Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (3): 249-275   https://doi.org/10.1007/s11705-022-2245-0
  本期目录
Recent progress in electrospun nanofibers and their applications in heavy metal wastewater treatment
Xizi Xu1, He Lv1, Mingxin Zhang1, Menglong Wang1, Yangjian Zhou1, Yanan Liu1(), Deng-Guang Yu1,2()
1. School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
2. Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
 全文: PDF(8132 KB)   HTML
Abstract

Novel adsorbents with a simple preparation process and large capacity for removing highly toxic and nondegradable heavy metals from water have drawn the attention of researchers. Electrospun nanofiber membranes usually have the advantages of large specific surface areas and high porosity and allowing flexible control and easy functionalization. These membranes show remarkable application potential in the field of heavy metal wastewater treatment. In this paper, the electrospinning technologies, process types, and the structures and types of nanofibers that can be prepared are reviewed, and the relationships among process, structure and properties are discussed. On one hand, based on the different components of electrospun nanofibers, the use of organic, inorganic and organic−inorganic nanofiber membrane adsorbents in heavy metal wastewater treatment are introduced, and their advantages and future development are summarized and prospected. On the other hand, based on the microstructure and overall structure of the nanofiber membrane, the recent progresses of electrospun functional membranes for heavy metal removal are reviewed, and the advantages of different structures for applications are concluded. Overall, this study lays the foundation for future research aiming to provide more novel structured adsorbents.

Key wordselectrospinning    heavy metal    adsorption    nanostructure    wastewater
收稿日期: 2022-06-15      出版日期: 2023-03-17
Corresponding Author(s): Yanan Liu,Deng-Guang Yu   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(3): 249-275.
Xizi Xu, He Lv, Mingxin Zhang, Menglong Wang, Yangjian Zhou, Yanan Liu, Deng-Guang Yu. Recent progress in electrospun nanofibers and their applications in heavy metal wastewater treatment. Front. Chem. Sci. Eng., 2023, 17(3): 249-275.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2245-0
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I3/249
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
MaterialAdvantageDisadvantage
CSThe molecular chain contains a large number of amino and hydroxyl groups, and can form a stable chelate with heavy metal ions(1) The repulsive force between the ions in the main chain hinders the formation of continuous fibers, and it is difficult to spin;(2) Poor mechanical properties
Natural protein (including keratin, silk fibroin (SF) and collagen)The molecule contains a large number of polar groups such as amino groups and carboxyl groups, and has high affinity for heavy metal ions(1) The adsorption performance is low;(2) Poor mechanical strength
Cellulose and its derivativesVan der Waals’ force and electrostatic attraction with heavy metal molecules, contain some active groupsThe adsorption effect is not obvious when used alone
Tab.1  
Fig.9  
MaterialTreatment methodType of metal ionsAdsorption capacityRef.
PVAGlutaraldehyde vapor crosslinkingPb2+, Cu2+312.54, 112.51 mg·g–1[88]
CSIon-imprinting and glutaraldehyde crosslinkingPb2+110.2 mg·g–1[91]
CSTreat CS ENFM with K2CO3 solutionCu2+, Pb2+485.44, 263.15 mg·g–1[92]
PET (polyethylene terephthalate)Aminolysis of PET Nanofiber MatsPb2+50 mmol·g–1[93]
Polyarylene ether nitrileActivated by using NaOH solutionCu2+52.77 mg·g–1[94]
PA-66 (polyamide-66)Functionalized with aminopropyltriethoxysilaneAg, Cr1946.91, 650.41 mg·g–1[95]
PANPhosphorylated PAN-based nanofibersCu2+, Ni2+, Cd2+, and Ag+92.1, 68.3, 14.8, 51.7 mg·g–1[96]
PANSurface modification with polyethylenediaminetetraacetic acid using ethylenediamine as the cross-linkerCd2+, Cr6+32.68, 66.24 mg·g–1[97]
PANChemically modified with amidoxime groups by reacting with hydroxylamine hydrochloride into amidoxime-modified PANCr6+102.5 mg·g–1[98]
CAHighly efficient carboxylated cellulose filters were fabricated by 2,2,6,6-tetramethylpiperidine 1-oxyl -oxidationPb2+81.3 mg·g–1[99]
CASurface modification with carboxylHg2+, Cu2+, Cd2+5.2, 2.7, 2.2 mg·g–1[100]
ZeinUsing sodium lauryl sulfate ethanol aqueous solution to overcome protein?metal interactionsPb2+89.37 mg·g–1[101]
PS (polystyrene)Providing amide (–NCO) and amine (–NH–) groups onto their surfaces by the use of nitrogen gas plasmaCd2+, Ni2+10, 4.9 mg·g–1[102]
PIN (polyindole)AmidoximeCr6+404.86 mg·g–1[103]
Tab.2  
Fig.10  
MaterialPreparation methodType of metal ionsAdsorption capacityRef.
PVA/CSBlend electrospinningPb2+, Cd2+266.12, 148.79 mg·g–1[106]
PAA/PVABlend electrospinningCu2+49.3 mg·g–1[107]
PVA/PAABlend electrospinningPb2+, Cd2+159, 102 mg·g–1[108]
PVA/PANTwo-nozzle electrospinning and surface modificationCr6+, Cd2+66.5, 33.6 mg·g–1[109]
PVA/PEIBlend electrospinningCr6+150 mg·g–1[110]
PAN/CAHydrolysis and amidoximation modificationFe3+, Cu2+, Cd2+7.47, 4.26, 1.13 mmol·g–1[111]
PA-66/PANTwin-spinneret electrospinning and amidoxime modifiedCu2+, Pb2+67.5, 75.4 mg·g–1[112]
CS/CATreatment by neutralization of CS and deacetylation of CAAs5+, Pb2+, Cu2+39.4, 57.3, 112.6 mg·g–1[113]
CS/PEO (polyethylene oxide)Diethylenetriaminepentaacetic acid-modifiedCu2+, Pb2+, Ni2+177, 142, 56 mg·g–1[114]
CS/phosphorylated nanocellulosePhosphate groups (PO42?) formed on the surface of electrospun nanofibersCd2+232.55 mg·g–1[115]
PAN/PEIAminated PAN nanofibers followed by grafting branched PEICu2+149.8 mg·g–1[116]
SF/CABlend electrospinning and ethanol treatmentCu2+22.8 mg·g–1[117]
PVDF (polyvinylidene fluoride)/PANTreatment of electrospun PVDF/AOPAN nanofibers with KOHPb2+, Cu2+, Ni2+72.5, 30.1, 52.8 mg·g–1[118]
PAN/PDA (polydopamine)Coating PAN nanofibers with PDACr6+61.65 mg·g–1[89]
PLA/PDA/CSCS-grafted porous P-PLLA (porous poly(L-lactic acid)) nanofiber by using PDA as an intermediate layerCu2+270.27 mg·g–1[119]
Tab.3  
Inorganic nanofiberPolymer matrixType of heavy metal ionsAdsorption capacityRef.
SiO2PANHg2+57.49 mg·g–1[131]
TiO2PVPAs3+Amorphous TiO2 NFs: 5.42–5.44 mmol·g–1Crystalline TiO2 NFs: 1.72–3.97 mmol·g–1[132]
MgOPVPPb2+, Cd2+2983.4, 1824.0 mg·g–1[133]
Al2O3PVPCr6+6.8 mg·g–1[134]
HAp (hydroxyapatite)PVPCu2+, Cd2+, Pb2+93.6, 76.9, 228.3 mg·g–1[135]
ACNFsPAN/sago ligninPb2+524 mg·g–1[136]
SiO2–MgOCA/PVAPb2+, Cu2+787.9, 493.0 mg·g–1[137]
SiO2–TiO2PEOPb2+142.86 mg·g–1[138]
ZnO/ACNFsPANPb2+92.59 mg·g–1[139]
SSC/TiO2/ZnOPVPNi2+, Cu2+282.3, 298.1 mg·g–1[140]
Tab.4  
Fig.11  
Fig.12  
MaterialsPreparation methodHeavy metal ionAdsorption capacityRef.
CS/TiO2Different doping forms of TiO2: coating method and entrapped methodPb2+, Cu2+(1) 710.3, 579.1 mg·g–1(2) 526.5, 475.5 mg·g–1[149]
CS/graphene oxide (GO)Blending electrospinningCu2+, Pb2+, Cr6+461.3, 423.8, 310.4 mg·g–1[150]
CS/HApBlending electrospinningPb2+, Ni2+, Co2+296.7, 213.8, 180.2 mg·g–1[151]
CA/montmorilloniteComposite nanofibers with organically modified montmorillonite and followed by deacetylationCr6+20 mg·g–1[152]
CA/HApBlending electrospinningFe3+, Pb2+46.93, 45.825 mg·g–1[153]
PAN/FeCl2Blending electrospinningCr6+108 mg·g–1[154]
PAN/MWCNTs (multiwalled carbon nanotubes)PEI modified MWCNT as a novel additive in PAN nanofiber membranePb2+, Cu2+232.7, 112.5 mg·g–1[155]
PAN/ZIF-8 (zeolitic imidazolate framework-8)ZIF-8 nanoparticles are uniformly decorated on PAN nanofibers by hot-pressing methodCu2+Cu2+ removal rate of ZIF-8/PAN NF can highly reach 34.1% in 4 min[156]
PAN/ZnOBlending electrospinningPb2+, Cd2+322, 166 mg·g–1[157]
PAN/MgOCoaxial electrospinning and post-treatmentCu2+354 mg·g–1[158]
PAN/boehmiteCombination of electrospinning process, chemical modification and hydrothermal reactionPb2+, Cu2+, Cd2+180.83, 48.68, 114.94 mg·g–1[159]
PAN/CS/ZnOElectrospun PAN nanofibrous membranes were functionalized with zinc oxide nanoparticles and coated with a layer of electrospun CSCr3+116.5 mg·g–1[160]
PVA/SiO2Composite nanofibers were functionalized by mercapto groups via the hydrolysis polycondensationCu2+489.12 mg·g–1[161]
PVA/zeoliteBlending electrospinningNi2+, Cd2+342.8, 838.7 mg·g–1[162]
PVA/TiO2/ZnOBlending electrospinningTh4+333.3 mg·g–1[163]
PVA/clay and PCL (polycaprolactone)/clayBlending electrospinningCd2+, Cr3+, Cu2+, Pb2+14.58, 17.36, 16.46, 16.50 mg·g–1 and 29.59, 27.23, 25.36, 32.88 mg·g–1[164]
PA-6/Mg(OH)2Electrospinning technique combined with hydrothermal strategyCr6+296.4 mg·g–1[165]
PCL/clay/zeoliteBlending electrospinningPb2+19.531 mg·g–1[166]
PEO/CS/ACBlending electrospinningCr6+, Fe3+, Cu2+, Zn2+, Pb2+261.1, 217.4, 195.3, 186.2, 176.9 mg·g–1[167]
CS/PVA/zeoliteHydrolyzed CS solution was blended with PVA and zeoliteCr6+, Fe3+, Ni2+8.84, 6.16, 1.77 mg·g–1[168]
PVA/PAA/SiO2Blending electrospinning and crosslink through heat treatmentCu2+125.47 mg·g–1[169]
PE/PAA/PAHBlending electrospinning and thermal crosslinkingPb2+, Cd2+, Cu2+70%, 98%, 92% romoval at pH 7.4[170]
PVP/CeO2/TMPTMS (3-mercaptopropyltrimethoxysilane)Surface modification of CeO2 and blending electrospinningPb2+, Cu2+90.9, 88.3 mg·g–1[171]
PMMA (polymethylmethacrylate)/rhodanineBlending electrospinningAg+, Pb2+125.7, 140.2 mg·m–2[172]
PU/phytic acidBlending electrospinningPb2+136.52 mg·g–1[173]
Alginate/GOBlending electrospinningPb2+386.2 mg·g–1[174]
Tab.5  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
1 L A Malik, A Bashir, A Qureashi, A H Pandith. Detection and removal of heavy metal ions: a review. Environmental Chemistry Letters, 2019, 17(4): 1495–1521
https://doi.org/10.1007/s10311-019-00891-z
2 W S Chai, J Y Cheun, P S Kumar, M Mubashir, Z Majeed, F Banat, S H Ho, P L Show. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. Journal of Cleaner Production, 2021, 296: 126589
https://doi.org/10.1016/j.jclepro.2021.126589
3 Y Wu, H Pang, Y Liu, X Wang, S Yu, D Fu, J Chen, X Wang. Environmental remediation of heavy metal ions by novel-nanomaterials: a review. Environmental Pollution, 2019, 246: 608–620
https://doi.org/10.1016/j.envpol.2018.12.076
4 M M Sabzehmeidani, S Mahnaee, M Ghaedi, H Heidari, V A L Roy. Carbon based materials: a review of adsorbents for inorganic and organic compounds. Materials Advances, 2021, 2(2): 598–627
https://doi.org/10.1039/D0MA00087F
5 R Chakraborty, A Asthana, A K Singh, B Jain, A B H Susan. Adsorption of heavy metal ions by various low-cost adsorbents: a review. International Journal of Environmental Analytical Chemistry, 2022, 102(2): 342–379
https://doi.org/10.1080/03067319.2020.1722811
6 L Zhang, G He, Y Yu, Y Zhang, X Li, S Wang. Design of biocompatible chitosan/polyaniline/laponite hydrogel with photothermal conversion capability. Biomolecules, 2022, 12(8): 1089
https://doi.org/10.3390/biom12081089
7 Y Zhang, B Wang, Q Cheng, X Li, Z Li. Removal of toxic heavy metal ions (Pb, Cr, Cu, Ni, Zn, Co, Hg, and Cd) from waste batteries or lithium cells using nanosized metal oxides: a review. Journal of Nanoscience and Nanotechnology, 2020, 20(12): 7231–7254
https://doi.org/10.1166/jnn.2020.18748
8 P Makvandi, S Iftekhar, F Pizzetti, A Zarepour, E N Zare, M Ashrafizadeh, T Agarwal, V V T Padil, R Mohammadinejad, M Sillanpaa, T K Maiti, G Perale, A Zarrabi, F Rossi. Functionalization of polymers and nanomaterials for water treatment, food packaging, textile and biomedical applications: a review. Environmental Chemistry Letters, 2021, 19(1): 583–611
https://doi.org/10.1007/s10311-020-01089-4
9 H Shayegan, G A M Ali, V Safarifard. Recent progress in the removal of heavy metal ions from water using metal–organic frameworks. ChemistrySelect, 2020, 5(1): 124–146
https://doi.org/10.1002/slct.201904107
10 Y N Liu, H Lv, Y Liu, Y M Gao, H Y Kim, Y Ouyang, D G Yu. Progresses on electrospun metal–organic frameworks nanofibers and their wastewater treatment applications. Materials Today. Chemistry, 2022, 25: 123608
https://doi.org/10.1016/j.mtchem.2022.100974
11 S Wadhawan, A Jain, J Nayyar, S K Mehta. Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: a review. Journal of Water Process Engineering, 2020, 33: 101038
https://doi.org/10.1016/j.jwpe.2019.101038
12 O Pereao, C Bode-Aluko, K Laatikainen, A Nechaev, L Petrik. Morphology, modification and characterisation of electrospun polymer nanofiber adsorbent material used in metal ion removal. Journal of Polymers and the Environment, 2019, 27(9): 1843–1860
https://doi.org/10.1007/s10924-019-01497-w
13 L Feng, S H Li, J Zhai, Y L Song, L Jiang, D B Zhu. Template based synthesis of aligned polyacrylonitrile nanofibers using a novel extrusion method. Synthetic Metals, 2003, 135(1-3): 817–818
https://doi.org/10.1016/S0379-6779(02)00909-8
14 T Ichimori, K Mizuma, T Uchida, S Yamazaki, K Kimura. Morphological diversity and nanofiber networks of poly(p-oxybenzoyl) generated by phase separation during copolymerization. Journal of Applied Polymer Science, 2013, 128(2): 1282–1290
https://doi.org/10.1002/app.38554
15 W Hwang, B H Kim, R Dandu, J Cappello, H Ghandehari, J Seog. Surface induced nanofiber growth by self-assembly of a silk-elastin-like protein polymer. Langmuir, 2009, 25(21): 12682–12686
https://doi.org/10.1021/la9015993
16 H Chen, J Lin, N Zhang, L Chen, S Zhong, Y Wang, W Zhang, Q Ling. Preparation of MgAl-EDTA-LDH based electrospun nanofiber membrane and its adsorption properties of copper(II) from wastewater. Journal of Hazardous Materials, 2018, 345: 1–9
https://doi.org/10.1016/j.jhazmat.2017.11.002
17 J Cui, F Li, Y Wang, Q Zhang, W Ma, C Huang. Electrospun nanofiber membranes for wastewater treatment applications. Separation and Purification Technology, 2020, 250: 117116
https://doi.org/10.1016/j.seppur.2020.117116
18 J Xue, T Wu, Y Dai, Y Xia. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chemical Reviews, 2019, 119(8): 5298–5415
https://doi.org/10.1021/acs.chemrev.8b00593
19 S Thenmozhi, N Dharmaraj, K Kadirvelu, H Y Kim. Electrospun nanofibers: new generation materials for advanced applications. Materials Science and Engineering B, 2017, 217: 36–48
https://doi.org/10.1016/j.mseb.2017.01.001
20 C Wang, J Wang, L Zeng, Z Qiao, X Liu, H Liu, J Zhang, J Ding. Fabrication of electrospun polymer nanofibers with diverse morphologies. Molecules, 2019, 24(5): 834
https://doi.org/10.3390/molecules24050834
21 C Zhang, Y Li, P Wang, H Zhang. Electrospinning of nanofibers: potentials and perspectives for active food packaging. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(2): 479–502
https://doi.org/10.1111/1541-4337.12536
22 M Liu, X P Duan, Y M Li, D P Yang, Y Z Long. Electrospun nanofibers for wound healing. Materials Science & Engineering. Materials Science and Engineering C, 2017, 76: 1413–1423
https://doi.org/10.1016/j.msec.2017.03.034
23 H Li, X Chen, W Lu, J Wang, Y Xu, Y Guo. Application of electrospinning in antibacterial field. Nanomaterials, 2021, 11(7): 1822
https://doi.org/10.3390/nano11071822
24 B Pant, M Park, S J Park. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: a review. Pharmaceutics, 2019, 11(7): 305
https://doi.org/10.3390/pharmaceutics11070305
25 T Wu, M Ding, C Shi, Y Qiao, P Wang, R Qiao, X Wang, J Zhong. Resorbable polymer electrospun nanofibers: history, shapes and application for tissue engineering. Chinese Chemical Letters, 2020, 31(3): 617–625
https://doi.org/10.1016/j.cclet.2019.07.033
26 H Guo, Y Chen, Y Li, W Zhou, W Xu, L Pang, X Fan, S Jiang. Electrospun fibrous materials and their applications for electromagnetic interference shielding: a review. Composites Part A: Applied Science and Manufacturing, 2021, 143: 106309
https://doi.org/10.1016/j.compositesa.2021.106309
27 L Xu, Y A Liu, W H Zhou, D G Yu. Electrospun medical sutures for wound healing: a review. Polymers, 2022, 14(9): 1637
https://doi.org/10.3390/polym14091637
28 Y Zhang, W L Song, Y M Lu, Y X Xu, C P Wang, D G Yu, I Kim. Recent advances in poly(α-L-glutamic acid)-based nanomaterials for drug delivery. Biomolecules, 2022, 12(5): 636
https://doi.org/10.3390/biom12050636
29 S X Kang, S C Hou, X W Chen, D G Yu, L Wang, X Y Li, R G Williams. Energy-saving electrospinning with a concentric Teflon-core rod spinneret to create medicated nanofibers. Polymers, 2020, 12(10): 2421
https://doi.org/10.3390/polym12102421
30 X Zhang, S Guo, Y Qin, C Li. Functional electrospun nanocomposites for efficient oxygen reduction reaction. Chemical Research in Chinese Universities, 2021, 37(3): 379–393
https://doi.org/10.1007/s40242-021-1123-5
31 X X Li, J H He. Nanoscale adhesion and attachment oscillation under the geometric potential. Part 1: The formation mechanism of nanofiber membrane in the electrospinning. Results in Physics, 2019, 12: 1405–1410
https://doi.org/10.1016/j.rinp.2019.01.043
32 W Liu, G Xi, X Yang, X Hao, M Wang, Y Feng, H Chen, C Shi. Poly(lactide-co-glycolide) grafted hyaluronic acid-based electrospun fibrous hemostatic fragments as a sustainable anti-infection and immunoregulation material. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2019, 7(32): 4997–5010
https://doi.org/10.1039/C9TB00659A
33 Y Liu, X Chen, Y Gao, Y Liu, D Yu, P Liu. Electrospun core-sheath nanofibers with variable shell thickness for modifying curcumin release to achieve a better antibacterial performance. Biomolecules, 2022, 12(8): 1057
https://doi.org/10.3390/biom12081057
34 M Sivan, D Madheswaran, J Valtera, E K Kostakova, D Lukas. Alternating current electrospinning: the impacts of various high-voltage signal shapes and frequencies on the spinnability and productivity of polycaprolactone nanofibers. Materials & Design, 2022, 213: 110308
https://doi.org/10.1016/j.matdes.2021.110308
35 M Ghazalian, S Afshar, A Rostami, S Rashedi, S H Bahrami. Fabrication and characterization of chitosan-polycaprolactone core–shell nanofibers containing tetracycline hydrochloride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636: 128163
https://doi.org/10.1016/j.colsurfa.2021.128163
36 Y J Zhou, Y A Liu, M X Zhang, Z B Feng, D G Yu, K Wang. Electrospun nanofiber membranes for air filtration: a review. Nanomaterials, 2022, 12(7): 1077
https://doi.org/10.3390/nano12071077
37 B Zaarour, L Zhu, X Jin. Controlling the surface structure, mechanical properties, crystallinity, and piezoelectric properties of electrospun PVDF nanofibers by maneuvering molecular weight. Soft Materials, 2019, 17(2): 181–189
https://doi.org/10.1080/1539445X.2019.1582542
38 H M Ibrahim, A Klingner. A review on electrospun polymeric nanofibers: production parameters and potential applications. Polymer Testing, 2020, 90: 106647
https://doi.org/10.1016/j.polymertesting.2020.106647
39 A Dodero, E Brunengo, M Alloisio, A Sionkowska, S Vicini, M Castellano. Chitosan-based electrospun membranes: effects of solution viscosity, coagulant and crosslinker. Carbohydrate Polymers, 2020, 235: 115976
https://doi.org/10.1016/j.carbpol.2020.115976
40 W Chen, P Zhao, Y Yang, D G Yu. Electrospun beads-on-the-string nanoproducts: preparation and drug delivery application. Current Drug Delivery, 2022, 19
https://doi.org/10.2174/1567201819666220525095844
41 Y Y Han, L Xia, X P Zhuang, Y X Liang. Integrating of metal–organic framework UiO-66-NH2 and cellulose nanofibers mat for high-performance adsorption of dye rose bengal. Frontiers of Chemical Science and Engineering, 2022, 16(9): 1387–1398
https://doi.org/10.1007/s11705-022-2154-2
42 F Topuz, B Satilmis, T Uyar. Electrospinning of uniform nanofibers of polymers of intrinsic microporosity (PIM-1): the influence of solution conductivity and relative humidity. Polymer, 2019, 178: 121610
https://doi.org/10.1016/j.polymer.2019.121610
43 I Steyaert, L Van der Schueren, H Rahier, K de Clerck. An alternative solvent system for blend electrospinning of polycaprolactone/chitosan nanofibres. Macromolecular Symposia, 2012, 321(1): 71–75
https://doi.org/10.1002/masy.201251111
44 S J Najafi, H Nosraty, M M Shokrieh, A A Gharehaghaji, S H Bahrami. The effect of electrospinning parameters on the morphology of glass nanofibers. Journal of the Textile Institute, 2020, 111(7): 941–949
https://doi.org/10.1080/00405000.2020.1711993
45 A C B Vicente, G B Medeiros, D D Vieira, F P Garcia, C V Nakamura, E C Muniz, E Corradini. Influence of process variables on the yield and diameter of zein-poly(N-isopropylacrylamide) fiber blends obtained by electrospinning. Journal of Molecular Liquids, 2019, 292: 109971
https://doi.org/10.1016/j.molliq.2018.11.061
46 F Topuz, T Uyar. Electrospinning of cyclodextrin nanofibers: the effect of process parameters. Journal of Nanomaterials, 2020, 2020: 7529306
https://doi.org/10.1155/2020/7529306
47 F Huang, Q Wei, J Wang, Y Cai, Y Huang. Effect of temperature on structure, morphology and crystallinity of PVDF nanofibers via electrospinning. E-Polymers, 2008, 8(1): 152
https://doi.org/10.1515/epoly.2008.8.1.1758
48 A Bachs-Herrera, O Yousefzade, L J del Valle, J Puiggali. Melt electrospinning of polymers: blends, nanocomposites, additives and applications. Applied Sciences, 2021, 11(4): 1808
https://doi.org/10.3390/app11041808
49 M P Arrieta, A Leones Gil, M Yusef, J M Kenny, L Peponi. Electrospinning of PCL-based blends: processing optimization for their scalable production. Materials, 2020, 13(17): 3853
https://doi.org/10.3390/ma13173853
50 Y Zheng, H Cao, Z Zhou, X Mei, L Yu, X Chen, G He, Y Zhao, D Wu, D Sun. Concentrated multi-nozzle electrospinning. Fibers and Polymers, 2019, 20(6): 1180–1186
https://doi.org/10.1007/s12221-019-8984-y
51 C Wu, H Zhang, Q Hu, M Ramalingam. Designing biomimetic triple-layered nanofibrous vascular grafts via combinatorial electrospinning approach. Journal of Nanoscience and Nanotechnology, 2020, 20(10): 6396–6405
https://doi.org/10.1166/jnn.2020.17878
52 D G Yu, M L Wang, R Ge. Strategies for sustained drug release from electrospun multi-layer nanostructures. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 2022, 14(3): e1772
https://doi.org/10.1002/wnan.1772
53 Y B Liu, X H Chen, Y H Gao, D G Yu, P Liu. Elaborate design of shell component for manipulating the sustained release behavior from core–shell nanofibres. Journal of Nanobiotechnology, 2022, 20(1): 244
https://doi.org/10.1186/s12951-022-01463-0
54 H He, M Wu, J W Zhu, Y Y Yang, R L Ge, D G Yu. Engineered spindles of little molecules around electrospun nanofibers for biphasic drug release. Advanced Fiber Materials, 2022, 4(2): 305–317
https://doi.org/10.1007/s42765-021-00112-9
55 W Jiang, P Zhao, W Song, M Wang, D G Yu. Electrospun zein/polyoxyethylene core-sheath ultrathin fibers and their antibacterial food packaging applications. Biomolecules, 2022, 12(8): 1110
https://doi.org/10.3390/biom12081110
56 H X Xu, F Y Zhang, M L Wang, H Lv, D G Yu, X K Liu, H Shen. Electrospun hierarchical structural films for effective wound healing. Biomaterials Advances, 2022, 212795
57 M L Wang, J S Hou, D G Yu, S Y Li, J W Zhu, Z Z Chen. Electrospun tri-layer nanodepots for sustained release of acyclovir. Journal of Alloys and Compounds, 2020, 846: 156471
https://doi.org/10.1016/j.jallcom.2020.156471
58 H Xu, X Xu, S Li, W L Song, D G Yu, S W Annie Bligh. The effect of drug heterogeneous distributions within core-sheath nanostructures on its sustained release profiles. Biomolecules, 2021, 11(9): 1330
https://doi.org/10.3390/biom11091330
59 Y Ji, W L Song, L Xu, D G Yu, S W Annie-Bligh. A review on electrospun poly(amino acid) nano-fibers and their applications of hemostasis and wound healing. Biomolecules, 2022, 12(6): 794
https://doi.org/10.3390/biom12060794
60 D G Yu, H Lv. Preface-striding into nano drug delivery. Current Drug Delivery, 2022, 19(1): 1–3
https://doi.org/10.2174/156720181901220120094538
61 S R Guo, W L Jiang, L F Shen, G Y Zhang, Y M Gao, Y Y Yang, D G Yu. Electrospun hybrid films for fast and convenient delivery of active herb extracts. Membranes, 2022, 12(4): 398
https://doi.org/10.3390/membranes12040398
62 H Lv, S R Guo, G Y Zhang, W L He, Y H Wu, D G Yu. Electrospun structural hybrids of acyclovir-polyacrylonitrile at acyclovir for modifying drug release. Polymers, 2021, 13(24): 4286
https://doi.org/10.3390/polym13244286
63 X Liu, M X Zhang, W L Song, Y Zhang, D G Yu, Y Liu. Electrospun core (HPMC-acetaminophen)-shell (PVP-sucralose) nanohybrids for rapid drug delivery. Gels, 2022, 8(6): 357
https://doi.org/10.3390/gels8060357
64 M L Wang, D G Yu, G R Williams, S W A Bligh. Co-loading of inorganic nanoparticles and natural oil in the electrospun Janus nanofibers for a synergetic antibacterial effect. Pharmaceutics, 2022, 14(6): 1208
https://doi.org/10.3390/pharmaceutics14061208
65 H Liu, H Wang, X Lu, V Murugadoss, M Huang, H Yang, F Wan, D G Yu, Z Guo. Electrospun structural nanohybrids combining three composites for fast helicide delivery. Advanced Composites and Hybrid Materials, 2022, 5(2): 1017–1029
https://doi.org/10.1007/s42114-022-00478-3
66 H Liu, W Jiang, Z Yang, X Chen, D G Yu, J Shao. Hybrid films prepared from a combination of electrospinning and casting for offering a dual-phase drug release. Polymers, 2022, 14(11): 2132
https://doi.org/10.3390/polym14112132
67 T S He, X D Yu, T J Bai, X Y Li, Y R Fu, K D Cai. Porous carbon nanofibers derived from PAA-PVP electrospun fibers for supercapacitor. Ionics, 2020, 26(8): 4103–4111
https://doi.org/10.1007/s11581-020-03529-1
68 Y Xue, X Guo, H Zhou, J Zhou. Influence of beads-on-string on Na-ion storage behavior in electrospun carbon nanofibers. Carbon, 2019, 154: 219–229
https://doi.org/10.1016/j.carbon.2019.08.003
69 B G Kim, D W Kang, G Park, S H Park, S M Lee, J W Choi. Electrospun Li-confinable hollow carbon fibers for highly stable Li-metal batteries. Chemical Engineering Journal, 2021, 422: 130017
https://doi.org/10.1016/j.cej.2021.130017
70 X Ji, R Li, G Liu, W Jia, M Sun, Y Liu, Y Luo, Z Cheng. Phase separation-based electrospun Janus nanofibers loaded with Rana chensinensis skin peptides/silver nanoparticles for wound healing. Materials & Design, 2021, 207: 109864
https://doi.org/10.1016/j.matdes.2021.109864
71 S Agrawal, R Ranjan, B Lal, A Rahman, S P Singh, T Selvaratnam, T Nawaz. Synthesis and water treatment applications of nanofibers by electrospinning. Processes, 2021, 9(10): 1779
https://doi.org/10.3390/pr9101779
72 S K Sahoo, G K Panigrahi, J K Sahoo, A K Pradhan, A K Purohit, J P Dhal. Electrospun magnetic polyacrylonitrile-GO hybrid nanofibers for removing Cr(VI) from water. Journal of Molecular Liquids, 2021, 326: 115364
https://doi.org/10.1016/j.molliq.2021.115364
73 C Santhosh, V Velmurugan, G Jacob, S K Jeong, A N Grace, A Bhatnagar. Role of nanomaterials in water treatment applications: a review. Chemical Engineering Journal, 2016, 306: 1116–1137
https://doi.org/10.1016/j.cej.2016.08.053
74 H Ma, B S Hsiao, B Chu. Electrospun nanofibrous membrane for heavy metal ion adsorption. Current Organic Chemistry, 2013, 17(13): 1361–1370
https://doi.org/10.2174/1385272811317130003
75 G O Kayan, A Kayan. Composite of natural polymers and their adsorbent properties on the dyes and heavy metal ions. Journal of Polymers and the Environment, 2021, 29(11): 3477–3496
https://doi.org/10.1007/s10924-021-02154-x
76 H Ibrahim, N Sazali, W N W Salleh, A F Ismail. Nanocellulose-based materials and recent application for heavy metal removal. Water, Air, and Soil Pollution, 2021, 232(7): 305
https://doi.org/10.1007/s11270-021-05245-6
77 J Zhou, Z Fang, Q Tian, S Zhao, Y Jiang. Removal of heavy metal ions by porous sepiolite-based membrane. Micro & Nano Letters, 2020, 15(13): 903–906
https://doi.org/10.1049/mnl.2020.0232
78 J Li, Z L Yang, T Ding, Y J Song, H C Li, D Q Li, S Chen, F Xu. The role of surface functional groups of pectin and pectin-based materials on the adsorption of heavy metal ions and dyes. Carbohydrate Polymers, 2022, 276: 118789
https://doi.org/10.1016/j.carbpol.2021.118789
79 G Lofrano, M Carotenuto, G Libralato, R F Domingos, A Markus, L Dini, R K Gautam, D Baldantoni, M Rossi, S K Sharma, M C Chattopadhyaya, M Giugni, S Meric. Polymer functionalized nanocomposites for metals removal from water and wastewater: an overview. Water Research, 2016, 92: 22–37
https://doi.org/10.1016/j.watres.2016.01.033
80 M Manyangadze, N H M Chikuruwo, T B Narsaiah, C S Chakra, M Radhakumari, G Danha. Enhancing adsorption capacity of nano-adsorbents via surface modification: a review. South African Journal of Chemical Engineering, 2020, 31: 25–32
https://doi.org/10.1016/j.sajce.2019.11.003
81 A M Nasir, P S Goh, M S Abdullah, B C Ng, A F Ismail. Adsorptive nanocomposite membranes for heavy metal remediation: recent progresses and challenges. Chemosphere, 2019, 232: 96–112
https://doi.org/10.1016/j.chemosphere.2019.05.174
82 F Li, C Chen, Y Wang, W Li, G Zhou, H Zhang, J Zhang, J Wang. Activated carbon-hybridized and amine-modified polyacrylonitrile nanofibers toward ultrahigh and recyclable metal ion and dye adsorption from wastewater. Frontiers of Chemical Science and Engineering, 2021, 15(4): 984–997
https://doi.org/10.1007/s11705-020-2000-3
83 W J Sun, J L Mao, S Wang, L Zhang, Y H Cheng. Review of recent advances of polymer based dielectrics for high-energy storage in electronic power devices from the perspective of target applications. Frontiers of Chemical Science and Engineering, 2021, 15(1): 18–34
https://doi.org/10.1007/s11705-020-1939-4
84 H Y Choi, J H Bae, Y Hasegawa, S An, I S Kim, H Lee, M Kim. Thiol-functionalized cellulose nanofiber membranes for the effective adsorption of heavy metal ions in water. Carbohydrate Polymers, 2020, 234: 115881
https://doi.org/10.1016/j.carbpol.2020.115881
85 D Yang, L Li, B Chen, S Shi, J Nie, G Ma. Functionalized chitosan electrospun nanofiber membranes for heavy-metal removal. Polymer, 2019, 163: 74–85
https://doi.org/10.1016/j.polymer.2018.12.046
86 A Jawed, V Saxena, L M Pandey. Engineered nanomaterials and their surface functionalization for the removal of heavy metals: a review. Journal of Water Process Engineering, 2020, 33: 101009
https://doi.org/10.1016/j.jwpe.2019.101009
87 J Liu, J H Shen, J J Wang, Y Liang, R T Wu, W W Zhang, D L Shi, S X Shi, Y P Wang, Y M Wang, Y Xia. Polymeric ionic liquid-assisted polymerization for soluble polyaniline nanofibers. Frontiers of Chemical Science and Engineering, 2021, 15(1): 118–126
https://doi.org/10.1007/s11705-020-1916-y
88 H Tian, L Yuan, J Wang, H Wu, H Wang, A Xiang, B Ashok, A V Rajulu. Electrospinning of polyvinyl alcohol into crosslinked nanofibers: an approach to fabricate functional adsorbent for heavy metals. Journal of Hazardous Materials, 2019, 378: 120751
https://doi.org/10.1016/j.jhazmat.2019.120751
89 X Yang, Y Zhou, Z Sun, C Yang, D Tang. Synthesis and Cr adsorption of a super-hydrophilic polydopamine-functionalized electrospun polyacrylonitrile. Environmental Chemistry Letters, 2021, 19(1): 743–749
https://doi.org/10.1007/s10311-020-01086-7
90 B F Liu, Y Liu, Y X Wang, H Man, W X Wang, H Chen, L J Bai. Synthesis and electrospinning of well-defined polymer brushes by modification of polyacrylonitrile. Journal of Polymer Research, 2017, 25(1): 12
https://doi.org/10.1007/s10965-017-1415-0
91 Y Li, J Zhang, C Xu, Y F Zhou. Crosslinked chitosan nanofiber mats fabricated by one-step electrospinning and ion-imprinting methods for metal ions adsorption. Science China. Chemistry, 2016, 59(1): 95–105
https://doi.org/10.1007/s11426-015-5526-3
92 S Haider, S Y Park. Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution. Journal of Membrane Science, 2009, 328(1-2): 90–96
https://doi.org/10.1016/j.memsci.2008.11.046
93 D Morillo Martin, M Magdi Ahmed, M Rodriguez, M A Garcia, M Faccini. Aminated polyethylene terephthalate (PET) nanofibers for the selective removal of Pb(II) from polluted water. Materials, 2017, 10(12): 1352
https://doi.org/10.3390/ma10121352
94 P L Zheng, S Z Shen, Z J Pu, K Jia, X B Liu. Electrospun fluorescent polyarylene ether nitrile nanofibrous mats and application as an adsorbent for Cu2+ removal. Fibers and Polymers, 2015, 16(10): 2215–2222
https://doi.org/10.1007/s12221-015-5425-4
95 F Shahram Forouz, S A Hosseini Ravandi, A R Allafchian. Removal of Ag and Cr heavy metals using nanofiber membranes functionalized with aminopropyltriethoxysilane (APTES). Current Nanoscience, 2016, 12(2): 266–274
https://doi.org/10.2174/1573413712999151216162920
96 Y Hu, X Y Wu, X L He, D Y Xing. Phosphorylated polyacrylonitrile-based electrospun nanofibers for removal of heavy metal ions from aqueous solution. Polymers for Advanced Technologies, 2019, 30(3): 545–551
https://doi.org/10.1002/pat.4490
97 E F C Chaúque, L N Dlamini, A A Adelodun, C J Greyling, Ngila J Catherine. Modification of electrospun polyacrylonitrile nanofibers with EDTA for the removal of Cd and Cr ions from water effluents. Applied Surface Science, 2016, 369: 19–28
https://doi.org/10.1016/j.apsusc.2016.02.018
98 B Wang, F Zhang, J N Wang, X Y Li, C J Li. Amidoxime-modified polyacrylonitrile nanofibers and application to Cr(VI) ions adsorption. Acta Polymerica Sinica, 2016, 8: 1105–1111 (in Chinese)
99 C Li, H Ma, S Venkateswaran, B S Hsiao. Highly efficient and sustainable carboxylated cellulose filters for removal of cationic dyes/heavy metals ions. Chemical Engineering Journal, 2020, 389: 123458
https://doi.org/10.1016/j.cej.2019.123458
100 Y Tian, M Wu, R G Liu, Y X Li, D Q Wang, J J Tan, R C Wu, Y Huang. Electrospun membrane of cellulose acetate for heavy metal ion adsorption in water treatment. Carbohydrate Polymers, 2011, 83(2): 743–748
https://doi.org/10.1016/j.carbpol.2010.08.054
101 H F Wen, C Yang, D G Yu, X Y Li, D F Zhang. Electrospun zein nanoribbons for treatment of lead-contained wastewater. Chemical Engineering Journal, 2016, 290: 263–272
https://doi.org/10.1016/j.cej.2016.01.055
102 A Bahramzadeh, P Zahedi, M Abdouss. Acrylamide-plasma treated electrospun polystyrene nanofibrous adsorbents for cadmium and nickel ions removal from aqueous solutions. Journal of Applied Polymer Science, 2016, 133(5): 42944
https://doi.org/10.1002/app.42944
103 Z Cai, X Song, Q Zhang, Y Liu. Amidoxime surface modification of polyindole nanofiber membrane for effective removal of Cr(VI) from aqueous solution. Journal of Materials Science, 2017, 52(9): 5417–5434
https://doi.org/10.1007/s10853-017-0786-2
104 B Samiey, C H Cheng, J Wu. Organic–inorganic hybrid polymers as adsorbents for removal of heavy metal ions from solutions: a review. Materials, 2014, 7(2): 673–726
https://doi.org/10.3390/ma7020673
105 G Zhao, X Huang, Z Tang, Q Huang, F Niu, X Wang. Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: a review. Polymer Chemistry, 2018, 9(26): 3562–3582
https://doi.org/10.1039/C8PY00484F
106 M R Karim, M O Aijaz, N H Alharth, H F Alharbi, F S Al-Mubaddel, M R Awual. Composite nanofibers membranes of poly(vinyl alcohol)/chitosan for selective lead(II) and cadmium(II) ions removal from wastewater. Ecotoxicology and Environmental Safety, 2019, 169: 479–486
https://doi.org/10.1016/j.ecoenv.2018.11.049
107 J A Park, J K Kang, S C Lee, S B Kim. Electrospun poly(acrylic acid)/poly(vinyl alcohol) nanofibrous adsorbents for Cu(II) removal from industrial plating wastewater. RSC Advances, 2017, 7(29): 18075–18084
https://doi.org/10.1039/C7RA01362K
108 S J Zhang, Q T Shi, C Christodoulatos, X G Meng. Lead and cadmium adsorption by electrospun PVA/PAA nanofibers: batch, spectroscopic, and modeling study. Chemosphere, 2019, 233: 405–413
https://doi.org/10.1016/j.chemosphere.2019.05.190
109 X X Liu, B Y Jiang, X Yin, H Y Ma, B S Hsiao. Highly permeable nanofibrous composite microfiltration membranes for removal of nanoparticles and heavy metal ions. Separation and Purification Technology, 2020, 233: 115976
https://doi.org/10.1016/j.seppur.2019.115976
110 S J Zhang, Q T Shi, G Korfiatis, C Christodoulatos, H J Wang, X G Meng. Chromate removal by electrospun PVA/PEI nanofibers: adsorption, reduction, and effects of co-existing ions. Chemical Engineering Journal, 2020, 387: 124179
https://doi.org/10.1016/j.cej.2020.124179
111 Q Feng, D S Wu, Y Zhao, A F Wei, Q F Wei, H Fong. Electrospun AOPAN/RC blend nanofiber membrane for efficient removal of heavy metal ions from water. Journal of Hazardous Materials, 2018, 344: 819–828
https://doi.org/10.1016/j.jhazmat.2017.11.035
112 C Q Yan, B Liu, G X Lu, Y X Li, Q B Yang, Y Song. Preparation of AOPAN/PA-66 composite nanofibers and its adsorption of metal ions. Chemical Journal of Chinese Universities, 2016, 37(1): 189–194 (in Chinese)
113 D N Phan, H Lee, B Huang, Y Mukai, I S Kim. Fabrication of electrospun chitosan/cellulose nanofibers having adsorption property with enhanced mechanical property. Cellulose, 2019, 26(3): 1781–1793
https://doi.org/10.1007/s10570-018-2169-5
114 N S Surgutskaia, A D Martino, J Zednik, K Ozaltin, L Lovecká, E D Bergerová, D Kimmer, J Svoboda, V Sedlarik. Efficient Cu2+, Pb2+ and Ni2+ ion removal from wastewater using electrospun DTPA-modified chitosan/polyethylene oxide nanofibers. Separation and Purification Technology, 2020, 247: 116914
https://doi.org/10.1016/j.seppur.2020.116914
115 R Brandes, D Belosinschi, F Brouillette, B Chabot. A new electrospun chitosan/phosphorylated nanocellulose biosorbent for the removal of cadmium ions from aqueous solutions. Journal of Environmental Chemical Engineering, 2019, 7(6): 103477
https://doi.org/10.1016/j.jece.2019.103477
116 C Chen, F L Li, Z H Guo, X Y Qu, J T Wang, J Zhang. Preparation and performance of aminated polyacrylonitrile nanofibers for highly efficient copper ion removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568: 334–344
https://doi.org/10.1016/j.colsurfa.2019.02.020
117 W Zhou, J He, S Cui, W Gao. Preparation of electrospun silk fibroin/cellulose acetate blend nanofibers and their applications to heavy metal ions adsorption. Fibers and Polymers, 2011, 12(4): 431–437
https://doi.org/10.1007/s12221-011-0431-7
118 Y A Y A Mohammed, F Ma, L Liu, C Zhang, H Dong, Q Wang, X Xu, A A Al-Wahbi. Preparation of electrospun polyvinylidene fluoride/amidoximized polyacrylonitrile nanofibers for trace metal ions removal from contaminated water. Journal of Porous Materials, 2021, 28(2): 383–392
https://doi.org/10.1007/s10934-020-00995-w
119 Q Zia, M Tabassum, J M Meng, Z Y Xin, H Gong, J S Li. Polydopamine-assisted grafting of chitosan on porous poly(L-lactic acid) electrospun membranes for adsorption of heavy metal ions. International Journal of Biological Macromolecules, 2021, 167: 1479–1490
https://doi.org/10.1016/j.ijbiomac.2020.11.101
120 G D Nie, S K Li, X F Lu, C Wang. Progress on applications of inorganic nanofibers synthesized by electrospinning technique. Chemical Journal of Chinese Universities, 2013, 34(1): 15–29 (in Chinese)
121 A E A A Nayl, A I Abd-Elhamid, N S Awwad, M A Abdelgawad, J Wu, X Mo, S M Gomha, A A Aly, S Bräse. Review of the recent advances in electrospun nanofibers applications in water purification. Polymers, 2022, 14(8): 1594
https://doi.org/10.3390/polym14081594
122 J J Li, S C Zhai, W B Wu, Z Y Xu. Hydrophobic nanocellulose aerogels with high loading of metal–organic framework particles as floating and reusable oil absorbents. Frontiers of Chemical Science and Engineering, 2021, 15(5): 1158–1168
https://doi.org/10.1007/s11705-020-2021-z
123 Z Qiao, M Shen, Y Xiao, M Zhu, S Mignani, J P Majoral, X Shi. Organic/inorganic nanohybrids formed using electrospun polymer nanofibers as nanoreactors. Coordination Chemistry Reviews, 2018, 372: 31–51
https://doi.org/10.1016/j.ccr.2018.06.001
124 S Park, H R Kim, H Bang, K Fujimori, B S Kim, S H Kim, I S Kim. Fabrication and deodorizing efficiency of nanostructured core-sheath TiO2 nanofibers. Journal of Applied Polymer Science, 2012, 125(4): 2929–2935
https://doi.org/10.1002/app.36499
125 A Katoch, S W Choi, H W Kim, S S Kim. Highly sensitive and selective H2 sensing by ZnO nanofibers and the underlying sensing mechanism. Journal of Hazardous Materials, 2015, 286: 229–235
https://doi.org/10.1016/j.jhazmat.2014.12.007
126 J H Lee, J Y Kim, J H Kim, S S Kim. Enhanced hydrogen detection in ppb-level by electrospun SnO2-loaded ZnO nanofibers. Sensors, 2019, 19(3): 726
https://doi.org/10.3390/s19030726
127 X Zhao, X Ma, P Zheng. The preparation of carboxylic-functional carbon-based nanofibers for the removal of cationic pollutants. Chemosphere, 2018, 202: 298–305
https://doi.org/10.1016/j.chemosphere.2018.03.131
128 M Inagaki, Y Yang, F Kang. Carbon nanofibers prepared via electrospinning. Advanced Materials, 2012, 24(19): 2547–2566
https://doi.org/10.1002/adma.201104940
129 A Mahapatra, B G Mishra, G Hota. Electrospun Fe2O3−Al2O3 nanocomposite fibers as efficient adsorbent for removal of heavy metal ions from aqueous solution. Journal of Hazardous Materials, 2013, 258: 116–123
https://doi.org/10.1016/j.jhazmat.2013.04.045
130 N Abdullah, F E C Othman, N Yusof, T Matsuura, W J Lau, J Jaafar, A F Ismail, W N W Salleh, F Aziz. Preparation of nanocomposite activated carbon nanofiber/manganese oxide and its adsorptive performance toward leads(II) from aqueous solution. Journal of Water Process Engineering, 2020, 37: 101430
https://doi.org/10.1016/j.jwpe.2020.101430
131 S Z Li, X L Yue, Y M Jing, S S Bai, Z F Dai. Fabrication of zonal thiol-functionalized silica nanofibers for removal of heavy metal ions from wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 380(1-3): 229–233
https://doi.org/10.1016/j.colsurfa.2011.02.027
132 D Vu, X Li, Z Y Li, C Wang. Phase-structure effects of electrospun TiO2 nanofiber membranes on As(III) adsorption. Journal of Chemical & Engineering Data, 2013, 58(1): 71–77
https://doi.org/10.1021/je301017q
133 C H Xu, Z C Yu, K K Yuan, X T Jin, S Y Shi, X Q Wang, L Y Zhu, G H Zhang, D Xu, H Jiang. Improved preparation of electrospun MgO ceramic fibers with mesoporous structure and the adsorption properties for lead and cadmium. Ceramics International, 2019, 45(3): 3743–3753
https://doi.org/10.1016/j.ceramint.2018.11.041
134 A Mahapatra, B G Mishra, G Hota. Studies on electrospun alumina nanofibers for the removal of chromium(VI) and fluoride toxic ions from an aqueous system. Industrial & Engineering Chemistry Research, 2013, 52(4): 1554–1561
https://doi.org/10.1021/ie301586j
135 Y Y Zhou, S Li, D L Wang, X Han. Electrospinning synthesis of hydroxyapatite nanofibers assembled from nanorods and their adsorption for heavy metal ions. Polish Journal of Environmental Studies, 2019, 28(2): 981–988
https://doi.org/10.15244/pjoes/85123
136 N A Nordin, N Abdul Rahman, A H Abdullah. Effective removal of Pb(II) ions by electrospun PAN/sago lignin-based activated carbon nanofibers. Molecules, 2020, 25(13): 3081
https://doi.org/10.3390/molecules25133081
137 C H Xu, S Y Shi, X Q Wang, H F Zhou, L Wang, L Y Zhu, G H Zhang, D Xu. Electrospun SiO2−MgO hybrid fibers for heavy metal removal: characterization and adsorption study of Pb(II) and Cu(II). Journal of Hazardous Materials, 2020, 381: 120974
https://doi.org/10.1016/j.jhazmat.2019.120974
138 Y Wang, B Wang, Q Wang, J Di, S Miao, J Yu. Amino-functionalized porous nanofibrous membranes for simultaneous removal of oil and heavy-metal ions from wastewater. ACS Applied Materials & Interfaces, 2019, 11(1): 1672–1679
https://doi.org/10.1021/acsami.8b18066
139 A S Ibupoto, U A Qureshi, M Arain, F Ahmed, Z Khatri, R Z Brohi, I S Kim, Z Ibupoto. ZnO/carbon nanofibers for efficient adsorption of lead from aqueous solutions. Environmental Technology, 2020, 41(21): 2731–2741
https://doi.org/10.1080/09593330.2019.1580774
140 M Khosravi, A S Maddah, N Mehrdadi, G N Bidhendi, M Baghdadi. Synthesis of TiO2/ZnO electrospun nanofibers coated-sewage sludge carbon for adsorption of Ni(II), Cu(II), and COD from aqueous solutions and industrial wastewaters. Journal of Dispersion Science and Technology, 2021, 42(6): 802–812
https://doi.org/10.1080/01932691.2019.1711111
141 W Zhang, B R Xu, C H Gong, C W Yi, S Zhang. Antibacterial and anti-flaming PA6 composite with metathetically prepared nano AgCl@BaSO4 co-precipitates. Frontiers of Chemical Science and Engineering, 2021, 15(2): 340–350
https://doi.org/10.1007/s11705-020-1942-9
142 Y Liao, C H Loh, M Tian, R Wang, A G Fane. Progress in electrospun polymeric nanofibrous membranes for water treatment: fabrication, modification and applications. Progress in Polymer Science, 2018, 77: 69–94
https://doi.org/10.1016/j.progpolymsci.2017.10.003
143 S L Wu, F Liu, H C Yang, S B Darling. Recent progress in molecular engineering to tailor organic-inorganic interfaces in composite membranes. Molecular Systems Design & Engineering, 2020, 5(2): 433–444
https://doi.org/10.1039/C9ME00154A
144 Z Jia, X Cheng, Y Guo, L Tu. In-situ preparation of iron(III) hexacyanoferrate nano-layer on polyacrylonitrile membranes for cesium adsorption from aqueous solutions. Chemical Engineering Journal, 2017, 325: 513–520
https://doi.org/10.1016/j.cej.2017.05.096
145 G Yang, W Yan, J Wang, H Yang. Fabrication and characterization of CoTiO3 nanofibers by sol–gel assisted electrospinning. Materials Letters, 2014, 122: 117–120
https://doi.org/10.1016/j.matlet.2014.01.177
146 Y Dou, W Zhang, A Kaiser. Electrospinning of metal–organic frameworks for energy and environmental applications. Advanced Science, 2020, 7(3): 1902590
https://doi.org/10.1002/advs.201902590
147 R Zhao, X Li, Y Li, Y Li, B Sun, N Zhang, S Chao, C Wang. Functionalized magnetic iron oxide/polyacrylonitrile composite electrospun fibers as effective chromium(VI) adsorbents for water purification. Journal of Colloid and Interface Science, 2017, 505: 1018–1030
https://doi.org/10.1016/j.jcis.2017.06.094
148 Z Uddin, F Ahmad, T Ullan, Y Nawab, S Ahmad, F Azam, A Rasheed, M S Zafar. Recent trends in water purification using electrospun nanofibrous membranes. International Journal of Environmental Science and Technology, 2022, 19(9): 9149–9176
https://doi.org/10.1007/s13762-021-03603-9
149 A Razzaz, S Ghorban, L Hosayni, M Irani, M Aliabadi. Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions. Journal of the Taiwan Institute of Chemical Engineers, 2016, 58: 333–343
https://doi.org/10.1016/j.jtice.2015.06.003
150 H Hadi Najafabadi, M Irani, L Roshanfekr Rad, A Heydari Haratameh, I Haririan. Removal of Cu2+, Pb2+ and Cr6+ from aqueous solutions using a chitosan/graphene oxide composite nanofibrous adsorbent. RSC Advances, 2015, 5(21): 16532–16539
https://doi.org/10.1039/C5RA01500F
151 M Aliabadi, M Irani, J Ismaeili, S Najafzadeh. Design and evaluation of chitosan/hydroxyapatite composite nanofiber membrane for the removal of heavy metal ions from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(2): 518–526
https://doi.org/10.1016/j.jtice.2013.04.016
152 J Cai, M Lei, Q Zhang, J R He, T Chen, S Liu, S H Fu, T T Li, G Liu, P Fei. Electrospun composite nanofiber mats of cellulose@organically modified montmorillonite for heavy metal ion removal: design, characterization, evaluation of absorption performance. Composites Part A: Applied Science and Manufacturing, 2017, 92: 10–16
https://doi.org/10.1016/j.compositesa.2016.10.034
153 A A Hamad, M S Hassouna, T I Shalaby, M F Elkady, M A Abd Elkawi, H A Hamad. Electrospun cellulose acetate nanofiber incorporated with hydroxyapatite for removal of heavy metals. International Journal of Biological Macromolecules, 2020, 151: 1299–1313
https://doi.org/10.1016/j.ijbiomac.2019.10.176
154 S L Zhou, F Liu, Q Zhang, B Y Chen, C J Lin, C T Chang. Preparation of polyacrylonitrile/ferrous chloride composite nanofibers by electrospinning for efficient reduction of Cr(VI). Journal of Nanoscience and Nanotechnology, 2015, 15(8): 5823–5832
https://doi.org/10.1166/jnn.2015.10271
155 S Deng, X H Liu, J B Liao, H Lin, F Liu. PEI modified multiwalled carbon nanotube as a novel additive in PAN nanofiber membrane for enhanced removal of heavy metal ions. Chemical Engineering Journal, 2019, 375: 122086
https://doi.org/10.1016/j.cej.2019.122086
156 L C Peng, X L Zhang, Y X Sun, Y Xing, C J Li. Heavy metal elimination based on metal organic framework highly loaded on flexible nanofibers. Environmental Research, 2020, 188: 109742
https://doi.org/10.1016/j.envres.2020.109742
157 M Y Haddad, H F Alharbi. Enhancement of heavy metal ion adsorption using electrospun polyacrylonitrile nanofibers loaded with ZnO nanoparticles. Journal of Applied Polymer Science, 2019, 136(11): 47209
https://doi.org/10.1002/app.47209
158 X Z Xu, M X Zhang, H Lv, Y J Zhou, Y Y Yang, D G Yu. Electrospun polyacrylonitrile-based lace nanostructures and their Cu(II) adsorption. Separation and Purification Technology, 2022, 288: 120643
https://doi.org/10.1016/j.seppur.2022.120643
159 B Sun, X Li, R Zhao, M Yin, Z Wang, Z Jiang, C Wang. Hierarchical aminated PAN/γ-AlOOH electrospun composite nanofibers and their heavy metal ion adsorption performance. Journal of the Taiwan Institute of Chemical Engineers, 2016, 62: 219–227
https://doi.org/10.1016/j.jtice.2016.02.008
160 M Makaremi, C X Lim, P Pasbakhsh, S M Lee, K L Goh, H Chang, E S Chan. Electrospun functionalized polyacrylonitrile-chitosan Bi-layer membranes for water filtration applications. RSC Advances, 2016, 6(59): 53882–53893
https://doi.org/10.1039/C6RA05942B
161 S Wu, F Li, H Wang, L Fu, B Zhang, G Li. Effects of poly(vinyl alcohol) (PVA) content on preparation of novel thiol-functionalized mesoporous PVA/SiO2 composite nanofiber membranes and their application for adsorption of heavy metal ions from aqueous solution. Polymer, 2010, 51(26): 6203–6211
https://doi.org/10.1016/j.polymer.2010.10.015
162 L R Rad, A Momeni, B F Ghazani, M Irani, M Mahmoudi, B Noghreh. Removal of Ni2+ and Cd2+ ions from aqueous solutions using electrospun PVA/zeolite nanofibrous adsorbent. Chemical Engineering Journal, 2014, 256: 119–127
https://doi.org/10.1016/j.cej.2014.06.066
163 D Alipour, A R Keshtkar, M A Moosavian. Adsorption of thorium(IV) from simulated radioactive solutions using a novel electrospun PVA/TiO2/ZnO nanofiber adsorbent functionalized with mercapto groups: study in single and multi-component systems. Applied Surface Science, 2016, 366: 19–29
https://doi.org/10.1016/j.apsusc.2016.01.049
164 J H Roque-Ruiz, E A Cabrera-Ontiveros, J Torres-Pérez, S Y Reyes-López. Preparation of PCL/Clay and PVA/Clay electrospun fibers for cadmium (Cd2+), chromium (Cr3+), copper (Cu2+) and lead (Pb2+) removal from Water. Water, Air, and Soil Pollution, 2016, 227(8): 286
https://doi.org/10.1007/s11270-016-2990-0
165 B B Jia, J N Wang, J Wu, C J Li. “Flower-Like” PA6@Mg(OH)2 electrospun nanofibers with Cr(VI)-removal capacity. Chemical Engineering Journal, 2014, 254: 98–105
https://doi.org/10.1016/j.cej.2014.05.005
166 M Irandoost, M Pezeshki-Modaress, V Javanbakht. Removal of lead from aqueous solution with nanofibrous nanocomposite of polycaprolactone adsorbent modified by nanoclay and nanozeolite. Journal of Water Process Engineering, 2019, 32: 100981
https://doi.org/10.1016/j.jwpe.2019.100981
167 M I Shariful, T Sepehr, M Mehrali, B C Ang, M A Amalina. Adsorption capability of heavy metals by chitosan/poly(ethylene oxide)/activated carbon electrospun nanofibrous membrane. Journal of Applied Polymer Science, 2018, 135(7): 45851
https://doi.org/10.1002/app.45851
168 U Habiba, A M Afifi, A Salleh, B C Ang. Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. Journal of Hazardous Materials, 2017, 322: 182–194
https://doi.org/10.1016/j.jhazmat.2016.06.028
169 J Kim, T Kang, H Kim, H J Shin, S G Oh. Preparation of PVA/PAA nanofibers containing thiol-modified silica particles by electrospinning as an eco-friendly Cu(II) adsorbent. Journal of Industrial and Engineering Chemistry, 2019, 77: 273–279
https://doi.org/10.1016/j.jiec.2019.04.048
170 A R Esfahani, Z Y Zhang, Y Y L Sip, L Zhai, A Sadmani. Removal of heavy metals from water using electrospun polyelectrolyte complex fiber mats. Journal of Water Process Engineering, 2020, 37: 101438
https://doi.org/10.1016/j.jwpe.2020.101438
171 S Yari, S Abbasizadeh, S E Mousavi, M S Moghaddam, A Z Moghaddam. Adsorption of Pb(II) and Cu(II) ions from aqueous solution by an electrospun CeO2 nanofiber adsorbent functionalized with mercapto groups. Process Safety and Environmental Protection, 2015, 94: 159–171
https://doi.org/10.1016/j.psep.2015.01.011
172 C H Lee, C L Chiang, S J Liu. Electrospun nanofibrous rhodanine/polymethylmethacrylate membranes for the removal of heavy metal ions. Separation and Purification Technology, 2013, 118: 737–743
https://doi.org/10.1016/j.seppur.2013.08.020
173 Y C Fang, X H Liu, X Wu, X C Tao, W Q Fei. Electrospun polyurethane/phytic acid nanofibrous membrane for high efficient removal of heavy metal ions. Environmental Technology, 2021, 42(7): 1053–1060
https://doi.org/10.1080/09593330.2019.1652695
174 L H Pan, Z Q Wang, X Q Zhao, H Y He. Efficient removal of lead and copper ions from water by enhanced strength-toughness alginate composite fibers. International Journal of Biological Macromolecules, 2019, 134: 223–229
https://doi.org/10.1016/j.ijbiomac.2019.05.022
175 C Huang, N L Thomas. Fabrication of porous fibers via electrospinning: strategies and applications. Polymer Reviews, 2020, 60(4): 595–647
https://doi.org/10.1080/15583724.2019.1688830
176 P Y Chen, S H Tung. One-step electrospinning to produce nonsolvent-induced macroporous fibers with ultrahigh oil adsorption capability. Macromolecules, 2017, 50(6): 2528–2534
https://doi.org/10.1021/acs.macromol.6b02696
177 Q Ren, Z Shi, L Yan, F Zhang, L Fan, L Zhang, W Lv. High-performance sodium-ion storage: multi-channel carbon nanofiber freestanding anode contrived via ingenious solvent-induced phase separation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(38): 19898–19907
https://doi.org/10.1039/D0TA04841K
178 P H Kang, U Gohs, M Richter, D S J Wolz, B Richter, C Cherif, R Böhm, H Jäger. Fabrication and characterization of titanium dioxide nanoparticle filled polyacrylonitrile fiber for photocatalytic application by wet spinning. Fibers and Polymers, 2021, 22(11): 2995–3002
https://doi.org/10.1007/s12221-021-0897-x
179 W Zhang, H Chai, G Diao. Highly porous cyclodextrin functionalized nanofibrous membrane by acid etching. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582: 123907
https://doi.org/10.1016/j.colsurfa.2019.123907
180 Z Mokhtari-Shourijeh, L Montazerghaem, M E Olya. Preparation of porous nanofibers from electrospun polyacrylonitrile/polyvinylidene fluoride composite nanofibers by inexpensive salt using for dye adsorption. Journal of Polymers and the Environment, 2018, 26(9): 3550–3563
https://doi.org/10.1007/s10924-018-1238-z
181 L Mei, X Wang, Y Liu, J Wang. Computer simulation of PAN/PVP blends compatibility and preparation of aligned PAN porous nanofibers via magnetic-field-assisted electrospinning PAN/PVP blends. Medziagotyra, 2019, 25(1): 54–59
https://doi.org/10.5755/j01.ms.25.1.22438
182 G Hong, X Li, L Shen, M Wang, C Wang, X Yu, X Wang. High recovery of lead ions from aminated polyacrylonitrile nanofibrous affinity membranes with micro/nano structure. Journal of Hazardous Materials, 2015, 295: 161–169
https://doi.org/10.1016/j.jhazmat.2015.04.020
183 Y Wang, T Cheng, L Xu. Preparation, characterization, and adsorption application of poly(lactic acid)/tea polyphenols porous composite nanofiber membranes. Journal of the Textile Institute, 2019, 110(12): 1760–1766
https://doi.org/10.1080/00405000.2019.1618629
184 T B Ning, Y J Zhou, H X Xu, S R Guo, K Wang, D G Yu. Orodispersible membranes from a modified coaxial electrospinning for fast dissolution of diclofenac sodium. Membranes, 2021, 11(11): 802
https://doi.org/10.3390/membranes11110802
185 Y B Liu, X H Chen, D G Yu, H Liu, Y Y Liu, P Liu. Electrospun PVP-core/PHBV-shell fibers to eliminate tailing off for an improved sustained release of curcumin. Molecular Pharmaceutics, 2021, 18(11): 4170–4178
https://doi.org/10.1021/acs.molpharmaceut.1c00559
186 L Ma, X J Shi, X X Zhang, S J Dong, L L Li. Electrospun cellulose acetate-polycaprolactone/chitosan core–shell nanofibers for the removal of Cr(VI). Physica Status Solidi A: Applications and Materials Science, 2019, 216(22): 1900379
https://doi.org/10.1002/pssa.201900379
187 A K Assaifan, M O Aijaz, M Luqman, Q A Drmosh, M R Karim, H F Alharbi. Removal of cadmium ions from water using coaxially electrospun PAN/ZnO-encapsulated PVDF nanofiber membranes. Polymer Bulletin, 2022, 79(5): 2831–2850
https://doi.org/10.1007/s00289-021-03657-2
188 A Almasian, M Giahi, G C Fard, S A Dehdast, L Maleknia. Removal of heavy metal ions by modified PAN/PANI-nylon core–shell nanofibers membrane: filtration performance, antifouling and regeneration behavior. Chemical Engineering Journal, 2018, 351: 1166–1178
https://doi.org/10.1016/j.cej.2018.06.127
189 M R Yarandpour, A Rashidi, R Khajavi, N Eslahi, M E Yazdanshenas. Mesoporous PAA/dextran-polyaniline core–shell nanofibers: optimization of producing conditions, characterization and heavy metal adsorptions. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93: 566–581
https://doi.org/10.1016/j.jtice.2018.09.002
190 X Li, R Zhao, B L Sun, X F Lu, C C Zhang, Z J Wang, C Wang. Fabrication of alpha-Fe2O3-gamma-Al2O3 core–shell nanofibers and their Cr(VI) adsorptive properties. RSC Advances, 2014, 4(80): 42376–42382
https://doi.org/10.1039/C4RA03692A
191 Y Zhang, S Li, Y Xu, X Shi, M Zhang, Y Huang, Y Liang, Y Chen, W Ji, J R Kim, W Song, D G Yu, I Kim. Engineering of hollow polymeric nanosphere-supported imidazolium-based ionic liquids with enhanced antimicrobial activities. Nano Research, 2022, 15(6): 5556–5568
https://doi.org/10.1007/s12274-022-4160-6
192 L Ma, S Y Ma, X F Shen, T T Wang, X H Jiang, Q Chen, Z Qiang, H M Yang, H Chen. PrFeO3 hollow nanofibers as a highly efficient gas sensor for acetone detection. Sensors and Actuators B: Chemical, 2018, 255: 2546–2554
https://doi.org/10.1016/j.snb.2017.09.060
193 M Pakravan, M C Heuzey, A Ajji. Core–shell structured PEO-chitosan nanofibers by coaxial electrospinning. Biomacromolecules, 2012, 13(2): 412–421
https://doi.org/10.1021/bm201444v
194 W Y Li, Y Z Li, J D Liu, S Chao, T Y Yang, L J Li, C Wang, X Li. A novel hollow carbon@MnO2 electrospun nanofiber adsorbent for efficient removal of Pb2+ in wastewater. Chemical Research in Chinese Universities, 2021, 37(3): 496–504
https://doi.org/10.1007/s40242-021-1085-7
195 J Zhao, Z Lu, X He, X Zhang, Q Li, T Xia, W Zhang, C Lu, Y Deng. One-step fabrication of Fe(OH)3@cellulose hollow nanofibers with superior capability for water purification. ACS Applied Materials & Interfaces, 2017, 9(30): 25339–25349
https://doi.org/10.1021/acsami.7b07038
196 S Koushkbaghi, A Zakialamdari, M Pishnamazi, H F Ramandi, M Aliabadi, M Irani. Aminated-Fe3O4 nanoparticles filled chitosan/PVA/PES dual layers nanofibrous membrane for the removal of Cr(VI) and Pb(II) ions from aqueous solutions in adsorption and membrane processes. Chemical Engineering Journal, 2018, 337: 169–182
https://doi.org/10.1016/j.cej.2017.12.075
197 S H Huang, C J Hsu, D J Liaw, C C Hu, K R Lee, J Y Lai. Effect of chemical structures of amines on physicochemical properties of active layers and dehydration of isopropanol through interfacially polymerized thin-film composite membranes. Journal of Membrane Science, 2008, 307(1): 73–81
https://doi.org/10.1016/j.memsci.2007.09.014
198 Y Wu, X Qiu, S Cao, J Chen, X Shi, Y Du, H Deng. Adsorption of natural composite sandwich-like nanofibrous mats for heavy metals in aquatic environment. Journal of Colloid and Interface Science, 2019, 539: 533–544
https://doi.org/10.1016/j.jcis.2018.12.099
199 J E Efome, D Rana, T Matsuura, C Q Lan. Metal–organic frameworks supported on nanofibers to remove heavy metals. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(10): 4550–4555
https://doi.org/10.1039/C7TA10428F
200 J E Efome, D Rana, T Matsuura, C Q Lan. Insight studies on metal–organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous solution. ACS Applied Materials & Interfaces, 2018, 10(22): 18619–18629
https://doi.org/10.1021/acsami.8b01454
201 H Lv, M Zhang, P Wang, X Xu, Y Liu, D G Yu. Ingenious construction of Ni(DMG)2/TiO2-decorated porous nanofibers for the highly efficient photodegradation of pollutants in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650: 129561
https://doi.org/10.1016/j.colsurfa.2022.129561
202 C Huang, J Dong, Y Zhang, S Chai, X Wang, S Kang, D Yu, P Wang, Q Jiang. Gold nanoparticles-loaded polyvinylpyrrolidone/ethylcellulose coaxial electrospun nanofibers with enhanced osteogenic capability for bone tissue regeneration. Materials & Design, 2021, 212: 110240
https://doi.org/10.1016/j.matdes.2021.110240
203 K Zhao, Z H Lu, P Zhao, S X Kang, Y Y Yang, D G Yu. Modified tri-axial electrospun functional core–shell nanofibrous membranes for natural photodegradation of antibiotics. Chemical Engineering Journal, 2021, 425: 131455
https://doi.org/10.1016/j.cej.2021.131455
204 Y P Huang, Y E Miao, T X Liu. Electrospun fibrous membranes for efficient heavy metal removal. Journal of Applied Polymer Science, 2014, 131(9): 40864
https://doi.org/10.1002/app.40864
205 F Zhu, Y M Zheng, B G Zhang, Y R Dai. A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment. Journal of Hazardous Materials, 2021, 401: 123608
https://doi.org/10.1016/j.jhazmat.2020.123608
206 J E Efome, D Rana, T Matsuura, F Yang, Y Con, C Q Lan. Triple-layered nanofibrous metal–organic framework-based membranes for desalination by direct contact membrane distillation. ACS Sustainable Chemistry & Engineering, 2020, 8(17): 6601–6610
https://doi.org/10.1021/acssuschemeng.9b06791
207 J E Efome, D Rana, T Matsuura, C Q Lan. Effects of operating parameters and coexisting ions on the efficiency of heavy metal ions removal by nano-fibrous metal–organic framework membrane filtration process. Science of the Total Environment, 2019, 674: 355–362
https://doi.org/10.1016/j.scitotenv.2019.04.187
208 J E Efome, D Rana, T Matsuura, C Q Lan. Experiment and modeling for flux and permeate concentration of heavy metal ion in adsorptive membrane filtration using a metal−organic framework incorporated nanofibrous membrane. Chemical Engineering Journal, 2018, 352: 737–744
https://doi.org/10.1016/j.cej.2018.07.077
209 D N Phan, M Q Khan, N T Nguyen, T T Phan, A Ullah, M Khatri, N N Kien, I S Kim. A review on the fabrication of several carbohydrate polymers into nanofibrous structures using electrospinning for removal of metal ions and dyes. Carbohydrate Polymers, 2021, 252: 117175
https://doi.org/10.1016/j.carbpol.2020.117175
210 H Chamani, J Woloszyn, T Matsuura, D Rana, C Q Lan. Pore wetting in membrane distillation: a comprehensive review. Progress in Materials Science, 2021, 122: 100843
https://doi.org/10.1016/j.pmatsci.2021.100843
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed