Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (6): 691-703   https://doi.org/10.1007/s11705-022-2268-6
  本期目录
Construction of NiCo2O4 nanoflake arrays on cellulose-derived carbon nanofibers as a freestanding electrode for high-performance supercapacitors
Xuepeng Ni1, Kunming Li1, Changlei Li3, Qianqian Wu1, Chenglin Liu1, Huifang Chen1,2, Qilin Wu1,2, Anqi Ju1,2()
1. College of Materials Science and Engineering & State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
2. Key Laboratory of High-Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, China
3. Weifang Xinlong Biomaterial Co., Ltd., Weifang 261000, China
 全文: PDF(6159 KB)   HTML
Abstract

Cellulose has a wide range of applications in many fields due to their naturally degradable and low-cost characteristics, but few studies can achieve cellulose-nanofibers by conventional electrospinning. Herein, we demonstrate that the freestanding cellulose-based carbon nanofibers are successfully obtained by a special design of electrospinning firstly, pre-oxidation and high-temperature carbonization (1600 °C), which display a superior electrical conductivity of 31.2 S·cm–1 and larger specific surface area of 35.61 m2·g–1 than that of the polyacrylonitrile-based carbon nanofibers (electrical conductivity of 18.5 S·cm–1, specific surface area of 12 m2·g–1). The NiCo2O4 nanoflake arrays are grown uniformly on the cellulose-based carbon nanofibers successfully by a facile one-step solvothermal and calcination method. The as-prepared cellulose-based carbon nanofibers/NiCo2O4 nanoflake arrays are directly used as electrodes to achieve a high specific capacitance of 1010 F·g–1 at 1 A·g–1 and a good cycling stability with 90.84% capacitance retention after 3000 times at 10 A·g–1. Furthermore, the all-solid-state symmetric supercapacitors assembled from the cellulose-based carbon nanofibers/NiCo2O4 deliver a high energy density of 62 W·h·kg–1 at a power density of 1200 W·kg–1. Six all-solid-state symmetric supercapacitors in series can also power a ‘DHU’ logo consisted of 36 light emitting diodes, confirming that the cellulose-based carbon nanofiber is a promising carbon matrix material for energy storage devices.

Key wordscellulose    carbon nanofibers    NiCo2O4    supercapacitors
收稿日期: 2022-07-18      出版日期: 2023-05-17
Corresponding Author(s): Anqi Ju   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(6): 691-703.
Xuepeng Ni, Kunming Li, Changlei Li, Qianqian Wu, Chenglin Liu, Huifang Chen, Qilin Wu, Anqi Ju. Construction of NiCo2O4 nanoflake arrays on cellulose-derived carbon nanofibers as a freestanding electrode for high-performance supercapacitors. Front. Chem. Sci. Eng., 2023, 17(6): 691-703.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2268-6
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I6/691
  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 M Sun, J Tie, G Cheng, T Lin, S Peng, F Deng, F Ye, L Yu. In situ growth of burl-like nickel cobalt sulfide on carbon fibers as high-performance supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(4): 1730–1736
https://doi.org/10.1039/C4TA04833D
2 X Han, Q Chen, H Zhang, Y Ni, L Zhang. Template synthesis of NiCo2S4/Co9S8 hollow spheres for high-performance asymmetric supercapacitors. Chemical Engineering Journal, 2019, 368: 513–524
https://doi.org/10.1016/j.cej.2019.02.138
3 X Wu, Z Han, X Zheng, S Yao, X Yang, T Zhai. Core-shell structured Co3O4@NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties. Nano Energy, 2017, 31: 410–417
https://doi.org/10.1016/j.nanoen.2016.11.035
4 D Zhao, F Hu, A Umar, X Wu. NiCo2O4 nanowire based flexible electrode materials for asymmetric supercapacitors. New Journal of Chemistry, 2018, 42(9): 7399–7406
https://doi.org/10.1039/C8NJ00935J
5 L Deng, R J Young, I A Kinloch, A M Abdelkader, S M Holmes, D A De Haro-Del Rio, S J Eichhorn. Supercapacitance from cellulose and carbon nanotube nanocomposite fibers. ACS Applied Materials & Interfaces, 2013, 5(20): 9983–9990
https://doi.org/10.1021/am403622v
6 M F El-Kady, Y Shao, R B Kaner. Graphene for batteries, supercapacitors and beyond. Nature Reviews Materials, 2016, 1(7): 1–14
https://doi.org/10.1038/natrevmats.2016.33
7 J Yin, W Zhang, N A Alhebshi, N Salah, H N Alshareef. Synthesis strategies of porous carbon for supercapacitor applications. Small Methods, 2020, 4(3): 1900853
https://doi.org/10.1002/smtd.201900853
8 Z Zhang, F Bao, Y Zhang, L Feng, Y Ji, H Zhang, Q Sun, S Feng, X Zhao, X Liu. Formation of hierarchical CoMoO4@MnO2 core–shell nanosheet arrays on nickel foam with markedly enhanced pseudocapacitive properties. Journal of Power Sources, 2015, 296: 162–168
https://doi.org/10.1016/j.jpowsour.2015.07.042
9 P Zhang, J Zhou, W Chen, Y Zhao, X Mu, Z Zhang, X Pan, E Xie. Constructing highly-efficient electron transport channels in the 3D electrode materials for high-rate supercapacitors: the case of NiCo2O4@NiMoO4 hierarchical nanostructures. Chemical Engineering Journal, 2017, 307: 687–695
https://doi.org/10.1016/j.cej.2016.08.131
10 A Dang, Y Sun, Y Liu, Y Xia, X Liu, Y Gao, S Wu, T Li, A Zada, F Ye. Flexible Ti3C2Tx/carbon nanotubes/CuS film electrodes based on a dual-structural design for high-performance all-solid-state supercapacitors. ACS Applied Energy Materials, 2022, 5(7): 9158–9172
https://doi.org/10.1021/acsaem.2c01738
11 Y Li, F An, H Wu, S Zhu, C Lin, M Xia, K Xue, D Zhang, K A Lian. NiCo2S4/hierarchical porous carbon for high performance asymmetrical supercapacitor. Journal of Power Sources, 2019, 427: 138–144
https://doi.org/10.1016/j.jpowsour.2019.04.060
12 K S Kumar, N Choudhary, Y Jung, J Thomas. Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications. ACS Energy Letters, 2018, 3(2): 482–495
https://doi.org/10.1021/acsenergylett.7b01169
13 L Wan, Y Wang, Y Zhang, C Du, J Chen, Z Tian, M Xie. FeCoP nanosheets@Ni-Co carbonate hydroxide nanoneedles as free-standing electrode material for hybrid supercapacitors. Chemical Engineering Journal, 2021, 415: 128995
https://doi.org/10.1016/j.cej.2021.128995
14 Q Zhou, T Fan, Y Li, D Chen, S Liu, X Li. Hollow-structure NiCo hydroxide/carbon nanotube composite for high-performance supercapacitors. Journal of Power Sources, 2019, 426: 111–115
https://doi.org/10.1016/j.jpowsour.2019.04.035
15 Z Shi, X Shen, Z Zhang, X Wang, N Gao, Z Xu, X Chen, X Liu. Hierarchically urchin-like hollow NiCo2S4 prepared by a facile template-free method for high-performance supercapacitors. Journal of Colloid and Interface Science, 2021, 604: 292–300
https://doi.org/10.1016/j.jcis.2021.06.144
16 R Kunwar, S G Krishnan, I I Misnon, F Zabihi, S Yang, C C Yang, R Jose. Transformation of supercapacitive charge storage behaviour in a multi-elemental spinel CuMn2O4 nanofibers with alkaline and neutral electrolytes. Advanced Fiber Materials, 2021, 3(4): 265–274
https://doi.org/10.1007/s42765-021-00083-x
17 J Cai, H Niu, Z Li, Y Du, P Cizek, Z Xie, H Xiong, T Lin. High-performance supercapacitor electrode materials from cellulose-derived carbon nanofibers. ACS Applied Materials & Interfaces, 2015, 7(27): 14946–14953
https://doi.org/10.1021/acsami.5b03757
18 J Cai, H Niu, H Wang, H Shao, J Fang, J He, H Xiong, C Ma, T Lin. High-performance supercapacitor electrode from cellulose-derived, inter-bonded carbon nanofibers. Journal of Power Sources, 2016, 324: 302–308
https://doi.org/10.1016/j.jpowsour.2016.05.070
19 A Frenot, M W Henriksson, P Walkenström. Electrospinning of cellulose-based nanofibers. Journal of Applied Polymer Science, 2007, 103(3): 1473–1482
https://doi.org/10.1002/app.24912
20 V Kuzmenko, O Naboka, P Gatenholm, P Enoksson. Ammonium chloride promoted synthesis of carbon nanofibers from electrospun cellulose acetate. Carbon, 2014, 67: 694–703
https://doi.org/10.1016/j.carbon.2013.10.061
21 J Bhagwan, G Nagaraju, B Ramulu, S C Sekhar, J S Yu. Rapid synthesis of hexagonal NiCo2O4 nanostructures for high-performance asymmetric supercapacitors. Electrochimica Acta, 2019, 299: 509–517
https://doi.org/10.1016/j.electacta.2018.12.174
22 R BoopathiRaja, M Parthibavarman. Desert rose like heterostructure of NiCo2O4/NF@PPy composite has high stability and excellent electrochemical performance for asymmetric super capacitor application. Electrochimica Acta, 2020, 346: 136270
https://doi.org/10.1016/j.electacta.2020.136270
23 S Wei, C Wan, L Zhang, X Liu, W Tian, J Su, W Cheng, Y Wu. N-doped and oxygen vacancy-rich NiCo2O4 nanograss for supercapacitor electrode. Chemical Engineering Journal, 2022, 429: 132242
https://doi.org/10.1016/j.cej.2021.132242
24 S Wang, L Li, W He, Y Shao, Y Li, Y Wu, X Hao. Oxygen vacancy modulation of bimetallic oxynitride anodes toward advanced Li-ion capacitors. Advanced Functional Materials, 2020, 30(27): 2000350
https://doi.org/10.1002/adfm.202000350
25 X Ni, H Chen, C Liu, F Zeng, H Yu, A Ju. A freestanding nitrogen-doped carbon nanofiber/MoS2 nanoflowers with expanded interlayer for long cycle-life lithium-ion batteries. Journal of Alloys and Compounds, 2020, 818: 152835
https://doi.org/10.1016/j.jallcom.2019.152835
26 Y Altin, A Celik Bedeloglu. Polyacrylonitrile/polyvinyl alcohol-based porous carbon nanofiber electrodes for supercapacitor applications. International Journal of Energy Research, 2021, 45(11): 16497–16510
https://doi.org/10.1002/er.6896
27 S Hanna, A Yehia, M Ismail, A Khalaf. Preparation and characterization of carbon fibers from polyacrylonitrile precursors. Journal of Applied Polymer Science, 2012, 123(4): 2074–2083
https://doi.org/10.1002/app.34704
28 X Ni, Y Jiang, H Chen, K Li, H Chen, Q Wu, A Ju. Fabrication of 3D ordered needle-like polyaniline@hollow carbon nanofibers composites for flexible supercapacitors. Chinese Chemical Letters, 2021, 32(8): 2448–2452
https://doi.org/10.1016/j.cclet.2021.01.043
29 Z Zhang, L Li, Y Qing, X Lu, Y Wu, N Yan, W Yang. Manipulation of nanoplate structures in carbonized cellulose nanofibril aerogel for high-performance supercapacitor. Journal of Physical Chemistry C, 2019, 123(38): 23374–23381
https://doi.org/10.1021/acs.jpcc.9b06058
30 Y Wang, H Ren, C Cheng, C Xu, G Fan, Y Liu. Tailorable negative permittivity of carbon materials derived from microcrystalline cellulose at different carbonizing temperature. ECS Journal of Solid State Science and Technology, 2020, 9(8): 083001
https://doi.org/10.1149/2162-8777/abb4a3
31 B Qiu, Y Wang, D Sun, Q Wang, X Zhang, B L Weeks, R O’Connor, X Huang, S Wei, Z Guo. Cr(VI) removal by magnetic carbon nanocomposites derived from cellulose at different carbonization temperatures. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(18): 9817–9825
https://doi.org/10.1039/C5TA01227A
32 X Ni, Z Cui, H Luo, H Chen, C Liu, Q Wu, A Ju. Hollow multi-nanochannel carbon nanofibers@MoSe2 nanosheets composite as flexible anodes for high performance lithium-ion batteries. Chemical Engineering Journal, 2021, 404: 126249
https://doi.org/10.1016/j.cej.2020.126249
33 X Zhang, F Yang, H Chen, K Wang, J Chen, Y Wang, S Song. In situ growth of 2D ultrathin NiCo2O4 nanosheet arrays on Ni foam for high performance and flexible solid-state supercapacitors. Small, 2020, 16(44): 2004188
https://doi.org/10.1002/smll.202004188
34 X Yin, H Li, R Yuan, J Lu. Metal-organic framework derived hierarchical NiCo2O4 triangle nanosheet arrays@SiC nanowires network/carbon cloth for flexible hybrid supercapacitors. Journal of Materials Science and Technology, 2021, 81: 162–174
https://doi.org/10.1016/j.jmst.2020.10.085
35 D Lei, X D Li, M K Seo, M S Khil, H Y Kim, B S Kim. NiCo2O4 nanostructure-decorated PAN/lignin based carbon nanofiber electrodes with excellent cyclability for flexible hybrid supercapacitors. Polymer, 2017, 132: 31–40
https://doi.org/10.1016/j.polymer.2017.10.051
36 F Deng, L Yu, G Cheng, T Lin, M Sun, F Ye, Y Li. Synthesis of ultrathin mesoporous NiCo2O4 nanosheets on carbon fiber paper as integrated high-performance electrodes for supercapacitors. Journal of Power Sources, 2014, 251: 202–207
https://doi.org/10.1016/j.jpowsour.2013.11.048
37 C Liu, W Jiang, F Hu, X Wu, D Xue. Mesoporous NiCo2O4 nanoneedle arrays as supercapacitor electrode materials with excellent cycling stabilities. Inorganic Chemistry Frontiers, 2018, 5(4): 835–843
https://doi.org/10.1039/C8QI00010G
38 X Ni, Z Cui, N Jiang, H Chen, Q Wu, A Ju, M Zhu. Hollow multi-nanochannel carbon nanofiber/MoS2 nanoflower composites as binder-free lithium-ion battery anodes with high capacity and ultralong-cycle life at large current density. Journal of Materials Science and Technology, 2021, 77: 169–177
https://doi.org/10.1016/j.jmst.2020.11.015
39 S B Tang, M O Lai, L Lu. Li-ion diffusion in highly (003) oriented LiCoO2 thin film cathode prepared by pulsed laser deposition. Journal of Alloys and Compounds, 2008, 449(1): 300–303
https://doi.org/10.1016/j.jallcom.2005.12.131
40 X H Rui, N Yesibolati, S R Li, C C Yuan, C H Chen. Determination of the chemical diffusion coefficient of Li+ in intercalation-type Li3V2(PO4)3 anode material. Solid State Ionics, 2011, 187(1): 58–63
https://doi.org/10.1016/j.ssi.2011.02.013
41 A S Khan, L Pan, A Farid, M Javid, H Huang, Y Zhao. Carbon nanocoils decorated with a porous NiCo2O4 nanosheet array as a highly efficient electrode for supercapacitors. Nanoscale, 2021, 13(27): 11943–11952
https://doi.org/10.1039/D1NR00949D
42 X Zhao, W Jia, X Wu, Y Lv, J Qiu, J Guo, X Wang, D Jia, J Yan, D Wu. Ultrafine MoO3 anchored in coal-based carbon nanofibers as anode for advanced lithium-ion batteries. Carbon, 2020, 156: 445–452
https://doi.org/10.1016/j.carbon.2019.09.065
43 J N Zhang, P Liu, C Jin, L N Jin, S W Bian, Q Zhu, B Wang. Flexible three-dimensional carbon cloth/carbon fibers/NiCo2O4 composite electrode materials for high-performance all-solid-state electrochemical capacitors. Electrochimica Acta, 2017, 256: 90–99
https://doi.org/10.1016/j.electacta.2017.10.005
44 J P Cheng, B Q Wang, S H Gong, X C Wang, Q S Sun, F Liu. Conformal coatings of NiCo2O4 nanoparticles and nanosheets on carbon nanotubes for supercapacitor electrodes. Ceramics International, 2021, 47(23): 32727–32735
https://doi.org/10.1016/j.ceramint.2021.08.169
45 W D Wang, X F Li, P P Zhang, B Q Wang, S H Gong, X C Wang, F Liu, J P Cheng. Preparation of NiCo2O4@CoS heterojunction composite as electrodes for high-performance supercapacitors. Journal of Electroanalytical Chemistry, 2021, 891: 115257
https://doi.org/10.1016/j.jelechem.2021.115257
46 X Yin, H Li, R Yuan, J Lu. Hierarchical self-supporting sugar gourd-shape MOF-derived NiCo2O4 hollow nanocages@SiC nanowires for high-performance flexible hybrid supercapacitors. Journal of Colloid and Interface Science, 2021, 586: 219–232
https://doi.org/10.1016/j.jcis.2020.10.086
47 T H Ko, D Lei, S Balasubramaniam, M K Seo, Y S Chung, H Y Kim, B S Kim. Polypyrrole-decorated hierarchical NiCo2O4 nanoneedles/carbon fiber papers for flexible high-performance supercapacitor applications. Electrochimica Acta, 2017, 247: 524–534
https://doi.org/10.1016/j.electacta.2017.07.047
48 L Wang, X Y Jiao, P Liu, Y Ouyang, X F Xia, W Lei, Q L Hao. Self-template synthesis of yolk-shelled NiCo2O4 spheres for enhanced hybrid supercapacitors. Applied Surface Science, 2018, 427: 174–181
https://doi.org/10.1016/j.apsusc.2017.07.221
49 D R Kumar, K R Prakasha, A S Prakash, J J Shim. Direct growth of honeycomb-like NiCo2O4@Ni foam electrode for pouch-type high-performance asymmetric supercapacitor. Journal of Alloys and Compounds, 2020, 836: 155370
https://doi.org/10.1016/j.jallcom.2020.155370
[1] FCE-22093-OF-NX_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed