim]Cl. Chemistry Letters, 2003, 32( 6): 498– 499 https://doi.org/10.1246/cl.2003.498
39
H Katayanagi, S Hayashi, H O Hamaguchi, K Nishikawa. Structure of an ionic liquid, 1-n-butyl-3-methylimidazolium iodide, studied by wide-angle X-ray scattering and raman spectroscopy. Chemical Physics Letters, 2004, 392( 4): 460– 464 https://doi.org/10.1016/j.cplett.2004.04.125
40
R Ozawa, S Hayashi, S Saha, A Kobayashi, H O Hamaguchi. Rotational isomerism and structure of the 1-butyl-3-methylimidazolium cation in the ionic liquid state. Chemistry Letters, 2003, 32( 10): 948– 949 https://doi.org/10.1246/cl.2003.948
41
S Saha, S Hayashi, A Kobayashi, H O Hamaguchi. Crystal structure of 1-butyl-3-methylimidazolium chloride. A clue to the elucidation of the ionic liquid structure. Chemistry Letters, 2003, 32( 8): 740– 741 https://doi.org/10.1246/cl.2003.740
42
A Habenschuss, F H Spedding. The coordination (hydration) of rare earth ions in aqueous chloride solutions from X-ray diffraction. I. TbCl3, DyCl3, ErCl3, TmCl3, and LuCl3. Journal of Chemical Physics , 1979, 70( 6): 2797– 2806 https://doi.org/10.1063/1.437866
43
M Starzak, M Mathlouthi. Cluster composition of liquid water derived from laser-Raman spectra and molecular simulation data. Food Chemistry, 2003, 82( 1): 3– 22 https://doi.org/10.1016/S0308-8146(02)00584-8
44
I R Rodrigues, L Lukina, S Dehaeck, P Colinet, K Binnemans, J Fransaer. Magnetophoretic sprinting: a study on the magnetic properties of aqueous lanthanide solutions. Journal of Physical Chemistry C, 2018, 122( 41): 23675– 23682 https://doi.org/10.1021/acs.jpcc.8b06471
45
S Shirvani, M H Mallah, M A Moosavian, J Safdari. Magnetic ionic liquid in magmolecular process for uranium removal. Chemical Engineering Research & Design, 2016, 109 : 108– 115 https://doi.org/10.1016/j.cherd.2016.01.014
46
M J Trujillo-Rodriguez, O Nacham, K D Clark, V Pino, J L Anderson, J H Ayala, A M Afonso. Magnetic ionic liquids as non-conventional extraction solvents for the determination of polycyclic aromatic hydrocarbons. Analytica Chimica Acta, 2016, 934 : 106– 113 https://doi.org/10.1016/j.aca.2016.06.014