Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (6): 716-725   https://doi.org/10.1007/s11705-022-2265-9
  本期目录
Piezocatalytic performance of Fe2O3−Bi2MoO6 catalyst for dye degradation
Lili Cheng, Xiaoyao Yu, Danyao Huang, Hao Wang, Ying Wu()
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, School of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
 全文: PDF(4465 KB)   HTML
Abstract

A Fe2O3−Bi2MoO6 heterojunction was synthesized via a hydrothermal method. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray, powder X-ray diffraction, Fourier transform infrared spectroscopy and ultra-violet−visible near-infrared spectrometry were performed to measure the structures, morphologies and optical properties of the as-prepared samples. The various factors that affected the piezocatalytic property of composite catalyst were studied. The highest rhodamine B degradation rate of 96.6% was attained on the 3% Fe2O3−Bi2MoO6 composite catalyst under 60 min of ultrasonic vibration. The good piezocatalytic activity was ascribed to the formation of a hierarchical flower-shaped microsphere structure and the heterostructure between Fe2O3 and Bi2MoO6, which effectively separated the ultrasound-induced electron–hole pairs and suppressed their recombination. Furthermore, a potential piezoelectric catalytic dye degradation mechanism of the Fe2O3−Bi2MoO6 catalyst was proposed based on the band potential and quenching effect of radical scavengers. The results demonstrated the potential of using Fe2O3−Bi2MoO6 nanocomposites in piezocatalytic applications.

Key wordspiezocatalysis    Fe2O3−Bi2MoO6    dye decomposition    ultrasonic vibration
收稿日期: 2022-06-22      出版日期: 2023-05-17
Corresponding Author(s): Ying Wu   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(6): 716-725.
Lili Cheng, Xiaoyao Yu, Danyao Huang, Hao Wang, Ying Wu. Piezocatalytic performance of Fe2O3−Bi2MoO6 catalyst for dye degradation. Front. Chem. Sci. Eng., 2023, 17(6): 716-725.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2265-9
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I6/716
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 Y T Xia, Y M Jia, W Q Qian, X L Xu, Z Wu, Z C Han, Y T Hong, H L You, M Ismail, G Bai, L Wang. Pyroelectrically induced pyro-electro-chemical catalytic activity of BaTiO3 nanofibers under room-temperature cold-hot cycle excitations. Metals, 2017, 7(4): 122
https://doi.org/10.3390/met7040122
2 L Q Jing, M Xie, Y G Xu, C Tong, H Zhao, N Zhong, H M Li, I D Gates, J G Hu. Multifunctional 3D MoSx/Zn3In2S6 nanoflower for selective photothermal-catalytic biomass oxidative and non-selective organic pollutants degradation. Applied Catalysis B: Environmental, 2022, 318: 121814
https://doi.org/10.1016/j.apcatb.2022.121814
3 R Wang, J Y Liu, B Wang, R Z Yang, S M Zhu, Y H Song, Y J Hua, J Yan, M Cheng, H Xu, H Li. Noble-metal-free Co-N-graphene/PDI for significant enhancement of photocatalytic performance. Journal of Alloys and Compounds, 2022, 925: 166370
https://doi.org/10.1016/j.jallcom.2022.166370
4 Z Y Pang, B Wang, X W Yan, C T Wang, S Yin, H M Li, J X Xia. CdBiO2Br nanosheets in situ strong coupling to carbonized polymer dots and improved photocatalytic activity for organic pollutants degradation. Chinese Chemical Letters, 2022, 33(12): 5189–5195
https://doi.org/10.1016/j.cclet.2022.01.054
5 M Z Peng, Y D Liu, A F Yu, Y Zhang, C H Liu, J Y Liu, W Wu, K Zhang, X Q Shi, J Z Kou, J Zhai, Z L Wang. Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio. ACS Nano, 2016, 10(1): 1572–1579
https://doi.org/10.1021/acsnano.5b07217
6 L Chen, W Q Zhang, J F Wang, X J Li, Y Li, X Hu, L H Zhao, Y Wu, Y M He. High piezo/photocatalytic efficiency of Ag/Bi5O7I nanocomposite using mechanical and solar energy for N2 fixation and methyl orange degradation. Green Energy & Environment, 2023, 8(1): 283–295
https://doi.org/10.1016/j.gee.2021.04.009
7 L K Wang, J F Wang, C Y Ye, K Q Wang, C R Zhao, Y Wu, Y M He. Photodeposition of CoOx nanoparticles on BiFeO3 nanodisk for efficiently piezocatalytic degradation of rhodamine B by utilizing ultrasonic vibration energy. Ultrasonics Sonochemistry, 2021, 80: 105813
https://doi.org/10.1016/j.ultsonch.2021.105813
8 S Zheng, X J Li, J Y Zhang, J F Wang, C R Zhao, X Hu, Y Wu, Y He. One-step preparation of MoOx/ZnS/ZnO composite and its excellent performance in piezocatalytic degradation of Rhodamine B under ultrasonic vibration. Journal of Environmental Sciences, 2023, 125: 1–13
https://doi.org/10.1016/j.jes.2021.10.028
9 X L Xu, Y M Jia, L B Xiao, Z Wu. Strong vibration-catalysis of ZnO nanorods for dye wastewater decolorization via piezo-electro-chemical coupling. Chemosphere, 2018, 193: 1143–1148
https://doi.org/10.1016/j.chemosphere.2017.11.116
10 C Ou, P E Sanchez-Jimenez, A Datta, F L Boughey, R A Whiter, S L Sahonta, S Kar-Narayan. Template-assisted hydrothermal growth of aligned Zinc Oxide nanowires for piezoelectric energy harvesting applications. ACS Applied Materials & Interfaces, 2016, 8(22): 13678–13683
https://doi.org/10.1021/acsami.6b04041
11 X E Ning, A Z Hao, Y L Cao, J D Hu, J Xie, D Z Jia. Effective promoting piezocatalytic property of zinc oxide for degradation of organic pollutants and insight into piezocatalytic mechanism. Journal of Colloid and Interface Science, 2020, 577: 290–299
https://doi.org/10.1016/j.jcis.2020.05.082
12 X L Xu, Z Wu, L B Xiao, Y M Jia, J P Ma, F F Wang, L Wang, M S Wang, H T Huang. Strong piezo-electro-chemical effect of piezoelectric BaTiO3 nanofibers for vibration-catalysis. Journal of Alloys and Compounds, 2018, 762: 915–921
https://doi.org/10.1016/j.jallcom.2018.05.279
13 J S Ling, K Wang, Z Y Wang, H T Huang, G K Zhang. Enhanced piezoelectric-induced catalysis of SrTiO3 nanocrystal with well-defined facets under ultrasonic vibration. Ultrasonics Sonochemistry, 2020, 61: 104819
https://doi.org/10.1016/j.ultsonch.2019.104819
14 R M Cao, R Wu, D Zhang, S Xu. Ultrahigh degradation efficiency of AB Type in-plane reverse polarization WS2 nano sheets in dark by piezo-catalyst effect. Applied Surface Science, 2021, 553: 149557
https://doi.org/10.1016/j.apsusc.2021.149557
15 H A Abbood, A Alabadi, A B Al-Hawash, A A Abbood, K X Huang. Square CdS micro/nanosheets as efficient photo/piezo-bi-catalyst for hydrogen production. Catalysis Letters, 2020, 150(11): 3059–3070
https://doi.org/10.1007/s10562-020-03221-z
16 J M Wu, Y G Sun, W E Chang, J T Lee. Piezoelectricity induced water splitting and formation of hydroxyl radical from active edge sites of MoS2 nanoflowers. Nano Energy, 2018, 46: 372–382
https://doi.org/10.1016/j.nanoen.2018.02.010
17 D K Shao, L Zhang, S M Sun, W Z Wang. Oxygen reduction reaction for generating H2O2 through a piezo-catalytic process over bismuth oxychloride. ChemSusChem, 2018, 11(3): 527–531
https://doi.org/10.1002/cssc.201702405
18 X L Xu, L B Xiao, Z Wu, Y M Jia, X Ye, F F Wang, B Yuan, Y Yu, H T Huang, G F Zou. Harvesting vibration energy to piezo-catalytically generate hydrogen through Bi2WO6 layered-perovskite. Nano Energy, 2020, 78: 105351
https://doi.org/10.1016/j.nanoen.2020.105351
19 J Y Chen, H Lei, S L Ji, M X Wu, B C Zhou, X P Dong. Synergistic catalysis of BiOIO3 catalyst for elimination of organic pollutants under simultaneous photo-irradiation and ultrasound-vibration treatment. Journal of Colloid and Interface Science, 2021, 601: 704–713
https://doi.org/10.1016/j.jcis.2021.05.151
20 S C Tu, H W Huang, T R Zhang, Y H Zhang. Controllable synthesis of multi-responsive ferroelectric layered perovskite-like Bi4Ti3O12: photocatalysis and piezoelectric-catalysis and mechanism insight. Applied Catalysis B: Environmental, 2017, 219: 550–562
https://doi.org/10.1016/j.apcatb.2017.08.001
21 J Wu, N Qin, E Z Lin, B W Yuan, Z H Kang, D H Bao. Synthesis of Bi4Ti3O12 decussated nanoplates with enhanced piezocatalytic activity. Nanoscale, 2019, 11(44): 21128–21136
https://doi.org/10.1039/C9NR07544E
22 H L You, Z Wu, L H Zhang, Y R Ying, Y Liu, L F Fei, X X Chen, Y M Jia, Y J Wang, F F Wang, S Ju, J Qiao, C H Lam, H Huang. Harvesting the vibration energy of BiFeO3 nanosheets for hydrogen evolution. Angewandte Chemie International Edition, 2019, 58(34): 11779–11784
https://doi.org/10.1002/anie.201906181
23 F Mushtaq, X Z Chen, M Hoop, H Torlakcik, E Pellicer, J Sort, C Gattinoni, B J Nelson, S Pané. Piezoelectrically enhanced photocatalysis with BiFeO3 nanostructures for efficient water remediation. iScience, 2018, 4: 236–246
https://doi.org/10.1016/j.isci.2018.06.003
24 X F Zhou, Q W Sun, D Zhai, G L Xue, H Luo, D Zhang. Excellent catalytic performance of molten-salt-synthesized Bi0.5Na0.5TiO3 nanorods by the piezo-phototronic coupling effect. Nano Energy, 2021, 84: 105936
https://doi.org/10.1016/j.nanoen.2021.105936
25 L W Zhang, T G Xu, X Zhao, Y F Zhu. Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities. Applied Catalysis B: Environmental, 2010, 98(3-4): 138–146
https://doi.org/10.1016/j.apcatb.2010.05.022
26 L Chen, X Q Dai, X J Li, J F Wang, H F Chen, X Hu, H J Lin, Y M He, Y Wu, M Fan. A novel Bi2S3/KTa0.75Nb0.25O3 nanocomposite with high efficiency for photocatalytic and piezocatalytic N2 fixation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(22): 13344–13354
https://doi.org/10.1039/D1TA02270A
27 X Q Dai, L Chen, Z Y Li, X J Li, J F Wang, X Hu, L H Zhao, Y M Jia, S X Sun, Y Wu, Y He. CuS/KTa0.75Nb0.25O3 nanocomposite utilizing solar and mechanical energy for catalytic N2 fixation. Journal of Colloid and Interface Science, 2021, 603: 220–232
https://doi.org/10.1016/j.jcis.2021.06.107
28 L ChenJ F WangX J LiJ Y ZhangC R ZhaoX HuH J LinL H ZhaoY WuY M He. Facile preparation of Ag2S/KTa0.5Nb0.5O3 heterojunction for enhanced performance in catalytic nitrogen fixation via photocatalysis and piezo-photocatalysis. Green Energy & Environment, 2022, in press
29 X J Li, J F Wang, J Y Zhang, C R Zhao, Y Wu, Y M He. Cadmium sulfide modified zinc oxide heterojunction harvesting ultrasonic mechanical energy for efficient decomposition of dye wastewater. Journal of Colloid and Interface Science, 2022, 607: 412–422
https://doi.org/10.1016/j.jcis.2021.09.004
30 G Singh, M Kumar, R Vaish. Promising multicatalytic and adsorption capabilities in V2O5/BiVO4 composite pellets for water-cleaning application. Surfaces and Interfaces, 2021, 23: 100924
https://doi.org/10.1016/j.surfin.2021.100924
31 Y Li, H F Chen, L K Wang, T T Wu, Y Wu, Y M He. KNbO3/ZnO heterojunction harvesting ultrasonic mechanical energy and solar energy to efficiently degrade methyl orange. Ultrasonics Sonochemistry, 2021, 78: 105754
https://doi.org/10.1016/j.ultsonch.2021.105754
32 X C Zhang, G M Ren, C M Zhang, R Li, Q Zhao, C M Fan. Photocatalytic reduction of CO2 to CO over 3D Bi2MoO6 microspheres: simple synthesis, high efficiency and selectivity, reaction mechanism. Catalysis Letters, 2020, 150(9): 2510–2516
https://doi.org/10.1007/s10562-020-03182-3
33 N A Benedek, J M Rondinelli, H Djani, P Ghosez, P Lightfoot. Understanding ferroelectricity in layered perovskites: new ideas and insights from theory and experiments. Dalton Transactions, 2015, 44(23): 10543–10558
https://doi.org/10.1039/C5DT00010F
34 L L Cheng, D Y Huang, Y Zhang, Y Wu. Preparation and piezoelectric catalytic performance of HT-Bi2MoO6 microspheres for dye degradation. Advanced Powder Technology, 2021, 32(9): 3346–3354
https://doi.org/10.1016/j.apt.2021.07.021
35 J Zhao, Q F Lu, M Z Wei, C Q Wang. Synthesis of one-dimensional α-Fe2O3/Bi2MoO6 heterostructures by electrospinning process with enhanced photocatalytic activity. Journal of Alloys and Compounds, 2015, 646: 417–424
https://doi.org/10.1016/j.jallcom.2015.05.191
36 S J Li, S W Hu, J L Zhang, W Jiang, J S Liu. Facile synthesis of Fe2O3 nanoparticles anchored on Bi2MoO6 microflowers with improved visible light photocatalytic activity. Journal of Colloid and Interface Science, 2017, 497: 93–101
https://doi.org/10.1016/j.jcis.2017.02.069
37 W L Wang, W L Zhao, H M Huang, R Y Chen, H F Shi. A 2D/2D S-scheme photo-Fenton catalyst based on ultrathin Bi2MoO6 and Fe2O3 hexagonal nanosheets for efficient tetracycline degradation. Catalysis Science & Technology, 2021, 11(8): 2948–2956
https://doi.org/10.1039/D1CY00051A
38 M N Chai, W S Tong, Z H Wang, Z S Chen, Y C An, Y H Zhang. Piezoelectric-Fenton degradation and mechanism study of Fe2O3/PVDF-HFP porous film drove by flowing water. Journal of Hazardous Materials, 2022, 430: 128446
https://doi.org/10.1016/j.jhazmat.2022.128446
39 K Xiao, H W Huang, N Tian, Y H Zhang. Mixed-calcination synthesis of Bi2MoO6/g-C3N4 heterojunction with enhanced visible-light-responsive photoreactivity for RhB degradation and photocurrent generation. Materials Research Bulletin, 2016, 83: 172–178
https://doi.org/10.1016/j.materresbull.2016.05.016
40 M Y Zhang, C L Shao, P Zhang, C Y Su, X Zhang, P P Liang, Y Y Sun, Y C Liu. Bi2MoO6 microtubes: Controlled fabrication by using electrospun polyacrylonitrile microfibers as template and their enhanced visible light photocatalytic activity. Journal of Hazardous Materials, 2012, 225-226: 155–163
https://doi.org/10.1016/j.jhazmat.2012.05.006
41 J S Cai, J Y Huang, Y K Lai. Correction: 3D Au-decorated Bi2MoO6 nanosheet/TiO2 nanotube array heterostructure with enhanced UV and visible-light photocatalytic activity. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(31): 16422
https://doi.org/10.1039/C7TA90152F
42 R Tao, C L Shao, X H Li, X W Li, S Liu, S Yang, C C Zhao, Y C Liu. Bi2MoO6/BiFeO3 heterojunction nanofibers: enhanced photocatalytic activity, charge separation mechanism and magnetic separability. Journal of Colloid and Interface Science, 2018, 529: 404–414
https://doi.org/10.1016/j.jcis.2018.06.035
43 Y Q Zheng, Y M Jia, H M Li, Z Wu, X P Dong. Enhanced piezo-electro-chemical coupling of BaTiO3/g-C3N4 nanocomposite for vibration-catalysis. Journal of Materials Science, 2020, 55(1): 14787–14797
https://doi.org/10.1007/s10853-020-05001-x
44 J L Shi. On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. Chemical Reviews, 2013, 113(3): 2139–2181
https://doi.org/10.1021/cr3002752
45 A Zhang, Z Y Liu, B Xie, J S Lu, K Guo, S M Ke, L L Shu, H Q Fan. Vibration catalysis of eco-friendly Na0.5K0.5NbO3-based piezoelectric: an efficient phase boundary catalyst. Applied Catalysis B: Environmental, 2020, 279: 119353
https://doi.org/10.1016/j.apcatb.2020.119353
46 J D Shi, W Zeng, Z H Dai, L Wang, Q Wang, S P Lin, Y Xiong, S Yang, S M Shang, W Chen, L Zhao, X Ding, X Tao, Y Chai. Piezocatalytic foam for highly efficient degradation of aqueous organics. Small Science, 2021, 1(2): 2000011
https://doi.org/10.1002/smsc.202000011
47 Y F Wang, D Zhao, H W Ji, G L Liu, C C Chen, W H Ma, H Y Zhu, J C Zhao. Sonochemical hydrogen production efficiently catalyzed by Au/TiO2. Journal of Physical Chemistry C, 2010, 114(41): 17728–17733
https://doi.org/10.1021/jp105691v
48 Y W Feng, L L Ling, Y X Wang, Z M Xu, F L Cao, H X Li, Z F Bian. Engineering spherical lead zirconate titanate to explore the essence of piezo-catalysis. Nano Energy, 2017, 40: 481–486
https://doi.org/10.1016/j.nanoen.2017.08.058
49 J Wang, T Ma, Z H Zhang, X D Zhang, Y F Jiang, Z J Pan, F Y Wen, P L Kang, P Zhang. Investigation on the sonocatalytic degradation of methyl orange in the presence of nanometer anatase and rutile TiO2 powders and comparison of their sonocatalytic activities. Desalination, 2006, 195(1-3): 294–305
https://doi.org/10.1016/j.desal.2005.12.007
50 S J Li, L S Zhang, H L Wang, Z G Chen, J Q Hu, K B Xu, J S Liu. Ta3N5-Pt nonwoven cloth with hierarchical nanopores as efficient and easily recyclable macroscale photocatalysts. Scientific Reports, 2014, 4(1): 3978
https://doi.org/10.1038/srep03978
[1] FCE-22090-OF-CL_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed