Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (6): 735-748   https://doi.org/10.1007/s11705-022-2262-z
  本期目录
Overoxidized poly(3,4-ethylenedioxythiophene)-overoxidized polypyrrole composite films with enhanced electrocatalytic ability for rutin and luteolin determination
Rongqian Meng1,2, Jianke Tang1,2, Hong Yang1,2, Lijun Guo1, Yongbo Song1, Qiaoling Li3(), Yulan Niu1()
1. Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China
2. School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
3. School of Science, North University of China, Taiyuan 030051, China
 全文: PDF(4749 KB)   HTML
Abstract

In this study, a simple and effective method was proposed to improve the electrocatalytic ability of overoxidized poly(3,4-ethylenedioxythiophene)-overoxidized polypyrrole composite films modified on glassy carbon electrode for rutin and luteolin determination. The composite electrode was prepared by cyclic voltammetry copolymerization with LiClO4-water as the supporting electrolyte. The peak current of rutin and luteolin on the composite electrode gradually decreased or even disappeared with the increase in the positive potential limit. After incubation in NaOH–ethanol solution with a volume ratio of 1:1, the composite electrodes prepared at positive potential limit greater than 1.5 V exhibited enhanced differential pulse voltammetry peak currents, reduced charge transfer resistance, larger effective specific surface area and higher electron transfer rate constant. The composite electrode prepared in the potential range of 0–1.7 V showed optimal electrocatalytic performance. The X-ray photoelectron spectroscopy results indicated that the content of –SO2/–SO and –C=N– groups in the composite film increased significantly after incubation. Further, the Raman spectra and Fourier transform infrared spectra revealed that the thiophene ring structure changed from benzene-type to quinone-type, and the quinone-type pyrrole ring was formed. The electrocatalytic mechanism of the composite film was proposed based on the experimental results and further verified by Density Functional Theory calculation.

Key wordsoveroxidized poly(3    4-ethylenedioxythiophene)-overoxidized polypyrrole    rutin    luteolin    incubation    electrocatalytic mechanism
收稿日期: 2022-07-24      出版日期: 2023-05-17
Corresponding Author(s): Qiaoling Li,Yulan Niu   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(6): 735-748.
Rongqian Meng, Jianke Tang, Hong Yang, Lijun Guo, Yongbo Song, Qiaoling Li, Yulan Niu. Overoxidized poly(3,4-ethylenedioxythiophene)-overoxidized polypyrrole composite films with enhanced electrocatalytic ability for rutin and luteolin determination. Front. Chem. Sci. Eng., 2023, 17(6): 735-748.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2262-z
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I6/735
Fig.1  
Fig.2  
Potential range Before incubation After incubation
Slope A/cm2 Slope A/cm2
0–0.8 6.72 0.0224 12.76 0.0425
0–1.0 10.79 0.0359 14.08 0.0469
0–1.5 9.63 0.0321 24.35 0.0811
0–1.7 7.18 0.0239 20.79 0.0693
0–1.9 11.27 0.0375 24.04 0.0801
GCE 5.96 0.0199 5.78 0.0193
Tab.1  
Potential range Slope D/(cm2?s–1) (EPEP/2)/mV ks/(cm?s–1)
0–0.8 Rutin 10.76 0.0135 60 0.0523
Luteolin 10.10 0.0117 46 0.0555
0–1.0 Rutin 15.94 0.0244
Luteolin 6.70 0.0043 113 0.0215
0–1.5 Rutin 26.00 0.0217 43 0.0782
Luteolin 26.07 0.0218 54 0.0699
0–1.7 Rutin 27.47 0.0331 47 0.0925
Luteolin 28.80 0.0364 54 0.0904
0–1.9 Rutin 26.55 0.0232 44 0.0799
Luteolin 27.91 0.0256 55 0.0752
Tab.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Molecule E(Hartree) Complex Ecomplex(Hartree) ΔEad (kcal?mol–1)
a –4979.16 a/e –6007.23 –28.4
b –1481.58 b/e –2509.67 –31.7
c –5053.45 c/e –6081.54 –42.5
d –1479.08 d/e –2507.16 –32.9
e –1028.03
Tab.3  
1 S H Ye, G R Li. Polypyrrole@NiCo hybrid nanotube arrays as high performance electrocatalyst for hydrogen evolution reaction in alkaline solution. Frontiers of Chemical Science and Engineering, 2018, 12(3): 473–480
https://doi.org/10.1007/s11705-018-1724-9
2 H Zhu, M Li, D H Wang, S B Zhou, C Peng. Interfacial synthesis of free-standing asymmetrical PPY-PEDOT copolymer film with 3D network structure for supercapacitors. Journal of the Electrochemical Society, 2017, 164(9): A1820–A1825
https://doi.org/10.1149/2.1401707jes
3 W Wang, H J Lv, J Du, A B Chen. Fabrication of N-doped carbon nanobelts from a polypyrrole tube by confined pyrolysis for supercapacitors. Frontiers of Chemical Science and Engineering, 2021, 15(5): 1312–1321
https://doi.org/10.1007/s11705-020-2033-7
4 H P Zhao, L Liu, Y G Fang, R Vellacheri, Y Lei. Nickel nanopore arrays as promising current collectors for constructing solid-state supercapacitors with ultrahigh rate performance. Frontiers of Chemical Science and Engineering, 2018, 12(3): 339–345
https://doi.org/10.1007/s11705-018-1699-6
5 L Astratine, E Magner, J Cassidy, A Betts. Electrodeposition and characterisation of copolymers based on pyrrole and 3,4-ethylenedioxythiophene in BMIM BF4 using a microcell configuration. Electrochimica Acta, 2014, 115: 440–448
https://doi.org/10.1016/j.electacta.2013.10.198
6 U L Zainudeen, M A Careem, S Skaarup. PEDOT and PPy conducting polymer bilayer and trilayer actuators. Sensors and Actuators B: Chemical, 2008, 134(2): 467–470
https://doi.org/10.1016/j.snb.2008.05.027
7 Y F Li, R Y Qian. Electrochemical overoxidation of conducting polypyrrole nitrate film in aqueous solutions. Electrochimica Acta, 2000, 45(11): 1727–1731
https://doi.org/10.1016/S0013-4686(99)00392-8
8 D T Wang, F Pillier, H Cachet, C Debiemme-Chouvy. One-pot electrosynthesis of ultrathin overoxidized poly(3,4-ethylenedioxythiophene) films. Electrochimica Acta, 2022, 401: 139472–139480
https://doi.org/10.1016/j.electacta.2021.139472
9 R A Bull, F R F Fan, A J Bard. Polymer films on electrodes: VII. Electrochemical behavior at polypyrrole-coated platinum and tantalum electrodes. Journal of the Electrochemical Society, 1982, 129(5): 1009–1015
https://doi.org/10.1149/1.2124000
10 X Du, Z Wang. Effects of polymerization potential on the properties of electrosynthesized PEDOT films. Electrochimica Acta, 2003, 48(12): 1713–1717
https://doi.org/10.1016/S0013-4686(03)00143-9
11 C Debiemme-Chouvy, T T M Tran. An insight into the overoxidation of polypyrrole materials. Electrochemistry Communications, 2008, 10(6): 947–950
https://doi.org/10.1016/j.elecom.2008.04.024
12 J M Lin, Y L Su, W T Chang, W Y Su, S H Cheng. Strong adsorption characteristics of a novel overoxidized poly(3,4-ethylenedioxythiophene) film and application for dopamine sensing. Electrochimica Acta, 2014, 149: 65–75
https://doi.org/10.1016/j.electacta.2014.10.030
13 C V Amanchukwu, M Gauthier, T P Batcho, C Symister, Y Shao-Horn, J M D’Arcy, P T Hammond. Evaluation and stability of PEDOT polymer electrodes for Li-O2 Batteries. Journal of Physical Chemistry Letters, 2016, 7(19): 3770–3775
https://doi.org/10.1021/acs.jpclett.6b01986
14 Z Q Gao, M X Zi, B S Chen. The influence of overoxidation treatment on the permeability of polypyrrole films. Journal of Electroanalytical Chemistry, 1994, 373(1-2): 141–148
https://doi.org/10.1016/0022-0728(94)03283-1
15 M J Peairs, A E Ross, B J Venton. Comparison of nafion- and overoxidized polypyrrole-carbon nanotube electrodes for neurotransmitter detection. Analytical Methods, 2011, 3(10): 2379–2385
https://doi.org/10.1039/c1ay05348e
16 A Ozcan, S Ilkbas. Preparation of poly(3,4-ethylenedioxythiophene) nanofibers modified pencil graphite electrode and investigation of over-oxidation conditions for the selective and sensitive determination of uric acid in body fluids. Analytica Chimica Acta, 2015, 891: 312–320
https://doi.org/10.1016/j.aca.2015.08.015
17 M Ujvari, G G Láng, S Vesztergom, K J Szekeres, N Kovács, J Gubicza. Structural changes during the overoxidation of electrochemically deposited poly(3,4-ethylenedioxythiophene) films. Journal of Electrochemical Science and Engineering, 2016, 6(1): 77–89
https://doi.org/10.5599/jese.225
18 Y Hui, C Bian, J Wang, J Tong, S Xia. Comparison of two types of overoxidized PEDOT films and their application in sensor fabrication. Sensors, 2017, 17(3): 628–638
https://doi.org/10.3390/s17030628
19 N P Shetti, A Mishra, S Basu, R J Mascarenhas, R R Kakarla, T M Aminabhavi. Skin-patchable electrodes for biosensor applications: a review. ACS Biomaterials Science & Engineering, 2020, 6(4): 1823–1835
https://doi.org/10.1021/acsbiomaterials.9b01659
20 A Ganeshpurkar, A K Saluja. The pharmacological potential of rutin. Saudi Pharmaceutical Journal, 2017, 25(2): 149–164
https://doi.org/10.1016/j.jsps.2016.04.025
21 F Gao, X L Tu, X Ma, Y Xie, J Zou, X G Huang, F L Qu, Y F Yu, L M Lu. NiO@Ni-MOF nanoarrays modified Ti mesh as ultrasensitive electrochemical sensing platform for luteolin detection. Talanta, 2020, 215: 120891–120898
https://doi.org/10.1016/j.talanta.2020.120891
22 R Q Meng, Q L Li, S J Zhang, J K Tang, C L Ma, R Y Jin. GQDs/PEDOT bilayer films modified electrode as a novel electrochemical sensing platform for rutin detection. International Journal of Electrochemical Science, 2019, 14(12): 11000–11011
https://doi.org/10.20964/2019.12.40
23 D R Kulkarni, S J Malode, K Keerthi Prabhu, N H Ayachit, R M Kulkarni, N P Shetti. Development of a novel nanosensor using Ca-doped ZnO for antihistamine drug. Materials Chemistry and Physics, 2020, 246: 122791–122799
https://doi.org/10.1016/j.matchemphys.2020.122791
24 S Nespurek, P Kubersky, R Polansky, M Trchova, J Sebera, V Sychrovsky. Raman spectroscopy and DFT calculations of PEDOT:PSS in a dipolar field. Physical Chemistry Chemical Physics, 2021, 24(1): 541–550
https://doi.org/10.1039/D1CP03899K
25 J H Zhang, Y B She. Mechanism of methanol decomposition on the Pd/WC(0001) surface unveiled by first-principles calculations. Frontiers of Chemical Science and Engineering, 2020, 14(6): 1052–1064
https://doi.org/10.1007/s11705-019-1908-y
26 G G Láng, M Ujvári, S Vesztergom, V Kondratiev, J Gubicza, K J Szekeres. The electrochemical degradation of poly(3,4-ethylenedioxythiophene) films electrodeposited from aqueous solutions. Zeitschrift für Physikalische Chemie, 2016, 230(9): 1281–1302
https://doi.org/10.1515/zpch-2016-0752
27 M Ujvári, J Gubicza, V Kondratiev, K J Szekeres, G G Láng. Morphological changes in electrochemically deposited poly(3,4-ethylenedioxythiophene) films during overoxidation. Journal of Solid State Electrochemistry, 2015, 19(4): 1247–1252
https://doi.org/10.1007/s10008-015-2746-6
28 C Debiemme-Chouvy. One-step electrochemical synthesis of a very thin overoxidized polypyrrole film. Electrochemical and Solid-State Letters, 2007, 10(12): E24–E26
https://doi.org/10.1149/1.2790725
29 A M Farrington, J M Slater. Prediction and characterization of the charge/size exclusion properties of over-oxidized poly(pyrrole) films. Electroanalysis, 1997, 9(11): 843–847
https://doi.org/10.1002/elan.1140091108
30 F C Anson. Application of potentiostatic current integration to the study of the adsorption of cobalt(III)-(ethylenedinitrilo) tetracetate on mercury electrodes. Analytical Chemistry, 1964, 36(4): 932–934
https://doi.org/10.1021/ac60210a068
31 J G Velasco. Determination of standard rate constants for electrochemical irreversible processes from linear sweep voltammograms. Electroanalysis, 1997, 9(11): 880–882
https://doi.org/10.1002/elan.1140091116
32 J Y Ouyang, Q F Xu, C W Chu, Y Yang, G Li, J Shinar. On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer, 2004, 45(25): 8443–8450
https://doi.org/10.1016/j.polymer.2004.10.001
33 S Marciniak, X Crispin, K Uvdal, M Trzcinski, J Birgerson, L Groenendaal, F Louwet, W R Salaneck. Light induced damage in poly(3,4-ethylenedioxythiophene) and its derivatives studied by photoelectron spectroscopy. Synthetic Metals, 2004, 141(1-2): 67–73
https://doi.org/10.1016/j.synthmet.2003.08.017
34 M H Lan, J F Zhang, Y S Chui, H Wang, Q D Yang, X Y Zhu, H X Wei, W M Liu, J H Ge, P F Wang, X Chen, C S Lee, W Zhang. A recyclable carbon nanoparticle-based fluorescent probe for highly selective and sensitive detection of mercapto biomolecules. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2015, 3(1): 127–134
https://doi.org/10.1039/C4TB01354A
35 Y S Qiao, L Z Shen, M X Wu, Y Guo, S M Meng. A novel chemical synthesis of bowl-shaped polypyrrole particles. Materials Letters, 2014, 126: 185–188
https://doi.org/10.1016/j.matlet.2014.04.041
36 J T Zhang, X S Zhao. Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes. Journal of Physical Chemistry C, 2012, 116(9): 5420–5426
https://doi.org/10.1021/jp211474e
37 P Wen, C H Tan, J C Zhang, F B Meng, L Jiang, Y H Sun, X D Chen. Chemically tunable photoresponse of ultrathin polypyrrole. Nanoscale, 2017, 9(23): 7760–7764
https://doi.org/10.1039/C6NR07143K
38 I Ivanko, J Svoboda, M Lukešová, I Šeděnková, E Tomšík. Hydrogen bonding as a tool to control chain structure of PEDOT: electrochemical synthesis in the presence of different electrolytes. Macromolecules, 2020, 53(7): 2464–2473
https://doi.org/10.1021/acs.macromol.9b02627
39 A Blacha, P Koscielniak, M Sitarz, J Szuber, J Zak. Pedot brushes electrochemically synthesized on thienyl-modified glassy carbon surfaces. Electrochimica Acta, 2012, 62: 441–446
https://doi.org/10.1016/j.electacta.2011.12.063
40 S Kulandaivalu, Z Zainal, Y Sulaiman. Influence of monomer concentration on the morphologies and electrochemical properties of PEDOT, PANI, and PPy prepared from aqueous solution. International Journal of Polymer Science, 2016, 2016: 1–12
https://doi.org/10.1155/2016/8518293
41 M Culebras, C M Gómez, A Cantarero. Enhanced thermoelectric performance of PEDOT with different counter-ions optimized by chemical reduction. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(26): 10109–10115
https://doi.org/10.1039/C4TA01012D
42 F E Chen, G Q Shi, M X Fu, L T Qu, X Y Hong. Raman spectroscopic evidence of thickness dependence of the doping level of electrochemically deposited polypyrrole film. Synthetic Metals, 2003, 132(2): 125–132
https://doi.org/10.1016/S0379-6779(02)00197-2
43 S Rodriguez-Jimenez, M S Bennington, A Akbarinejad, E J Tay, E W C Chan, Z Wan, A M Abudayyeh, P Baek, H L C Feltham, D Barker, K C Gordon, J Travas-Sejdic, S Brooker. Electroactive metal complexes covalently attached to conductive PEDOT films: a spectroelectrochemical study. ACS Applied Materials & Interfaces, 2021, 13(1): 1301–1313
https://doi.org/10.1021/acsami.0c16317
44 M J L Santos, A G Brolo, E M Girotto. Study of polaron and bipolaron states in polypyrrole by in situ Raman spectroelectrochemistry. Electrochimica Acta, 2007, 52(20): 6141–6145
https://doi.org/10.1016/j.electacta.2007.03.070
45 G I Mathys, V T Truong. Spectroscopic study of thermo-oxidative degradation of polypyrrole powder by FT-IR. Synthetic Metals, 1997, 89(2): 103–109
https://doi.org/10.1016/S0379-6779(98)80122-7
46 J C Song, H J Noh, J H Lee, I W Nah, W I Cho, H T Kim. In situ coating of poly(3,4-ethylenedioxythiophene) on sulfur cathode for high performance lithium-sulfur batteries. Journal of Power Sources, 2016, 332: 72–78
https://doi.org/10.1016/j.jpowsour.2016.09.092
47 Y Q Han, M X Shen, Y Wu, J J Zhu, B Ding, H Tong, X G Zhang. Preparation and electrochemical performances of PEDOT/sulfonic acid-functionalized graphene composite hydrogel. Synthetic Metals, 2013, 172: 21–27
https://doi.org/10.1016/j.synthmet.2013.04.001
48 H Xie, M M Yan, Z Y Jiang. Transition of polypyrrole from electroactive to electroinactive state investigated by use of in situ FTIR spectroscopy. Electrochimica Acta, 1997, 42(15): 2361–2367
https://doi.org/10.1016/S0013-4686(96)00429-X
49 A P Coleone, L G Lascane, A Batagin-Neto. Polypyrrole derivatives for optoelectronic applications: a DFT study on the influence of side groups. Physical Chemistry Chemical Physics, 2019, 21(32): 17729–17739
https://doi.org/10.1039/C9CP02638J
50 F Wasim, N Kosar, T Mahmood, K Ayub. Sensor applications of polypyrrole for oxynitrogen analytes: a DFT study. Journal of Molecular Modeling, 2018, 24(11): 308–322
https://doi.org/10.1007/s00894-018-3843-0
[1] FCE-22087-OF-MR_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed