Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (2): 217-225   https://doi.org/10.1007/s11705-022-2214-7
  本期目录
g-C3N4-coated MnO2 hollow nanorod cathode for stable aqueous Zn-ion batteries
Jiwei Xie1, Guijing Liu1(), Kaikai Wang1, Xueming Li1, Yusen Bai1, Shanmin Gao2(), Leqing Fan3, Rundou Zheng1
1. School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
2. School of Chemistry & Chemical Engineering, Linyi University, Linyi 276000, China
3. Fujian Key Laboratory of Photoelectric Functional Materials, Huaqiao University, Xiamen 361021, China
 全文: PDF(7908 KB)   HTML
Abstract

Aqueous zinc-ion batteries are attracting considerable attention because of their high safety compared with conventional lithium-ion batteries. Manganese-based materials have been widely developed for zinc-ion batteries cathode owning to their low cost, high security and simple preparation. However, the severe volume expansion and poor stability during charging and discharging limit the further development of manganese-based cathodes. Herein, superior α-MnO2@g-C3N4 was successfully prepared for stable zinc-ion batteries (ZIBs) cathode by introducing g-C3N4 nanosheets. Compared with pure α-MnO2, α-MnO2@g-C3N4 has a specific capacity of 298 mAh·g–1 at 0.1 A·g–1. Even at 1 A·g–1, the α-MnO2@g-C3N4 still retains 100 mAh·g–1 (83.4% retention after 5000 cycles), implying its excellent cycling stability. The α-MnO2@g-C3N4-based cathode has the highest energy density (563 Wh·kg–1) and power energy density (2170 W·kg–1). This work provides new avenues for the development of a wider range of cathode materials for ZIBs.

Key wordsα-MnO2 hollow nanorods    g-C3N4    heterojunction    aqueous Zn-ion batteries
收稿日期: 2022-04-15      出版日期: 2023-02-27
Corresponding Author(s): Guijing Liu,Shanmin Gao   
作者简介:

Qingyong Zheng and Ya Gao contributed equally to this work.

 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(2): 217-225.
Jiwei Xie, Guijing Liu, Kaikai Wang, Xueming Li, Yusen Bai, Shanmin Gao, Leqing Fan, Rundou Zheng. g-C3N4-coated MnO2 hollow nanorod cathode for stable aqueous Zn-ion batteries. Front. Chem. Sci. Eng., 2023, 17(2): 217-225.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2214-7
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I2/217
Fig.1  
Fig.2  
Fig.3  
Fig.4  
1 J Zhang, C Zhang, W Li, Q Guo, H Gao, Y You, Y Li, Z Cui, K C Jiang, H Long, D Zhang, S Xin. Nitrogen-doped perovskite as a bifunctional cathode catalyst for rechargeable lithium–oxygen batteries. ACS Applied Materials & Interfaces, 2018, 10( 6): 5543– 5550
https://doi.org/10.1021/acsami.7b17289
2 H Luo, B Wang, F Wang, J Yang, F Wu, Y Ning, Y Zhou, D Wang, H Liu, S Dou. Anodic oxidation strategy toward structure-optimized V2O3 cathode via electrolyte regulation for Zn-ion storage. ACS Nano, 2020, 14( 6): 7328– 7337
https://doi.org/10.1021/acsnano.0c02658
3 H Luo, B Wang, J Jian, F Wu, L Peng, D Wang. Stress-release design for high-capacity and long-time lifespan aqueous zinc-ion batteries. Materials Today. Energy, 2021, 21 : 100799
https://doi.org/10.1016/j.mtener.2021.100799
4 S Song, W Li, Y P Deng, Y Ruan, Y Zhang, X Qin, Z Chen. TiC supported amorphous MnOx as highly efficient bifunctional electrocatalyst for corrosion resistant oxygen electrode of Zn-air batteries. Nano Energy, 2020, 67 : 104208
https://doi.org/10.1016/j.nanoen.2019.104208
5 S Grewal, A Macedo Andrade, Z Liu, J A Garrido Torres, A J Nelson, A Kulkarni, M Bajdich, M Hwan Lee. Highly active bifunctional oxygen electrocatalytic sites realized in ceria-functionalized graphene. Advanced Sustainable Systems, 2020, 4( 8): 2000048
https://doi.org/10.1002/adsu.202000048
6 D Wang, L Wang, G Liang, H Li, Z Liu, Z Tang, J Liang, C Zhi. A superior δ-MnO2 cathode and a self-healing Zn-δ-MnO2 battery. ACS Nano, 2019, 13( 9): 10643– 10652
https://doi.org/10.1021/acsnano.9b04916
7 S Chen, X Shu, H Wang, J Zhang. Thermally driven phase transition of manganese oxide on carbon cloth for enhancing the performance of flexible all-solid-state zinc-air batteries. Journal of Materials Chemistry A, 2019, 7( 34): 19719– 19727
https://doi.org/10.1039/C9TA05719F
8 Y Shi, S Gao, Y Yuan, G Liu, R Jin, Q Wang, H Xu, J Lu. Rooting MnO2 into protonated g-C3N4 by intermolecular hydrogen bonding for endurable supercapacitance. Nano Energy, 2020, 77 : 105153
https://doi.org/10.1016/j.nanoen.2020.105153
9 H Luo, B Wang, C Wang, F Wu, F Jin, B Cong, Y Ning, Y Zhou, D Wang, H Liu, S Dou. Synergistic deficiency and heterojunction engineering boosted VO2 redox kinetics for aqueous zinc-ion batteries with superior comprehensive performance. Energy Storage Materials, 2020, 33 : 390– 398
https://doi.org/10.1016/j.ensm.2020.08.011
10 L Wang, M Jiang, F Liu, Q Huang, L Liu, L Fu, Y Wu. Layered TiS2 as a promising host material for aqueous rechargeable Zn ion battery. Energy & Fuels, 2020, 34( 9): 11590– 11596
https://doi.org/10.1021/acs.energyfuels.0c02368
11 H Luo, B Wang, F Wu, J Jian, K Yang, F Jin, B Cong, Y Ning, Y Zhou, D Wang, H Liu, S Dou. Synergistic nanostructure and heterointerface design propelled ultra-efficient in-situ self-transformation of zinc-ion battery cathodes with favorable kinetics. Nano Energy, 2021, 81 : 105601
https://doi.org/10.1016/j.nanoen.2020.105601
12 T Xiong, Z G Yu, H Wu, Y Du, Q Xie, J Chen, Y W Zhang, S J Pennycook, W S V Lee, J Xue. Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery. Advanced Energy Materials, 2019, 9( 14): 1803815
https://doi.org/10.1002/aenm.201803815
13 Q Zhao, W Huang, Z Luo, L Liu, Y Lu, Y Li, L Li, J Hu, H Ma, J Chen. High-capacity aqueous zinc batteries using sustainable quinone electrodes. Science Advances, 2018, 4( 3): eaao1761
14 Y Wu, K Zhang, S Chen, Y Liu, Y Tao, X Zhang, Y Ding, S Dai. Proton inserted manganese dioxides as a reversible cathode for aqueous Zn-ion batteries. ACS Applied Energy Materials, 2019, 3( 1): 319– 327
https://doi.org/10.1021/acsaem.9b01554
15 Y B Wang, Q Yang, X Guo, S Yang, A Chen, G J Liang, C Y Zhi. Strategies of binder design for high-performance lithium-ion batteries: a mini review. Rare Metals, 2022, 41( 3): 745– 761
https://doi.org/10.1007/s12598-021-01816-y
16 Y Liu, X Miao, J Fang, X Zhang, S Chen, W Li, W Feng, Y Chen, W Wang, Y Zhang. Layered-MnO2 nanosheet grown on nitrogen-doped graphene template as a composite cathode for flexible solid-state asymmetric supercapacitor. ACS Applied Materials & Interfaces, 2016, 8( 8): 5251– 5260
https://doi.org/10.1021/acsami.5b10649
17 L Zhang, C Tang, H Gong. Temperature effect on the binder-free nickel copper oxide nanowires with superior supercapacitor performance. Nanoscale, 2014, 6( 21): 12981– 12989
https://doi.org/10.1039/C4NR04192E
18 X Chang, X Zhai, S Sun, D Gu, L Dong, Y Yin, Y Zhu. MnO2/g-C3N4 nanocomposite with highly enhanced supercapacitor performance. Nanotechnology, 2017, 28( 13): 135705
https://doi.org/10.1088/1361-6528/aa6107
19 M Tahir, C Cao, N Mahmood, F K Butt, A Mahmood, F Idrees, S Hussain, M Tanveer, Z Ali, I Aslam. Multifunctional g-C3N4 nanofibers: a template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties. ACS Applied Materials & Interfaces, 2014, 6( 2): 1258– 1265
https://doi.org/10.1021/am405076b
20 W Wang, J C Yu, Z Shen, D K L Chan, T Gu. g-C3N4 quantum dots: direct synthesis, upconversion properties and photocatalytic application. Chemical Communications (Cambridge), 2014, 50( 70): 10148– 10150
https://doi.org/10.1039/C4CC02543A
21 A M Andrade, Z Liu, S Grewal, A J Nelson, Z Nasef, G Diaz, M H Lee. MOF-derived Co/Cu-embedded N-doped carbon for trifunctional ORR/OER/HER catalysis in alkaline media. Dalton Transactions (Cambridge, England), 2021, 50( 16): 5473– 5482
https://doi.org/10.1039/D0DT04000B
22 J Wang, J G Wang, H Liu, C Wei, F Kang. Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2019, 7( 22): 13727– 13735
https://doi.org/10.1039/C9TA03541A
23 W X Liu, X L Zhu, S Q Liu, Q Q Gu, Z D Meng. Near-infrared-driven selective photocatalytic removal of ammonia based on valence band recognition of an α-MnO2/N-doped graphene hybrid catalyst. ACS Omega, 2018, 3( 5): 5537– 5546
https://doi.org/10.1021/acsomega.8b00161
24 V B R Boppana, F Jiao. Nanostructured MnO2: an efficient and robust water oxidation catalyst. Chemical Communications (Cambridge), 2011, 47( 31): 8973– 8975
https://doi.org/10.1039/c1cc12258d
25 Y Shi, M Zhang, Y Li, G Liu, R Jin, Q Wang, H Xu, S Gao. 2D/1D protonated g-C3N4/α-MnO2 Z-scheme heterojunction with enhanced visible-light photocatalytic efficiency. Ceramics International, 2020, 46( 16): 25905– 25914
https://doi.org/10.1016/j.ceramint.2020.07.075
26 Q Chen, Y Zhao, X Huang, N Chen, L Qu. Three-dimensional graphitic carbon nitride functionalized graphene-based high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3( 13): 6761– 6766
https://doi.org/10.1039/C5TA00734H
27 S Sun, L Guo, X Chang, Y Yu, X Zhai. MnO2/g-C3N4@PPy nanocomposite for high-performance supercapacitor. Materials Letters, 2019, 236 : 558– 561
https://doi.org/10.1016/j.matlet.2018.11.001
28 S Chen, K Li, K S Hui, J Zhang. Regulation of lamellar structure of vanadium oxide via polyaniline intercalation for high-performance aqueous zinc-ion battery. Advanced Functional Materials, 2020, 30( 43): 2003890
https://doi.org/10.1002/adfm.202003890
29 Z Hu, X Xiao, H Jin, T Li, M Chen, Z Liang, Z Guo, J Li, J Wan, L Huang, Y Zhang, G Feng, J Zhou. Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method. Nature Communications, 2017, 8( 1): 1– 9
https://doi.org/10.1038/ncomms15630
30 H Ma, Z Chen, X Gao, W Liu, H Zhu. 3D hierarchically gold-nanoparticle-decorated porous carbon for high-performance supercapacitors. Scientific Reports, 2019, 9( 1): 1– 10
https://doi.org/10.1038/s41598-019-53506-6
31 N Zhang, F Cheng, Y Liu, Q Zhao, K Lei, C Chen, X Liu, J Chen. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. Journal of the American Chemical Society, 2016, 138( 39): 12894– 12901
https://doi.org/10.1021/jacs.6b05958
32 T Q Aminu, M C Brockway, J L Skinner, D F Bahr. Well-adhered copper nanocubes on electrospun polymeric fibers. Nanomaterials (Basel, Switzerland), 2020, 10( 10): 1982
https://doi.org/10.3390/nano10101982
33 D Xu, B Li, C Wei, Y B He, H Du, X Chu, X Qin, Q H Yang, F Kang. Preparation and characterization of MnO2/acid-treated CNT nanocomposites for energy storage with zinc ions. Electrochimica Acta, 2014, 133 : 254– 261
https://doi.org/10.1016/j.electacta.2014.04.001
34 S Cao, Z Xue, C Yang, J Qin, L Zhang, P Yu, S Wang, Y Zhao, X Zhang, R Liu. Insights into the Li+ storage mechanism of TiC@C-TiO2 core-shell nanostructures as high performance anodes. Nano Energy, 2018, 50 : 25– 34
https://doi.org/10.1016/j.nanoen.2018.05.022
35 R Tatara, P Karayaylali, Y Yu, Y Zhang, L Giordano, F Maglia, R Jung, J P Schmidt, I Lund, Y Shao Horn. The effect of electrode-electrolyte interface on the electrochemical impedance spectra for positive electrode in Li-ion battery. Journal of the Electrochemical Society, 2018, 166( 3): A5090– A5098
https://doi.org/10.1149/2.0121903jes
36 B Li, C Han, Y He, C Yang, H Du, Q H Yang, F Kang. Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy & Environmental Science, 2012, 5( 11): 9595– 9602
https://doi.org/10.1039/c2ee22591c
37 J Huang, Z Wang, M Hou, X Dong, Y Liu, Y Wang, Y Xia. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nature Communications, 2018, 9( 1): 1– 8
https://doi.org/10.1038/s41467-018-04949-4
38 H Chen, Y Huang, G Mao, H Tong, W Yu, J Zheng, Z Ding. Reduced graphene oxide decorated Na3V2(PO4)3 microspheres as cathode material with advanced sodium storage performance. Frontiers in Chemistry, 2018, 6 : 174
https://doi.org/10.3389/fchem.2018.00174
39 H Pan, Y Shao, P Yan, Y Cheng, K Han, Z Nie, C Wang, J Yang, X Li, P Bhattacharya, K T Mueller, J Liu. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nature Energy, 2016, 1( 5): 1– 7
https://doi.org/10.1038/nenergy.2016.39
40 N Zhang, Y Dong, M Jia, X Bian, Y Wang, M Qiu, J Xu, Y Liu, L Jiao, F Cheng. Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life. ACS Energy Letters, 2018, 3( 6): 1366– 1372
https://doi.org/10.1021/acsenergylett.8b00565
41 N Zhang, F Cheng, J Liu, L Wang, X Long, X Liu, F Li, J Chen. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nature Communications, 2017, 8( 1): 1– 9
https://doi.org/10.1038/s41467-017-00467-x
42 S Luo, L Xie, F Han, W Wei, Y Huang, H Zhang, M Zhu, O G Schmidt, L Wang. Nanoscale parallel circuitry based on interpenetrating conductive assembly for flexible and high-power zinc ion battery. Advanced Functional Materials, 2019, 29( 28): 1901336
https://doi.org/10.1002/adfm.201901336
43 H Qin, L Chen, L Wang, X Chen, Z Yang. V2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries. Electrochimica Acta, 2019, 306 : 307– 316
https://doi.org/10.1016/j.electacta.2019.03.087
44 Q Yang, F Mo, Z Liu, L Ma, X Li, D Fang, S Chen, S Zhang, C Zhi. Activating C-coordinated iron of iron hexacyanoferrate for Zn hybrid-ion batteries with 10000-cycle lifespan and superior rate capability. Advanced Materials, 2019, 31( 32): 1901521
https://doi.org/10.1002/adma.201901521
45 Z Liu, D Wang, Z Tang, G Liang, Q Yang, H Li, L Ma, F Mo, C Zhi. A mechanically durable and device-level tough Zn-MnO2 battery with high flexibility. Energy Storage Materials, 2019, 23 : 636– 645
https://doi.org/10.1016/j.ensm.2019.03.007
[1] FCE-22042-OF-XJ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed