Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (4): 415-424   https://doi.org/10.1007/s11705-022-2225-4
  本期目录
Boehmite-supported CuO as a catalyst for catalytic transfer hydrogenation of 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan
Zexing Huang1, Zhijuan Zeng1, Xiaoting Zhu1, Wenguang Zhao1, Jing Lei2, Qiong Xu1, Yongjun Yang2, Xianxiang Liu1()
1. National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
2. Chenzhou Gao Xin Material Co., Ltd., Chenzhou 423000, China
 全文: PDF(6567 KB)   HTML
Abstract

2,5-bis(hydroxymethyl)furan (BHMF) is an important monomer of polyester. Its oxygen-containing rigid ring structure and symmetrical diol functional group establish it as an alternative to petroleum-based monomer with unique advantages for the prodution of the degradable bio-based polyester materials. Herein, we prepared a boehmite-supported copper-oxide catalyst for the selective hydrogenation of 5-hydroxymethylfurfural into BHMF via catalytic transfer hydrogenation (CTH). Further, ethanol successfully replaced conventional high-pressure hydrogen as the hydrogen donor, with up to 96.9% BHMF selectivity achieved under suitable conditions. Through characterization and factor investigations, it was noted that CuO is crucial for high BHMF selectivity. Furthermore, kinetic studies revealed a higher by-product activation energy compared to that of BHMF, which explained the influence of reaction temperature on product distribution. To establish the catalyst structure-activity correlation, a possible mechanism was proposed. The copper-oxide catalyst deactivated following CTH because ethanol reduced the CuO, which consequently decreased the active sites. Finally, calcination of the catalyst in air recovered its activity. These results will have a positive impact on hydrogenation processes in the biomass industry.

Key wordsbiomass    5-hydroxymethylfurfural    2,5-bis(hydroxymethyl)furan    transfer hydrogenation    catalysis
收稿日期: 2022-03-29      出版日期: 2023-03-24
Corresponding Author(s): Xianxiang Liu   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(4): 415-424.
Zexing Huang, Zhijuan Zeng, Xiaoting Zhu, Wenguang Zhao, Jing Lei, Qiong Xu, Yongjun Yang, Xianxiang Liu. Boehmite-supported CuO as a catalyst for catalytic transfer hydrogenation of 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan. Front. Chem. Sci. Eng., 2023, 17(4): 415-424.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2225-4
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I4/415
Fig.1  
SampleBET/(m2·g–1)Vpore/(cm3·g–1)Dpore/nmAmount of acid sites/(μmol·g–1)a)
Bhm130.680.194.98472.15
10 wt % CuO/Bhm116.530.267.71344.98
20 wt % CuO/Bhm105.940.268.30506.65
30 wt % CuO/Bhm94.650.3010.79263.95
40 wt % CuO/Bhm80.660.177.35665.89
50 wt % CuO/Bhm65.890.168.24459.13
Tab.1  
Fig.2  
Fig.3  
Fig.4  
EntryCatalystHMF conversion/%Selectivity/%
BHMFHEMFOthers
1Blank36.200100
2CuO9.988.17.94.0
3Bhm72.159.725.115.2
4Bhm b)79.645.539.417.1
510 wt % CuO/Bhm72.787.811.71.5
620 wt % CuO/Bhm71.691.26.62.2
730 wt % CuO/Bhm72.590.77.32.0
840 wt % CuO/Bhm75.996.93.60.5
940 wt % CuO/Bhm c)37.286.77.25.9
1050 wt % CuO/Bhm38.500100
Tab.2  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
  
Rate constantReaction temperature/KActivity energy/ (kJ·mol–1)R2
433443453
k1/h–10.465310.599200.7373537.580.99615
k2/h–10.021720.040190.0629786.890.99643
Tab.3  
Fig.9  
  
Fig.10  
1 S Chen, R Wojcieszak, F Dumeignil, E Marceau, S Royer. How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural. Chemical Reviews, 2018, 118(22): 11023–11117
https://doi.org/10.1021/acs.chemrev.8b00134
2 R Gerardy, D P Debecker, J Estager, P Luis, J M Monbaliu. Continuous flow upgrading of selected C2–C6 platform chemicals derived from biomass. Chemical Reviews, 2020, 120(15): 7219–7347
https://doi.org/10.1021/acs.chemrev.9b00846
3 F A Kucherov, L V Romashov, K I Galkin, V P Ananikov. Chemical transformations of biomass-derived C6-furanic platform chemicals for sustainable energy research, materials science, and synthetic building blocks. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8064–8092
https://doi.org/10.1021/acssuschemeng.8b00971
4 L Hu, J Xu, S Zhou, S He, X Tang, L Lin, J Xu, Y Zhao. Catalytic advances in the production and application of biomass-derived 2,5-dihydroxymethylfuran. ACS Catalysis, 2018, 8(4): 2959–2980
https://doi.org/10.1021/acscatal.7b03530
5 M J Gilkey, B Xu. Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading. ACS Catalysis, 2016, 6(3): 1420–1436
https://doi.org/10.1021/acscatal.5b02171
6 K T V Rao, Y Hu, Z Yuan, Y Zhang, C C Xu. Green synthesis of heterogeneous copper-alumina catalyst for selective hydrogenation of pure and biomass-derived 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan. Applied Catalysis A: General, 2021, 609: 117892
https://doi.org/10.1016/j.apcata.2020.117892
7 K S Arias, J M Carceller, M J Climent, A Corma, S Iborra. Chemoenzymatic synthesis of 5-hydroxymethylfurfural (HMF)-derived plasticizers by coupling HMF reduction with enzymatic esterification. ChemSusChem, 2020, 13(7): 1864–1875
https://doi.org/10.1002/cssc.201903123
8 W Zhao, Z Huang, L Yang, X Liu, H Xie, Z Liu. Highly efficient syntheses of 2,5-bis(hydroxymethyl)furan and 2,5-dimethylfuran via the hydrogenation of biomass-derived 5-hydroxymethylfurfural over a nickel-cobalt bimetallic catalyst. Applied Surface Science, 2022, 577: 151968
https://doi.org/10.1016/j.apsusc.2021.151869
9 Y Jing, Y Wang, S Furukawa, J Xia, C Sun, M J Hulsey, H Wang, Y Guo, X Liu, N Yan. Towards the circular economy: converting aromatic plastic waste back to arenes over a Ru/Nb2O5 catalyst. Angewandte Chemie International Edition, 2021, 60(10): 5527–5535
https://doi.org/10.1002/anie.202011063
10 P Yang, Q Xia, X Liu, Y Wang. Catalytic transfer hydrogenation/hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Ni−Co/C catalyst. Fuel, 2017, 187: 159–166
https://doi.org/10.1016/j.fuel.2016.09.026
11 G H Wang, X Deng, D Gu, K Chen, H Tuysuz, B Spliethoff, H J Bongard, C Weidenthaler, W Schmidt, F Schuth. Co3O4 nanoparticles supported on mesoporous carbon for selective transfer hydrogenation of α,β-unsaturated aldehydes. Angewandte Chemie International Edition, 2016, 55(37): 11101–11105
https://doi.org/10.1002/anie.201604673
12 L Hu, S Liu, J Song, Y Jiang, A He, J Xu. Zirconium-containing organic−inorganic nanohybrid as a highly efficient catalyst for the selective synthesis of biomass-derived 2,5-dihydroxymethylfuran in isopropanol. Waste and Biomass Valorization, 2020, 11(7): 3485–3499
https://doi.org/10.1007/s12649-019-00703-z
13 N Chen, Z Zhu, T Su, W Liao, C Deng, W Ren, Y Zhao, H Lü. Catalytic hydrogenolysis of hydroxymethylfurfural to highly selective 2,5-dimethylfuran over FeCoNi/h-BN catalyst. Chemical Engineering Journal, 2020, 381: 122755
https://doi.org/10.1016/j.cej.2019.122755
14 I Elsayed, M A Jackson, E B Hassan. Hydrogen-free catalytic reduction of biomass-derived 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan using copper-iron oxides bimetallic nanocatalyst. ACS Sustainable Chemistry & Engineering, 2020, 8(4): 1774–1785
https://doi.org/10.1021/acssuschemeng.9b05575
15 T Wang, J Zhang, W Xie, Y Tang, D Guo, Y Ni. Catalytic transfer hydrogenation of biobased HMF to 2,5-bis(hydroxymethyl)furan over Ru/Co3O4. Catalysts, 2017, 7(3): 92
https://doi.org/10.3390/catal7030092
16 J Zhang, Z Qi, Y Liu, J Wei, X Tang, L He, L Peng. Selective hydrogenation of 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan over a cheap carbon-nanosheets-supported Zr/Ca bimetallic catalyst. Energy & Fuels, 2020, 34(7): 8432–8439
https://doi.org/10.1021/acs.energyfuels.0c01128
17 H Wang, B Liu, F Liu, Y Wang, X Lan, S Wang, B Ali, T Wang. Transfer hydrogenation of cinnamaldehyde catalyzed by Al2O3 using ethanol as a solvent and hydrogen dono. ACS Sustainable Chemistry & Engineering, 2020, 8(22): 8195–8205
https://doi.org/10.1021/acssuschemeng.0c00942
18 L Huang, Y Zhu, C Huo, H Zheng, G Feng, C Zhang, Y Li. Mechanistic insight into the heterogeneous catalytic transfer hydrogenation over Cu/Al2O3: direct evidence for the assistant role of support. Journal of Molecular Catalysis A: Chemical, 2008, 288(1-2): 109–115
https://doi.org/10.1016/j.molcata.2008.03.026
19 T J Kloprogge, L V Duong, B J Wood, R L Frost. XPS study of the major minerals in bauxite: gibbsite, bayerite and (pseudo-)boehmite. Journal of Colloid and Interface Science, 2006, 296(2): 572–576
https://doi.org/10.1016/j.jcis.2005.09.054
20 M Nazim, A A P Khan, A M Asiri, J H Kim. Exploring rapid photocatalytic degradation of organic pollutants with porous CuO nanosheets: synthesis, dye removal, and kinetic studies at room temperature. ACS Omega, 2021, 6(4): 2601–2612
https://doi.org/10.1021/acsomega.0c04747
21 A Majid, J Tunney, S Argue, D Kingston, M Post, J Margeson, G J Gardner. Characterization of CuO phase in SnO2−CuO prepared by the modified Pechini method. Journal of Sol–Gel Science and Technology, 2010, 53(2): 390–398
https://doi.org/10.1007/s10971-009-2108-x
22 J Wang, Z Zhang, S Jin, X Shen. Efficient conversion of carbohydrates into 5-hydroxylmethylfurfan and 5-ethoxymethylfurfural over sulfonic acid-functionalized mesoporous carbon catalyst. Fuel, 2017, 192: 102–107
https://doi.org/10.1016/j.fuel.2016.12.027
23 S Li, M Dong, J Yang, X Cheng, X Shen, S Liu, Z Q Wang, X Q Gong, H Liu, B Han. Selective hydrogenation of 5-(hydroxymethyl)furfural to 5-methylfurfural over single atomic metals anchored on Nb2O5. Nature Communications, 2021, 12(1): 584
https://doi.org/10.1038/s41467-020-20878-7
24 Y Lu, J Bradshaw, Y Zhao, W Kuester, D Kabotso. Structure-reactivity relationship for alcohol oxidations via hydride transfer to a carbocationic oxidizing agent. Journal of Physical Organic Chemistry, 2011, 24(12): 1172–1178
https://doi.org/10.1002/poc.1842
25 B A Fachri, R M Abdilla, H H Bovenkamp, C B Rasrendra, H J Heeres. Experimental and kinetic modeling studies on the sulfuric acid catalyzed conversion of D-fructose to 5-hydroxymethylfurfural and levulinic acid in water. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3024–3034
https://doi.org/10.1021/acssuschemeng.5b00023
26 X Deng, P Zhao, X Zhou, L Bai. Excellent sustained-release efficacy of herbicide quinclorac with cationic covalent organic frameworks. Chemical Engineering Journal, 2021, 405: 126979
https://doi.org/10.1016/j.cej.2020.126979
27 A He, L Hu, Y Zhang, Y Jiang, X Wang, J Xu, Z Wu. High-efficiency catalytic transfer hydrogenation of biomass-based 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan over a zirconium-carbon coordination catalyst. ACS Sustainable Chemistry & Engineering, 2021, 9(46): 15557–15570
https://doi.org/10.1021/acssuschemeng.1c05618
28 A H Valekar, M Lee, J W Yoon, J Kwak, D Y Hong, K R Oh, G Y Cha, Y U Kwon, J Jung, J S Chang, Y K Hwang. Catalytic transfer hydrogenation of furfural to furfuryl alcohol under mild conditions over Zr-MOFs: exploring the role of metal node coordination and modification. ACS Catalysis, 2020, 10(6): 3720–3732
https://doi.org/10.1021/acscatal.9b05085
29 M Vandichel, F Vermoortele, S Cottenie, D E De Vos, M Waroquier, V Van Speybroeck. Insight in the activity and diastereoselectivity of various Lewis acid catalysts for the citronellal cyclization. Journal of Catalysis, 2013, 305: 118–129
https://doi.org/10.1016/j.jcat.2013.04.017
30 F Vermoortele, B Bueken, G Le Bars, B Van de Voorde, M Vandichel, K Houthoofd, A Vimont, M Daturi, M Waroquier, V Van Speybroeck, C Kirschhock, D E De Vos. Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr). Journal of the American Chemical Society, 2013, 135(31): 11465–11468
https://doi.org/10.1021/ja405078u
31 A Mironenko, G Vlachos. Conjugation-driven “reverse Mars−Van Krevelen”-type radical mechanism for low-temperature C–O bond activation. Journal of the American Chemical Society, 2016, 138(26): 8104–8113
https://doi.org/10.1021/jacs.6b02871
32 B Erb, E Risto, T Wendling, L J Goossen. Reductive etherification of fatty acids or esters with alcohols using molecular hydrogen. ChemSusChem, 2016, 9(12): 1442–1448
https://doi.org/10.1002/cssc.201600336
33 S De, S Dutta, B Saha. One-pot conversions of lignocellulosic and algal biomass into liquid fuels. ChemSusChem, 2012, 5(9): 1826–1833
https://doi.org/10.1002/cssc.201200031
34 W Hu, Y Wan, L Zhu, X Cheng, S Wan, J Lin, Y Wang. A strategy for the simultaneous synthesis of methallyl alcohol and diethyl acetal with Sn-β. ChemSusChem, 2017, 10(23): 4715–4724
https://doi.org/10.1002/cssc.201701435
[1] FCE-22053-OF-HZ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed