Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (4): 404-414   https://doi.org/10.1007/s11705-022-2215-6
  本期目录
ZnxZr/HZSM-5 as efficient catalysts for alkylation of benzene with carbon dioxide
Junjun Cheng, Yitao Zhao, Guohao Xu, Peng Zhang, Xuedong Zhu(), Fan Yang
Engineering Research Center of Large-Scale Reactor Engineering and Technology, Ministry of Education, East China University of Science & Technology, Shanghai 200237, China
 全文: PDF(4783 KB)   HTML
Abstract

Alkylation of benzene with carbon dioxide and hydrogen to produce toluene and xylene could increase the added-value of surplus benzene as well as relieve environmental problems like green-house effect. In this work, the alkylation benzene with carbon dioxide and hydrogen reaction was proceeded by using the mixture of zinc-zirconium oxide and HZSM-5 as bifunctional catalyst. The equivalent of Zn/Zr = 1 displays the best catalytic performance at 425 °C and 3.0 MPa, and benzene conversion reaches 42.9% with a selectivity of 90% towards toluene and xylene. Moreover, the carbon dioxide conversion achieves 23.3% and the carbon monoxide selectivity is lower than 35%, indicating that more than 50% carbon dioxide has been effectively incorporated into the target product, which is the best result as far as we know. Combined with characterizations, it indicated that the Zn and Zr formed a solid solution under specific conditions (Zn/Zr = 1). The as-formed solid solution not only possesses a high surface area but also provides a large amount of oxygen vacancies. Additionally, the bifunctional catalyst has excellent stabilities that could keep operating without deactivation for at least 80 h. This work provides promising industrial applications for the upgrading of aromatics.

Key wordscarbon dioxide    alkylation of benzene    solid solution catalyst    bifunctional catalyst
收稿日期: 2022-04-28      出版日期: 2023-03-24
Corresponding Author(s): Xuedong Zhu   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(4): 404-414.
Junjun Cheng, Yitao Zhao, Guohao Xu, Peng Zhang, Xuedong Zhu, Fan Yang. ZnxZr/HZSM-5 as efficient catalysts for alkylation of benzene with carbon dioxide. Front. Chem. Sci. Eng., 2023, 17(4): 404-414.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2215-6
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I4/404
Fig.1  
Fig.2  
SampleABET/(m2·g–1)Dpore/nmVpore/(cm3·g?1)Zn/Zr molar ratio
Bulka)Surfaceb)
ZrO21514.090.05
Zn0.5Zr3810.670.100.461.34
Zn1.0Zr3911.800.090.842.82
Zn2.0Zr3623.900.211.454.61
ZnO2631.090.19
Tab.1  
Fig.3  
Fig.4  
Fig.5  
CatalystConversion/%Selectivity/%Phenyl ring yieldb)/%
BenzeneTolueneXyleneEBZc)C9+PX/Xd)
ZrO2-ZSM-55.793.32.63.21.023.298.9
Zn0.5Zr-ZSM-541.869.120.44.16.424.590.7
Zn1.0Zr-ZSM-542.968.820.84.46.024.590.5
Zn2.0Zr-ZSM-539.171.718.63.95.824.591.4
ZnO-ZSM-522.185.69.72.72.123.995.6
Tab.2  
CatalystCO2 conversion/%Selectivity/%CO2 efficiencyb)/%Carbon balance/%
COCH4C2C3C4+EBZ+C9+
ZrO2-ZSM-510.984.11.60.10.00.11.212.999.5
Zn0.5Zr-ZSM-525.842.80.50.10.50.411.144.797.4
Zn1.0Zr-ZSM-523.335.80.40.00.40.212.350.996.9
Zn2.0Zr-ZSM-525.246.40.50.20.60.59.842.297.9
ZnO-ZSM-524.772.10.80.10.50.62.623.498.6
Tab.3  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 J Zhong, X Yang, Z Wu, B Liang, Y Huang, T Zhang. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chemical Society Reviews, 2020, 49(5): 1385–1413
https://doi.org/10.1039/C9CS00614A
2 O S Bushuyev, P De Luna, C T Dinh, L Tao, G Saur, J Van De Lagemaat, S O Kelley, E H Sargent. What should we make with CO2 and how can we make it?. Joule, 2018, 2(5): 825–832
https://doi.org/10.1016/j.joule.2017.09.003
3 G Bonura, M Cordaro, C Cannilla, A Mezzapica, L Spadaro, F Arena, F Frusteri. Catalytic behaviour of a bifunctional system for the one step synthesis of DME by CO2 hydrogenation. Catalysis Today, 2014, 228: 51–57
https://doi.org/10.1016/j.cattod.2013.11.017
4 S Kattel, P Liu, J G Chen. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. Journal of the American Chemical Society, 2017, 139(29): 9739–9754
https://doi.org/10.1021/jacs.7b05362
5 J Liu, A Zhang, X Jiang, M Liu, Y Sun, C Song, X Guo. Selective CO2 hydrogenation to hydrocarbons on Cu-promoted Fe-based catalysts: dependence on Cu–Fe interaction. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10182–10190
https://doi.org/10.1021/acssuschemeng.8b01491
6 J Wang, Z You, Q Zhang, W Deng, Y Wang. Synthesis of lower olefins by hydrogenation of carbon dioxide over supported iron catalysts. Catalysis Today, 2013, 215(41): 186–193
https://doi.org/10.1016/j.cattod.2013.03.031
7 G Bonura, M Cordaro, L Spadaro, C Cannilla, F Arena, F Frusteri. Hybrid Cu-ZnO-ZrO2/H-ZSM5 system for the direct synthesis of DME by CO2 hydrogenation. Applied Catalysis B: Environmental, 2013, 140-141: 16–24
https://doi.org/10.1016/j.apcatb.2013.03.048
8 O Martin, A J Martin, C Mondelli, S Mitchell, T F Segawa, R Hauert, C Drouilly, D Curulla-Ferre, J Perez-Ramirez. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation. Angewandte Chemie International Edition, 2016, 55(21): 6261–6265
https://doi.org/10.1002/anie.201600943
9 G Xu, P Zhang, J Cheng, T Wei, X Zhu, F Yang. Preparation of a hollow HZSM-5 zeolite supported molybdenum catalyst by desilication-recrystallization for enhanced catalytic properties in propane aromatization. Journal of Solid State Chemistry, 2021, 300(6): 122238–122247
https://doi.org/10.1016/j.jssc.2021.122238
10 T Odedairo, R J Balasamy, S Al-Khattaf. Toluene disproportionation and methylation over zeolites TNU-9, SSZ-33, ZSM-5, and mordenite using different reactor systems. Industrial & Engineering Chemistry Research, 2011, 50(6): 3169–3183
https://doi.org/10.1021/ie1018904
11 T W Lyons, D Guironnet, M Findlater, M Brookhart. Synthesis of p-xylene from ethylene. Journal of the American Chemical Society, 2012, 134(38): 15708–15711
https://doi.org/10.1021/ja307612b
12 Z Chen, Y Ni, Y Zhi, F Wen, Z Zhou, Y Wei, W Zhu, Z Liu. Coupling of methanol and carbon monoxide over H-ZSM-5 to form aromatics. Angewandte Chemie International Edition, 2018, 57(38): 12549–12553
https://doi.org/10.1002/anie.201807814
13 P Dong, Y Zhang, Z Li, H Yong, G Li, D Ji. Enhancement of the utilization of methanol in the alkylation of benzene with methanol over 3-aminopropyltriethoxysilane modified HZSM-5. Catalysis Communications, 2019, 123: 6–10
https://doi.org/10.1016/j.catcom.2019.01.023
14 K Gao, S Li, L Wang, W Wang. Study of the alkylation of benzene with methanol for the selective formation of toluene and xylene over Co3O4-La2O3/ZSM-5. RSC Advances, 2015, 5(56): 45098–45105
https://doi.org/10.1039/C5RA05041C
15 Y Wang, X He, F Yang, Z Su, X Zhu. Control of framework aluminum distribution in MFI channels on the catalytic performance in alkylation of benzene with methanol. Industrial & Engineering Chemistry Research, 2020, 59(30): 13420–13427
https://doi.org/10.1021/acs.iecr.0c00366
16 Y Wang, S Xu, X He, F Yang, X Zhu. Regulating the acid sites and framework aluminum siting in MCM-22 zeolite to enhance its performance in alkylation of benzene with methanol. Microporous and Mesoporous Materials, 2022, 332: 111677–111688
https://doi.org/10.1016/j.micromeso.2021.111677
17 Z Zhu, Q Chen, W Zhu, D Kong, C Li. Catalytic performance of MCM-22 zeolite for alkylation of toluene with methanol. Catalysis Today, 2004, 93(9): 321–325
https://doi.org/10.1016/j.cattod.2004.06.008
18 Y Li, T Yan, K Junge, M Beller. Catalytic methylation of C–H bonds using CO2 and H2. Angewandte Chemie International Edition, 2014, 53(39): 10476–10480
https://doi.org/10.1002/anie.201405779
19 K W Ting, H Kamakura, S S Poly, T Toyao, S M A Hakim Siddiki, Z Maeno, K Matsushita, K I Shimizu. Catalytic methylation of aromatic hydrocarbons using CO2/H2 over Re/TiO2 and H-MOR catalysts. ChemCatChem, 2020, 12(8): 2215–2220
https://doi.org/10.1002/cctc.202000036
20 K W Ting, H Kamakura, S S Poly, M Takao, S M A H Siddiki, Z Maeno, K Matsushita, K I Shimizu, T Toyao. Catalytic methylation of m-xylene, toluene, and benzene using CO2 and H2 over TiO2-supported Re and zeolite catalysts: machine-learning-assisted catalyst optimization. ACS Catalysis, 2021, 11(9): 5829–5838
https://doi.org/10.1021/acscatal.0c05661
21 K W Ting, T Imbe, H Kamakura, Z Maeno, S M A H Siddiki, K Matsushita, K I Shimizu, T Toyao. Catalytic methylation of benzene over Pt/MoOx/TiO2 and zeolite catalyst using CO2 and H2. Chemistry Letters, 2022, 51(2): 149–152
https://doi.org/10.1246/cl.210664
22 J Zuo, W Chen, J Liu, X Duan, Y Yuan. Selective methylation of toluene using CO2 and H2 to para-xylene. Science Advances, 2020, 6(34): eaba5433
https://doi.org/10.1126/sciadv.aba5433
23 D Miao, X Pan, F Jiao, Y Ji, G Hou, L Xu, X Bao. Selective synthesis of para-xylene and light olefins from CO2/H2 in the presence of toluene. Catalysis Science & Technology, 2021, 11(13): 4521–4528
https://doi.org/10.1039/D1CY00602A
24 X Liu, Y Pan, P Zhang, Y Wang, G Xu, Z Su, X Zhu, F Yang. Alkylation of benzene with carbon dioxide to low-carbon aromatic hydrocarbons over bifunctional Zn–Ti/HZSM-5 catalyst. Frontiers of Chemical Science and Engineering, 2021, 16(3): 384–396
https://doi.org/10.1007/s11705-021-2045-y
25 C Liu, S Lee, D Su, Z Zhang, L Pfefferle, G L Haller. Synthesis and characterization of nanocomposites with strong interfacial interaction: sulfated ZrO2 nanoparticles supported on multiwalled carbon nanotubes. Journal of Physical Chemistry C, 2012, 116(41): 21742–21752
https://doi.org/10.1021/jp302377p
26 R D Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 1976, 32(5): 751–767
https://doi.org/10.1107/S0567739476001551
27 X Deng, M Lü, J Meng. Effect of heavy doping of nickel in compound Mo3Sb7: structure and thermoelectric properties. Journal of Alloys and Compounds, 2013, 577(15): 183–188
https://doi.org/10.1016/j.jallcom.2013.04.196
28 N Kumar, H Kishan, A Rao, V P S Awana. Fe ion doping effect on electrical and magnetic properties of La0.7Ca0.3Mn1−xFexO3 (0 ≤ x ≤ 1). Journal of Alloys and Compounds, 2010, 502(2): 283–288
https://doi.org/10.1016/j.jallcom.2010.04.187
29 S Xie, E Iglesia, A T Bell. Water-assisted tetragonal-to-monoclinic phase transformation of ZrO2 at low temperatures. Chemistry of Materials, 2000, 12(8): 2442–2447
https://doi.org/10.1021/cm000212v
30 M Li, Z Feng, P Ying, Q Xin, C Li. Phase transformation in the surface region of zirconia and doped zirconia detected by UV Raman spectroscopy. Physical Chemistry Chemical Physics, 2003, 5(23): 5326–5332
https://doi.org/10.1039/b310284j
31 H Song, D Laudenschleger, J J Carey, H Ruland, M Nolan, M Muhler. Spinel-structured ZnCr2O4 with excess Zn is the active ZnO/Cr2O3 catalyst for high-temperature methanol synthesis. ACS Catalysis, 2017, 7(11): 7610–7622
https://doi.org/10.1021/acscatal.7b01822
32 J J Dong, X W Zhang, J B You, P F Cai, Z G Yin, Q An, X B Ma, P Jin, Z G Wang, P K Chu. Effects of hydrogen plasma treatment on the electrical and optical properties of ZnO films: identification of hydrogen donors in ZnO. ACS Applied Materials & Interfaces, 2010, 2(6): 1780–1784
https://doi.org/10.1021/am100298p
33 J Wang, G Li, Z Li, C Tang, Z Feng, H An, H Liu, T Liu, C Li. A highly selective and stable ZnO–ZrO2 solid solution catalyst for CO2 hydrogenation to methanol. Science Advances, 2017, 3(10): e1701290
https://doi.org/10.1126/sciadv.1701290
34 Y Chai, L Li, J Lu, D Li, J Shen, Y Zhang, J Liang, X Wang. Germanium-substituted Zn2TiO4 solid solution photocatalyst for conversion of CO2 into fuels. Journal of Catalysis, 2019, 371: 144–152
https://doi.org/10.1016/j.jcat.2019.01.017
35 F X Xiao. Construction of highly ordered ZnO–TiO2 nanotube arrays (ZnO/TNTs) heterostructure for photocatalytic application. ACS Applied Materials & Interfaces, 2012, 4(12): 7055–7063
https://doi.org/10.1021/am302462d
36 Y Liu, C Xia, Q Wang, L Zhang, A Huang, M Ke, Z Song. Direct dehydrogenation of isobutane to isobutene over Zn-doped ZrO2 metal oxide heterogeneous catalysts. Catalysis Science & Technology, 2018, 8(19): 4916–4924
https://doi.org/10.1039/C8CY01420E
37 B Wang, B Chen, Y Sun, H Xiao, X Xu, M Fu, J Wu, L Chen, D Ye. Effects of dielectric barrier discharge plasma on the catalytic activity of Pt/CeO2 catalysts. Applied Catalysis B: Environmental, 2018, 238: 328–338
https://doi.org/10.1016/j.apcatb.2018.07.044
38 G Ou, Y Xu, B Wen, R Lin, B Ge, Y Tang, Y Liang, C Yang, K Huang, D Zu, R Yu, W Chen, J Li, H Wu, L M Liu, Y Li. Tuning defects in oxides at room temperature by lithium reduction. Nature Communications, 2018, 9(1): 1302–1311
https://doi.org/10.1038/s41467-018-03765-0
39 N Wang, S Li, Y Zong, Q Yao. Sintering inhibition of flame-made Pd/CeO2 nanocatalyst for low-temperature methane combustion. Journal of Aerosol Science, 2017, 105: 64–72
https://doi.org/10.1016/j.jaerosci.2016.11.017
40 X Liu, M Wang, C Zhou, W Zhou, K Cheng, J Kang, Q Zhang, W Deng, Y Wang. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34. Chemical Communications (Cambridge), 2018, 54(2): 140–143
https://doi.org/10.1039/C7CC08642C
41 K Cheng, W Zhou, J Kang, S He, S Shi, Q Zhang, Y Pan, W Wen, Y Wang. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability. Chem, 2017, 3(2): 334–347
https://doi.org/10.1016/j.chempr.2017.05.007
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed