Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (5): 606-616   https://doi.org/10.1007/s11705-022-2233-4
  本期目录
Design and synthesis of ZnCo2O4/CdS for substantially improved photocatalytic hydrogen production
Xiaohong Li1, Youji Li2(), Xin Guo1, Zhiliang Jin1()
1. School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China
2. College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
 全文: PDF(5689 KB)   HTML
Abstract

In this study, the hydrogen evolution performance of CdS nanorods is improved using ZnCo2O4. ZnCo2O4 nanospheres are synthesized using the hydrothermal and calcination methods, and CdS nanorods are synthesized using the solvothermal method. From the perspective of morphology, numerous CdS nanorods are anchored on the ZnCo2O4 microspheres. According to the experimental results of photocatalytic hydrogen evolution, the final hydrogen evolution capacity of 7417.5 μmol∙g–1∙h–1 is slightly more than two times that of the single CdS, which proves the feasibility of our study. Through various characterization methods, it is proved that the composite sample has suitable optoelectronic properties. In addition, ZnCo2O4 itself exhibits good conductivity and low impedance, which shortens the charge-transfer path. Overall, the introduction of ZnCo2O4 expands the adsorption range of light and improves the performance of photocatalytic hydrogen evolution. This design can provide reference for developing high-efficiency photocatalysts.

Key wordsZnCo2O4 nanosphere    CdS nanorods    photocatalytic hydrogen evolution
收稿日期: 2022-06-02      出版日期: 2023-04-28
Corresponding Author(s): Youji Li,Zhiliang Jin   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(5): 606-616.
Xiaohong Li, Youji Li, Xin Guo, Zhiliang Jin. Design and synthesis of ZnCo2O4/CdS for substantially improved photocatalytic hydrogen production. Front. Chem. Sci. Eng., 2023, 17(5): 606-616.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2233-4
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I5/606
Fig.1  
Fig.2  
Fig.3  
SampleSBET/ (m2?g–1)Pore volume/ (cm3?g–1)Average pore size/nm
CdS350.2628.52
ZnCo2O4490.2316.27
15%-ZCOCS390.2221.39
Tab.1  
Fig.4  
Composite photocatalystSacrificial agentLight sourceHydrogen evolution rate/(μmol?g–1?h–1)Ref.
Mo2N/CdSNa2S/Na2SO3300 W Xe Lamp970[43]
NiCo2S4/CdSLactic acid300 W Xe Lamp6850[44]
Mo2C/CdSNa2S/Na2SO3300 W Xe Lamp1610[45]
VN/CdS10 vol % latic acid300 W Xe Lamp6240[46]
Cr0.5Ti0.5N/CdS10 vol % latic acid300 W Xe Lamp2440[47]
ZnCo2O4/CdS10 vol % latic acid5W white light7417This work
Tab.2  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
1 J Zou, G Liao, J Jiang, Z Xiong, S Bai, H Wang, P Wu, P Zhang, X Li. In-situ construction of sulfur-doped g-C3N4/defective g-C3N4 isotype step-scheme heterojunction for boosting photocatalytic H2 evolution. Chinese Journal of Structural Chemistry, 2022, 41: 2201025–2201033
2 P Wang, M Yang, S Tang, F Chen, Y Li. Preparation of cellular C3N4/COSe2/Ga composite photocatalyst and its CO2 reduction activity. Chemical Journal of Chinese Universities, 2021, 6: 1924–1932
3 Z Yong, Q Ni, L Long, W Bing. Syntheses, structures and photocatalytic degradation properties of two copper(II) coordination polymers with flexible bis(imidazole) ligand. Chinese Journal of Structural Chemistry, 2021, 40: 595–602
4 Y WuY LiL ZhangZ Jin. NiAl-LDH in situ derived Ni2P and ZnCdS nanoparticles ingeniously constructed S-scheme heterojunction for photocatalytic hydrogen production. ChemCatChem, 2022, 14(4) doi:10.1002/cctc.202101656
5 K Yang, T Liu, D Xiang, Y Li, Z Jin. Graphdiyne (g-CnH2n-2) based Co3S4 anchoring and edge-covalently modification coupled with carbon-defects g-C3N4 for photocatalytic hydrogen production. Separation and Purification Technology, 2022, 298: 121564
https://doi.org/10.1016/j.seppur.2022.121564
6 H Weia, M Yun, Q Rong, X Hun, L Ru. Study on the different photocatalytic performances for tetracycline hydrochloride degradation of p-block metal composite oxides Sr1.36Sb2O6 and Sr2Sb2O7. Chinese Journal of Structural Chemistry, 2021, 40: 394–402
7 Y Yang, J Wu, B Cheng, L Zhang, A Al-Ghamdi, S Wageh, Y Li. Enhanced photocatalytic H2-production activity of CdS nanoflower using single atom Pt and graphene quantum dot as dual cocatalysts. Chinese Journal of Structural Chemistry, 2022, 41(6): 2206006–2206014
8 L Zhang, J Zhang, H Yu, J Yu. Emerging S-scheme photocatalyst. Advanced Materials, 2022, 34(11): 2107668
https://doi.org/10.1002/adma.202107668
9 Y Cao, H Gou, P Zhu, Z Jin. Ingenious design of Co Al-LDH p−n heterojunction based on CuI as holes receptor for photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2022, 41: 2206079–2206085
10 M Sayed, J Yu, G Liu, M Jaroniec. Non-noble plasmonic metal-based photocatalysts. Chemical Reviews, 2022, 122(11): 10484–10537
https://doi.org/10.1021/acs.chemrev.1c00473
11 T Yan, X Zhang, H Liu, Z Jin. CeO2 particles anchored to Ni2P nanoplate for efficient photo-catalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2022, 41: 2201047–2201053
12 L Zhang, X Hao, J Li, Y Wang, Z Jin. Unique synergistic effects of ZIF-9(Co)-derived cobalt phosphide and CeVO4 heterojunction for efficient hydrogen evolution. Chinese Journal of Catalysis, 2020, 41(1): 82–94
https://doi.org/10.1016/S1872-2067(19)63454-6
13 Y Liu, X Hao, H Hu, Z Jin. High efficiency electron transfer realized over NiS2/MoSe2 S-scheme heterojunction in photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2021, 37(6): 2008030 (in Chinese)
14 Z Jin, Y Li, X Hao. Ni, Co-based selenide anchored g-C3N4 for boosting photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2021, 37(10): 1912033 (in Chinese)
15 M Wei, L Feng, L Yan, W Lei, P Peng, Y Jie. Dramatically enhanced visible-light-responsive H2 evolution of Cd1−xZnxS via the synergistic effect of Ni2P and 1t/2h MoS2 cocatalysts. Chinese Journal of Structural Chemistry, 2021, 40: 7–22
16 Z JiangQ ChenQ ZhengR ShenP ZhangX Li. Constructing 1D/2D Schottky-based heterojunctions between Mn0.2Cd0.8S nanorods and Ti3C2 nanosheets for boosted photocatalytic H2 evolution. Acta Physico-Chimica Sinica, 2021, 37(6): 2009063 (in Chinese)
17 G Wang, Y Quan, K Yang, Z Jin. EDA-assisted synthesis of multifunctional snowflake-Cu2S/CdZnS S-Scheme heterjunction for improved the photocatalytic hydrogen evolution. Journal of Materials Science and Technology, 2022, 121: 28–39
https://doi.org/10.1016/j.jmst.2021.11.073
18 H Li, H Gong, Z Jin. In2O3-modified Three-dimensional nanoflower MoSx form S-scheme heterojunction for efficient hydrogen production. Acta Physico-Chimica Sinica, 2022, 38(0): 2201037
https://doi.org/10.3866/PKU.WHXB202201037
19 S LiuK WangM YangZ Jin. Rationally designed Mn0.2Cd0.8S@CoAl LDH S-scheme heterojunction for efficient photocatalytic hydrogen production. Acta Physico-Chimica Sinica, 2022, 38(7): 2109023 (in Chinese)
20 D Li, X Ma, P Su, S Yang, Z Jiang, Y Li, Z Jin. Effect of phosphating on NiAl-LDH layered double hydroxide form S-scheme heterojunction for photocatalytic hydrogen evolution. Molecular Catalysis, 2021, 516: 111990
https://doi.org/10.1016/j.mcat.2021.111990
21 J Bai, R Shen, Z Jiang, P Zhang, Y Li, X Li. Integration of 2D layered CdS/WO3 S-scheme heterojunctions and metallic Ti3C2 MXene-based Ohmic junctions for effective photocatalytic H2 generation. Chinese Journal of Catalysis, 2022, 43(2): 359–369
https://doi.org/10.1016/S1872-2067(21)63883-4
22 Z Jin, H Li, J Li. Efficient photocatalytic hydrogen evolution over graphdiyne boosted with a cobalt sulfide formed S-scheme heterojunctions. Chinese Journal of Catalysis, 2022, 42(2): 303–315
https://doi.org/10.1016/S1872-2067(21)63818-4
23 R Gao, H He, J Bai, L Hao, R Shen, P Zhang, Y Li, X Li. Pyrene-benzothiadiazole-based polymer/Cds 2d/2d organic/inorganic hybrid S-scheme heterojunction for efficient photocatalytic H2 evolution. Chinese Journal of Structural Chemistry, 2022, 41(6): 2206031–2206038
24 T Hu, K Dai, J Zhang, S Chen. Noble-metal-free Ni2P modified step-scheme SnNb2O6/CdS-diethylenetriamine for photocatalytic hydrogen production under broadband light irradiation. Applied Catalysis B: Environmental, 2020, 269: 118844
https://doi.org/10.1016/j.apcatb.2020.118844
25 S Zhang, M Du, Z Xing, Z Li, K Pan, W Zhou. Defect-rich and electron-rich mesoporous Ti-MOFs based NH2-MIL-125(Ti)@ZnIn2S4/CdS hierarchical tandem heterojunctions with improved charge separation and enhanced solar-driven photocatalytic performance. Applied Catalysis B: Environmental, 2020, 262: 118202
https://doi.org/10.1016/j.apcatb.2019.118202
26 S Wageh, A Al-Ghamdi, R Jafer, X Li, P Zhang. A new heterojunction in photocatalysis: S-scheme heterojunction. Chinese Journal of Catalysis, 2021, 42(5): 667–669
https://doi.org/10.1016/S1872-2067(20)63705-6
27 S Liu, W Kuang, X Meng, W Qi, S Adimi, H Guo, X Guo, E Pervaiz, Y Zhu, D Xue, M Yang. Dual-phase metal nitrides as highly efficient co-catalysts for photocatalytic hydrogen evolution. Chemical Engineering Journal, 2021, 416: 129116
https://doi.org/10.1016/j.cej.2021.129116
28 R Shen, Y Ding, S Li, P Zhang, Q Xiang, Y Ng, X Li. Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution. Chinese Journal of Catalysis, 2021, 42(1): 25–36
https://doi.org/10.1016/S1872-2067(20)63600-2
29 J Wei, Y Chen, H Zhang, Z Zhuang, Y Yu. Hierarchically porous S-scheme CdS/UiO-66 photocatalyst for efficient 4-nitroaniline reduction. Chinese Journal of Catalysis, 2021, 42(1): 78–86
https://doi.org/10.1016/S1872-2067(20)63661-0
30 J Peng, J Shen, X Yu, H Tang, Q Zulfiqar. Zulfiqar, Liu Q. Construction of LSPR-enhanced 0D/2D CdS/MoO3−x S-scheme heterojunctions for visible-light-driven photocatalytic H2 evolution. Chinese Journal of Catalysis, 2021, 42(1): 87–96
https://doi.org/10.1016/S1872-2067(20)63595-1
31 X Jia, X Wu, B Liu. Formation of ZnCo2O4@MnO2 core-shell electrode materials for hybrid supercapacitor. Dalton Transactions, 2018, 47(43): 15506–15511
https://doi.org/10.1039/C8DT03298J
32 H Chen, X Du, J Sun, H Mao, R Wu, C Xu. Simple preparation of ZnCo2O4 porous quasi-cubes for high performance asymmetric supercapacitors. Applied Surface Science, 2020, 515: 146008
https://doi.org/10.1016/j.apsusc.2020.146008
33 H Chen, J Wang, X Han, F Liao, Y Zhang, L Gao, C Xu. Facile synthesis of mesoporous ZnCo2O4 hierarchical microspheres and their excellent supercapacitor performance. Ceramics International, 2019, 45(7): 8577–8584
https://doi.org/10.1016/j.ceramint.2019.01.176
34 S Liang, G Sui, J Li, D Guo, Z Luo, R Xu, H Yao, C Wang, S Chen. ZIF-L-derived porous C-doped ZnO/CdS graded nanorods with Z-scheme heterojunctions for enhanced photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47(21): 11190–11202
https://doi.org/10.1016/j.ijhydene.2022.01.154
35 B He, C Bie, X Fei, B Cheng, J Yu, W Ho, A Al-Ghamdi, S Wageh. Enhancement in the photocatalytic H2 production activity of CdS NRs by Ag2S and NiS dual cocatalysts. Applied Catalysis B: Environmental, 2021, 288: 119994
https://doi.org/10.1016/j.apcatb.2021.119994
36 A Raja, N Son, M Swaminathan, M Kang. Facile synthesis of sphere-like structured ZnIn2S4-rGO-CuInS2 ternary heterojunction catalyst for efficient visible-active photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2021, 602: 669–679
https://doi.org/10.1016/j.jcis.2021.06.034
37 B Liu, J Cheng, H Peng, D Chen, X Cui, D Shen, K Zhang, T Jiao, M Li, C Lee, W Zhang. In situ nitridated porous nanosheet networked Co3O4–Co4N heteronanostructures supported on hydrophilic carbon cloth for highly efficient electrochemical hydrogen evolution. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(2): 775–782
https://doi.org/10.1039/C8TA09800J
38 S Guan, L An, S Ashraf, L Zhang, B Liu, Y Fan, B Li. Oxygen vacancy excites Co3O4 nanocrystals embedded into carbon nitride for accelerated hydrogen generation. Applied Catalysis B: Environmental, 2020, 269: 118775
https://doi.org/10.1016/j.apcatb.2020.118775
39 Y Han, Z Liang, H Dang, X Dong. Extremely high photocatalytic H2 evolution of novel Co3O4/Cd0.9Zn0.1S p–n heterojunction photocatalyst under visible light irradiation. Journal of the Taiwan Institute of Chemical Engineers, 2018, 87: 196–203
https://doi.org/10.1016/j.jtice.2018.03.035
40 L Wang, G Tang, S Liu, H Dong, Q Liu, J Sun, H Tang. Interfacial active-site-rich 0D Co3O4/1D TiO2 p−n heterojunction for enhanced photocatalytic hydrogen evolution. Chemical Engineering Journal, 2022, 428: 131338
https://doi.org/10.1016/j.cej.2021.131338
41 J Liu, J Ke, Y Li, B Liu, L Wang, H Xiao, S Wang. Co3O4 quantum dots/TiO2 nanobelt hybrids for highly efficient photocatalytic overall water splitting. Applied Catalysis B: Environmental, 2018, 236: 396–403
https://doi.org/10.1016/j.apcatb.2018.05.042
42 H Li, G Wang, X Zhang, Z Jin. Based on amorphous carbon C@ZnxCd1−xS/Co3O4 composite for efficient photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45(15): 8405–8417
https://doi.org/10.1016/j.ijhydene.2020.01.004
43 B Ma, Y Liu, J Li, K Lin, W Liu, H Zhan. Mo2N: an effificient non-noble metal cocatalyst on CdS for enhanced photocatalytic H2 evolution under visible light irradiation. International Journal of Hydrogen Energy, 2016, 41(47): 22009–22016
https://doi.org/10.1016/j.ijhydene.2016.08.133
44 J Penga, J Xu, Z Wang, Z Ding, S Wang. Developing an efficient NiCo2S4 cocatalyst for improving visible light H2 evolution performance of Cds nanoparticles. Physical Chemistry Chemical Physics, 2017, 19(38): 25919–25926
https://doi.org/10.1039/C7CP05147F
45 B Ma, H Xu, K Lin, J Li, H Zhan, W Liu, C Li. Mo2C as non-noble metal co-catalyst in Mo2C/CdS composite for enhanced photocatalytic H2 evolution under visible light irradiation. ChemSusChem, 2016, 9(8): 820–824
https://doi.org/10.1002/cssc.201501652
46 L Tian, S Min, F Wang, Z Zhang. Metallic vanadium nitride as a noble-metal-free cocatalyst efficiently catalyze photocatalytic hydrogen production with CdS nanoparticles under visible light irradiation. Journal of Physical Chemistry C, 2019, 47(47): 28640–28650
https://doi.org/10.1021/acs.jpcc.9b09389
47 X Meng, W Qi, W Kuang, S Adimi, H Guo, T Thomas, S Liu, Z Wang, M Yang. Chromium-titanium nitride as efficient co-catalyst for photocatalytic hydrogen production. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(31): 15774–15781
https://doi.org/10.1039/D0TA00488J
48 M Mao, J Xu, J Li, S Zhao, X Li. Enhancement of catalytic hydrogen evolution by NiS modification of ZnCo2O4 with cubic morphology. Journal of Materials Science: Materials in Electronics, 2020, 31(15): 12026–12040
https://doi.org/10.1007/s10854-020-03833-6
49 H Gong, X Zhang, G Wang, Y Liu, Y Li, Z Jin. Dodecahedron ZIF-67 anchoring ZnCdS particles for photocatalytic hydrogen evolution. Molecular Catalysis, 2020, 485: 110832
https://doi.org/10.1016/j.mcat.2020.110832
50 G Wang, Z Jin. Oxygen-vacancy-rich cobalt-aluminium hydrotalcite structures served as high-performance supercapacitor cathode. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2021, 9(2): 620–632
https://doi.org/10.1039/D0TC03640D
51 Z Jin, X Wang, Y Wang, T Yan, X Hao. Snowflake-like Cu2S coated with NiAl-LDH forms a p–n heterojunction for efficient photocatalytic hydrogen evolution. ACS Applied Energy Materials, 2021, 4(12): 14220–14231
https://doi.org/10.1021/acsaem.1c02982
52 Y Quan, G Wang, Z Jin. Tactfully assembled CuMOF/CdS S-scheme heterojunction for high-performance photocatalytic H2 evolution under visible light. ACS Applied Energy Materials, 2021, 4(8): 8550–8562
https://doi.org/10.1021/acsaem.1c01755
53 J Li, M Li, Z Jin. 2D/3D ZIF-9/Mo15S19 S-scheme heterojunction for productive photocatalytic hydrogen evolution. Energy Technology, 2022, 10(2): 2100669
https://doi.org/10.1002/ente.202100669
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed