Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (6): 635-678   https://doi.org/10.1007/s11705-022-2271-y
  本期目录
Triboelectric nanogenerators: the beginning of blue dream
Wanli Wang1,2, Dongfang Yang3, Xiaoran Yan1, Licheng Wang4, Han Hu2, Kai Wang1()
1. College of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University, Qingdao 266071, China
2. State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
3. Xi’an Traffic Engineering Institute, Xi’an 710300, China
4. School of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
 全文: PDF(17707 KB)   HTML
Abstract

Wave energy is inexhaustible renewable energy. Making full use of the huge ocean wave energy resources is the dream of mankind for hundreds of years. Nowadays, the utilization of water wave energy is mainly absorbed and transformed by electromagnetic generators (EMGs) in the form of mechanical energy. However, waves usually have low frequency and uncertainty, which means low power generation efficiency for EMGs. Fortunately, in this slow current and random direction wave case, the triboelectric nanogenerator (TENG) has a relatively stable output power, which is suitable for collecting blue energy. This article summarizes the main research results of TENG in harvesting blue energy. Firstly, based on Maxwell’s displacement current, the basic principle of the nanogenerator is expounded. Then, four working modes and three applications of TENG are introduced, especially the application of TENG in blue energy. TENG currently used in blue energy harvesting is divided into four categories and discussed in detail. After TENG harvests water wave energy, it is meaningless if it cannot be used. Therefore, the modular storage of TENG energy is discussed. The output power of a single TENG unit is relatively low, which cannot meet the demand for high power. Thus, the networking strategy of large-scale TENG is further introduced. TENG’s energy comes from water waves, and each TENG’s output has great randomness, which is very unfavorable for the energy storage after large-scale TENG integration. On this basis, this paper discusses the power management methods of TENG. In addition, in order to further prove its economic and environmental advantages, the economic benefits of TENG are also evaluated. Finally, the development potential of TENG in the field of blue energy and some problems that need to be solved urgently are briefly summarized.

Key wordsblue energy    triboelectric nanogenerator    water wave energy    networking strategy    micro/nano-energy    self-powered devices
收稿日期: 2022-06-17      出版日期: 2023-05-17
Corresponding Author(s): Kai Wang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(6): 635-678.
Wanli Wang, Dongfang Yang, Xiaoran Yan, Licheng Wang, Han Hu, Kai Wang. Triboelectric nanogenerators: the beginning of blue dream. Front. Chem. Sci. Eng., 2023, 17(6): 635-678.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2271-y
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I6/635
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Types of TENG operational modesMaximum power densityRef.
Liquid–solid contact
Adaptive solid–liquid interfacing TENG147.1 mW·m–2[248]
Amphiphobic hydraulic TENG245.2 mW·m–2[249]
Liquid-metal-based TENG6.7 W·m–2[250]
Water-tube TENG16.6 W·m–3[251]
Hydrokinetics energy
Waterwheel hybrid generator165.3 W·m–2[256]
Multi-layered disk TENG42.6 W·m–2[260]
Dual-mode
Dual-mode TENG1.69 W·m–2[142]
Leaf-mimic rain energy harvester82.66 W·m–2[259]
Hybridized TENG0.62 W·m–2[263]
Fully enclosed
Open-book-like TENG7.45 W·m–3[265]
TENG with spring-assisted linkage structure9.559 W·m–3[266]
Elliptical cylindrical structure17.6 W·m–3[267]
Nodding duck structure TENG4 W·m–3[268]
Integrated TENG array13.23 W·m–3[281]
High power density tower-like TENG10.6 W·m–3[284]
Tab.1  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
Fig.19  
Fig.20  
Fig.21  
Fig.22  
Fig.23  
Fig.24  
Fig.25  
Fig.26  
Fig.27  
Fig.28  
Fig.29  
Fig.30  
Fig.31  
Fig.32  
Fig.33  
Fig.34  
Fig.35  
1 N Q Minh, Y Shirley Meng. Future energy, fuel cells, and solid-oxide fuel-cell technology. MRS Bulletin, 2019, 44(9): 682–683
https://doi.org/10.1557/mrs.2019.209
2 Z L Wang, T Jiang, L Xu. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy, 2017, 39: 9–23
https://doi.org/10.1016/j.nanoen.2017.06.035
3 H Erdiwansyah, M Mahidin. A critical review of the integration of renewable energy sources with various technologies. Protection and Control of Modern Power Systems, 2021, 6(1): 3
https://doi.org/10.1186/s41601-021-00181-3
4 Z L Wang. New wave power. Nature, 2017, 542(7640): 159–160
https://doi.org/10.1038/542159a
5 Y Feng, X Liang, J An, T Jiang, Z L Wang. Soft-contact cylindrical triboelectric-electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting. Nano Energy, 2021, 81: 105625
https://doi.org/10.1016/j.nanoen.2020.105625
6 Q Gao, Y Xu, X Yu, Z Jing, T Cheng, Z L Wang. Gyroscope-structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy. ACS Nano, 2022, 16(4): 6781–6788
https://doi.org/10.1021/acsnano.2c01594
7 J S Kim, J Kim, J N Kim, J Ahn, J H Jeong, I Park, D Kim, I K Oh. Collectively exhaustive hybrid triboelectric nanogenerator based on flow-induced impacting-sliding cylinder for ocean energy harvesting. Advanced Energy Materials, 2022, 12(3): 2103076
https://doi.org/10.1002/aenm.202103076
8 W Li, L Wan, Y Lin, G Liu, H Qu, H Wen, J Ding, H Ning, H Yao. Synchronous nanogenerator with intermittent sliding friction self-excitation for water wave energy harvesting. Nano Energy, 2022, 95: 106994
https://doi.org/10.1016/j.nanoen.2022.106994
9 Z Ren, X Liang, D Liu, X Li, J Ping, Z Wang, Z L Wang. Water-wave driven route avoidance warning system for wireless ocean navigation. Advanced Energy Materials, 2021, 11(31): 2101116
https://doi.org/10.1002/aenm.202101116
10 Y Xu, W Yang, X Lu, Y Yang, J Li, J Wen, T Cheng, Z L Wang. Triboelectric nanogenerator for ocean wave graded energy harvesting and condition monitoring. ACS Nano, 2021, 15(10): 16368–16375
https://doi.org/10.1021/acsnano.1c05685
11 T Zhao, M Xu, X Xiao, Y Ma, Z Li, Z L Wang. Recent progress in blue energy harvesting for powering distributed sensors in ocean. Nano Energy, 2021, 88: 106199
https://doi.org/10.1016/j.nanoen.2021.106199
12 A Chang, C Uy, X Xiao, J Chen. Self-powered environmental monitoring via a triboelectric nanogenerator. Nano Energy, 2022, 98: 107282
https://doi.org/10.1016/j.nanoen.2022.107282
13 M Noman, G Li, K Wang, B Han. Electrical control strategy for an ocean energy conversion system. Protection and Control of Modern Power Systems, 2021, 6(1): 12
https://doi.org/10.1186/s41601-021-00186-y
14 T Jiang, L M Zhang, X Y Chen, C B Han, W Tang, C Zhang, L Xu, Z L Wang. Structural optimization of triboelectric nanogenerator for harvesting water wave energy. ACS Nano, 2015, 9(12): 12562–12572
https://doi.org/10.1021/acsnano.5b06372
15 Z Yuan, C Wang, J Xi, X Han, J Li, S T Han, W Gao, C Pan. Spherical triboelectric nanogenerator with dense point contacts for harvesting multidirectional water wave and vibration energy. ACS Energy Letters, 2021, 6(8): 2809–2816
https://doi.org/10.1021/acsenergylett.1c01092
16 Q Zhang, Q Liang, D K Nandakumar, H Qu, Q Shi, F I Alzakia, D J J Tay, L Yang, X Zhang, L Suresh, C Lee, A T S Wee, S C Tan. Shadow enhanced self-charging power system for wave and solar energy harvesting from the ocean. Nature Communications, 2021, 12(1): 616
https://doi.org/10.1038/s41467-021-20919-9
17 B Zhao, Z Li, X Liao, L Qiao, Y Li, S Dong, Z Zhang, B Zhang. A heaving point absorber-based ocean wave energy convertor hybridizing a multilayered soft-brush cylindrical triboelectric generator and an electromagnetic generator. Nano Energy, 2021, 89: 106381
https://doi.org/10.1016/j.nanoen.2021.106381
18 Z Qu, M Huang, C Chen, Y An, H Liu, Q Zhang, X Wang, Y Liu, W Yin, X Li. Spherical triboelectric nanogenerator based on eccentric structure for omnidirectional low frequency water wave energy harvesting. Advanced Functional Materials, 2022, 32(29): 2202048
https://doi.org/10.1002/adfm.202202048
19 S H Salter. Wave power. Nature, 1974, 249(5459): 720–724
https://doi.org/10.1038/249720a0
20 A Falcão. Wave energy utilization: a review of the technologies. Renewable & Sustainable Energy Reviews, 2010, 14(3): 899–918
https://doi.org/10.1016/j.rser.2009.11.003
21 S H Liu, L F Wang, X L Feng, Z Wang, Q Xu, S Bai, Y Qin, Z L Wang. Ultrasensitive 2D ZnO piezotronic transistor array for high resolution tactile imaging. Advanced Materials, 2017, 29(16): 1606346
https://doi.org/10.1002/adma.201606346
22 X Cui, Q Xu, X Ni, Y Zhang, Y Qin. Atomic-thick 2D MoS2/insulator interjection structures for enhancing nanogenerator output. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2018, 6(4): 899–906
https://doi.org/10.1039/C7TC05458K
23 C X Hu, L Cheng, Z Wang, Y B Zheng, S Bai, Y Qin. A transparent antipeep piezoelectric nanogenerator to harvest tapping energy on screen. Small, 2016, 12(10): 1315–1321
https://doi.org/10.1002/smll.201502453
24 G Tian, W L Deng, Y Y Gao, D Xiong, C Yan, X B He, T Yang, L Jin, X Chu, H T Zhang, W Yan, W Yang. Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy, 2019, 59: 574–581
https://doi.org/10.1016/j.nanoen.2019.03.013
25 Q Xu, Y Qin. Theoretical study of enhancing the piezoelectric nanogenerator’s output power by optimizing the external force’s shape. APL Materials, 2017, 5(7): 074101
https://doi.org/10.1063/1.4975772
26 W Deng, Y Zhou, A Libanori, G Chen, W Yang, J Chen. Piezoelectric nanogenerators for personalized healthcare. Chemical Society Reviews, 2022, 51(9): 3380–3435
https://doi.org/10.1039/D1CS00858G
27 R A Shaukat, Q M Saqib, J Kim, H Song, M U Khan, M Y Chougale, J Bae, M J Choi. Ultra-robust tribo- and piezo-electric nanogenerator based on metal organic frameworks (MOF-5) with high environmental stability. Nano Energy, 2022, 96: 107128
https://doi.org/10.1016/j.nanoen.2022.107128
28 Y X Zhou, Y T Lin, S M Huang, G T Chen, S W Chen, H S Wu, I C Ni, W P Pan, M L Tsai, C I Wu, P K Yang. Tungsten disulfide nanosheets for piezoelectric nanogenerator and human-machine interface applications. Nano Energy, 2022, 97: 107172
https://doi.org/10.1016/j.nanoen.2022.107172
29 Z Yu, Y Zhang, Y Wang, J Zheng, Y Fu, D Chen, G Wang, J Cui, S Yu, L Zheng, H Zhou, D Li. Integrated piezo-tribo hybrid acoustic-driven nanogenerator based on porous MWCNTs/PVDF-TrFE aerogel bulk with embedded pdms tympanum structure for broadband sound energy harvesting. Nano Energy, 2022, 97: 107205
https://doi.org/10.1016/j.nanoen.2022.107205
30 C Chen, S Zhao, C Pan, Y Zi, F Wang, C Yang, Z L Wang. A method for quantitatively separating the piezoelectric component from the as-received “piezoelectric” signal. Nature Communications, 2022, 13(1): 1391
https://doi.org/10.1038/s41467-022-29087-w
31 F Jiang, X Zhou, J Lv, J Chen, J Chen, H Kongcharoen, Y Zhang, P S Lee. Stretchable, breathable, and stable lead-free perovskite/polymer nanofiber composite for hybrid triboelectric and piezoelectric energy harvesting. Advanced Materials, 2022, 34(17): 2200042
https://doi.org/10.1002/adma.202200042
32 C Wang, S K Lai, Z C Wang, J M Wang, W Q Yang, Y Q Ni. A low-frequency, broadband and tri-hybrid energy harvester with septuple-stable nonlinearity-enhanced mechanical frequency up-conversion mechanism for powering portable electronics. Nano Energy, 2019, 64: 103943
https://doi.org/10.1016/j.nanoen.2019.103943
33 Y Xi, H Y Guo, Y L Zi, X G Li, J Wang, J N Deng, S M Li, C G Hu, X Cao, Z L Wang. Multifunctional TENG for blue energy scavenging and self-powered wind-speed sensor. Advanced Energy Materials, 2017, 7(12): 1602397
https://doi.org/10.1002/aenm.201602397
34 L Zhou, D Liu, S Li, Z Zhao, C Zhang, X Yin, L Liu, S Cui, Z L Wang, J Wang. Rationally designed dual-mode triboelectric nanogenerator for harvesting mechanical energy by both electrostatic induction and dielectric breakdown effects. Advanced Energy Materials, 2020, 10(24): 2000965
https://doi.org/10.1002/aenm.202000965
35 Z Zhao, L Zhou, S Li, D Liu, Y Li, Y Gao, Y Liu, Y Dai, J Wang, Z L Wang. Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nature Communications, 2021, 12(1): 4686
https://doi.org/10.1038/s41467-021-25046-z
36 X Feng, Q Li, K Wang. Waste plastic triboelectric nanogenerators using recycled plastic bags for power generation. ACS Applied Materials & Interfaces, 2021, 13(1): 400–410
https://doi.org/10.1021/acsami.0c16489
37 G Cheng, Z H Lin, Z L Du, Z L Wang. Increase output energy and operation frequency of a triboelectric nanogenerator by two grounded electrodes approach. Advanced Functional Materials, 2014, 24(19): 2892–2898
https://doi.org/10.1002/adfm.201303659
38 D Lingam, A R Parikh, J Huang, A Jain, M Minary-Jolandan. Nano/microscale pyroelectric energy harvesting: challenges and opportunities. International Journal of Smart and Nano Materials, 2013, 4(4): 229–245
https://doi.org/10.1080/19475411.2013.872207
39 C R Bowen, J Taylor, E LeBoulbar, D Zabek, A Chauhan, R Vaish. Pyroelectric materials and devices for energy harvesting applications. Energy & Environmental Science, 2014, 7(12): 3836–3856
https://doi.org/10.1039/C4EE01759E
40 Z N Wang, R M Yu, C F Pan, Z L Li, J Yang, F Yi, Z L Wang. Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing. Nature Communications, 2015, 6(1): 8401
https://doi.org/10.1038/ncomms9401
41 H Askari, N Xu, B H Groenner Barbosa, Y Huang, L Chen, A Khajepour, H Chen, Z L Wang. Intelligent systems using triboelectric, piezoelectric, and pyroelectric nanogenerators. Materials Today, 2022, 52: 188–206
https://doi.org/10.1016/j.mattod.2021.11.027
42 Z L Wang, J H Song. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312(5771): 242–246
https://doi.org/10.1126/science.1124005
43 X D Wang, J H Song, J Liu, Z L Wang. Direct-current nanogenerator driven by ultrasonic waves. Science, 2007, 316(5821): 102–105
https://doi.org/10.1126/science.1139366
44 S Xu, Y Qin, C Xu, Y G Wei, R S Yang, Z L Wang. Self-powered nanowire devices. Nature Nanotechnology, 2010, 5(5): 366–373
https://doi.org/10.1038/nnano.2010.46
45 L Xiao, S Y Wu, S L Yang. Parametric study on the thermoelectric conversion performance of a concentrated solar-driven thermionic-thermoelectric hybrid generator. International Journal of Energy Research, 2018, 42(2): 656–672
https://doi.org/10.1002/er.3849
46 M M Yuan, L Cheng, Q Xu, W W Wu, S Bai, L Gu, Z Wang, J Lu, H P Li, Y Qin, T Jing, Z L Wang. Biocompatible nanogenerators through high piezoelectric coefficient 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires for in-vivo applications. Advanced Materials, 2014, 26(44): 7432–7437
https://doi.org/10.1002/adma.201402868
47 X Y Huang, B Sun, Y K Zhu, S T Li, P K Jiang. High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Progress in Materials Science, 2019, 100: 187–225
https://doi.org/10.1016/j.pmatsci.2018.10.003
48 F R FanZ Q TianZ L Wang. Flexible triboelectric generator! Nano Energy, 2012, 1(12): 328–334
49 Z L Wang. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano, 2013, 7(11): 9533–9557
https://doi.org/10.1021/nn404614z
50 L Yang, S Q Wu, B J Lin, T X Huang, X P Chen, X M Yan, S F Han. A targetable nanogenerator of nitric oxide for light-triggered cytotoxicity. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2013, 1(44): 6115–6122
https://doi.org/10.1039/c3tb21131b
51 G Zhu, P Bai, J Chen, Z L Wang. Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy, 2013, 2(5): 688–692
https://doi.org/10.1016/j.nanoen.2013.08.002
52 Y Shao, C Luo, B W Deng, B Yin, M B Yang. Flexible porous silicone rubber-nanofiber nanocomposites generated by supercritical carbon dioxide foaming for harvesting mechanical energy. Nano Energy, 2020, 67: 104290
https://doi.org/10.1016/j.nanoen.2019.104290
53 C Yan, Y Y Gao, S L Zhao, S L Zhang, Y H Zhou, W L Deng, Z W Li, G Jiang, L Jin, G Tian, T Yang, X Chu, D Xiong, Z Wang, Y Li, W Yang, J Chen. A linear-to-rotary hybrid nanogenerator for high-performance wearable biomechanical energy harvesting. Nano Energy, 2020, 67: 104235
https://doi.org/10.1016/j.nanoen.2019.104235
54 Q S Jing, Y N Xie, G Zhu, R P S Han, Z L Wang. Self-powered thin-film motion vector sensor. Nature Communications, 2015, 6(1): 8031
https://doi.org/10.1038/ncomms9031
55 Q S Jing, G Zhu, P Bai, Y N Xie, J Chen, R P S Han, Z L Wang. Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion. ACS Nano, 2014, 8(4): 3836–3842
https://doi.org/10.1021/nn500694y
56 J W Zhong, Y Zhang, Q Z Zhong, Q Y Hu, B Hu, Z L Wang, J Zhou. Fiber-based generator for wearable electronics and mobile medication. ACS Nano, 2014, 8(6): 6273–6280
https://doi.org/10.1021/nn501732z
57 W Q Yang, J Chen, G Zhu, J Yang, P Bai, Y J Su, Q S Jing, X Cao, Z L Wang. Harvesting energy from the natural vibration of human walking. ACS Nano, 2013, 7(12): 11317–11324
https://doi.org/10.1021/nn405175z
58 B Cheng, J Ma, G Li, S Bai, Q Xu, X Cui, L Cheng, Y Qin, Z L Wang. Mechanically asymmetrical triboelectric nanogenerator for self-powered monitoring of in vivo microscale weak movement. Advanced Energy Materials, 2020, 10(27): 2000827
https://doi.org/10.1002/aenm.202000827
59 C Li, D Liu, C Xu, Z Wang, S Shu, Z Sun, W Tang, Z L Wang. Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel. Nature Communications, 2021, 12(1): 2950
https://doi.org/10.1038/s41467-021-23207-8
60 J Zhao, F Li, Z Wang, P Dong, G Xia, K Wang. Flexible PVDF nanogenerator-driven motion sensors for human body motion energy tracking and monitoring. Journal of Materials Science Materials in Electronics, 2021, 32(11): 14715–14727
https://doi.org/10.1007/s10854-021-06027-w
61 X Zhang, Z Li, W Du, Y Zhao, W Wang, L Pang, L Chen, A Yu, J Zhai. Self-powered triboelectric-mechanoluminescent electronic skin for detecting and differentiating multiple mechanical stimuli. Nano Energy, 2022, 96: 107115
https://doi.org/10.1016/j.nanoen.2022.107115
62 C Ye, S Yang, J Ren, S Dong, L Cao, Y Pei, S Ling. Electroassisted core-spun triboelectric nanogenerator fabrics for intellisense and artificial intelligence perception. ACS Nano, 2022, 16(3): 4415–4425
https://doi.org/10.1021/acsnano.1c10680
63 H L Zhang, Y Yang, Y J Su, J Chen, K Adams, S Lee, C G Hu, Z L Wang. Triboelectric nanogenerator for harvesting vibration energy in full space and as self-powered acceleration sensor. Advanced Functional Materials, 2014, 24(10): 1401–1407
https://doi.org/10.1002/adfm.201302453
64 W Q Yang, J Chen, G Zhu, X N Wen, P Bai, Y J Su, Y Lin, Z L Wang. Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Research, 2013, 6(12): 880–886
https://doi.org/10.1007/s12274-013-0364-0
65 J Chen, G Zhu, W Q Yang, Q S Jing, P Bai, Y Yang, T C Hou, Z L Wang. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Advanced Materials, 2013, 25(42): 6094–6099
https://doi.org/10.1002/adma.201302397
66 J Yang, J Chen, Y Yang, H L Zhang, W Q Yang, P Bai, Y J Su, Z L Wang. Broadband vibrational energy harvesting based on a triboelectric nanogenerator. Advanced Energy Materials, 2014, 4(6): 1301322
https://doi.org/10.1002/aenm.201301322
67 W Q Yang, J Chen, Q S Jing, J Yang, X N Wen, Y J Su, G Zhu, P Bai, Z L Wang. 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Advanced Functional Materials, 2014, 24(26): 4090–4096
https://doi.org/10.1002/adfm.201304211
68 Y F Hu, J Yang, Q S Jing, S M Niu, W Z Wu, Z L Wang. Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester. ACS Nano, 2013, 7(11): 10424–10432
https://doi.org/10.1021/nn405209u
69 L Lin, S H Wang, Y N Xie, Q S Jing, S M Niu, Y F Hu, Z L Wang. Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Letters, 2013, 13(6): 2916–2923
https://doi.org/10.1021/nl4013002
70 G Zhu, J Chen, T J Zhang, Q S Jing, Z L Wang. Radial-arrayed rotary electrification for high performance triboelectric generator. Nature Communications, 2014, 5(1): 3426
https://doi.org/10.1038/ncomms4426
71 P Bai, G Zhu, Y Liu, J Chen, Q S Jing, W Q Yang, J S Ma, G Zhang, Z L Wang. Cylindrical rotating triboelectric nanogenerator. ACS Nano, 2013, 7(7): 6361–6366
https://doi.org/10.1021/nn402491y
72 Q Bai, X W Liao, Z W Chen, C Z Gan, H X Zou, K X Wei, Z Gu, X J Zheng. Snap-through triboelectric nanogenerator with magnetic coupling buckled bistable mechanism for harvesting rotational energy. Nano Energy, 2022, 96: 107118
https://doi.org/10.1016/j.nanoen.2022.107118
73 L Lin, Y N Xie, S M Niu, S H Wang, P K Yang, Z L Wang. Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of similar to 55%. ACS Nano, 2015, 9(1): 922–930
https://doi.org/10.1021/nn506673x
74 J Hu, X J Pu, H M Yang, Q X Zeng, Q Tang, D Z Zhang, C G Hu, Y Xi. A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor. Nano Research, 2019, 12(12): 3018–3023
https://doi.org/10.1007/s12274-019-2545-y
75 Y Yang, G Zhu, H L Zhang, J Chen, X D Zhong, Z H Lin, Y J Su, P Bai, X N Wen, Z L Wang. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano, 2013, 7(10): 9461–9468
https://doi.org/10.1021/nn4043157
76 Y N Xie, S H Wang, L Lin, Q S Jing, Z H Lin, S M Niu, Z Y Wu, Z L Wang. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano, 2013, 7(8): 7119–7125
https://doi.org/10.1021/nn402477h
77 X S Meng, G Zhu, Z L Wang. Robust thin-film generator based on segmented contact-electrification for harvesting wind energy. ACS Applied Materials & Interfaces, 2014, 6(11): 8011–8016
https://doi.org/10.1021/am501782f
78 H L Zhang, J Wang, Y H Xie, G Yao, Z C Yan, L Huang, S H Chen, T S Pan, L P Wang, Y J Su, W Yang, Y Lin. Self-powered, wireless, remote meteorologic monitoring based on triboelectric nanogenerator operated by scavenging wind energy. ACS Applied Materials & Interfaces, 2016, 8(48): 32649–32654
https://doi.org/10.1021/acsami.6b12798
79 Z Ren, Z Wang, Z Liu, L Wang, H Guo, L Li, S Li, X Chen, W Tang, Z L Wang. Energy harvesting from breeze wind (0.7–6 m·s–1) using ultra-stretchable triboelectric nanogenerator. Advanced Energy Materials, 2020, 10(36): 2001770
https://doi.org/10.1002/aenm.202001770
80 S Yong, J Wang, L Yang, H Wang, H Luo, R Liao, Z L Wang. Auto-switching self-powered system for efficient broad-band wind energy harvesting based on dual-rotation shaft triboelectric nanogenerator. Advanced Energy Materials, 2021, 11(26): 2101194
https://doi.org/10.1002/aenm.202101194
81 J Yang, J Chen, Y J Su, Q S Jing, Z L Li, F Yi, X N Wen, Z N Wang, Z L Wang. Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Advanced Materials, 2015, 27(8): 1316–1326
https://doi.org/10.1002/adma.201404794
82 J M Liu, N Y Cui, L Gu, X B Chen, S Bai, Y B Zheng, C X Hu, Y Qin. A three-dimensional integrated nanogenerator for effectively harvesting sound energy from the environment. Nanoscale, 2016, 8(9): 4938–4944
https://doi.org/10.1039/C5NR09087C
83 L Gu, N Y Cui, J M Liu, Y B Zheng, S Bai, Y Qin. Packaged triboelectric nanogenerator with high endurability for severe environments. Nanoscale, 2015, 7(43): 18049–18053
https://doi.org/10.1039/C5NR05514H
84 N Y Cui, X F Jia, A N Lin, J M Liu, S Bai, L Zhang, Y Qin, R S Yang, F Zhou, Y Q Li. Piezoelectric nanofiber/polymer composite membrane for noise harvesting and active acoustic wave detection. Nanoscale Advances, 2019, 1(12): 4909–4914
https://doi.org/10.1039/C9NA00484J
85 Y Xi, J Wang, Y L Zi, X G Li, C B Han, X Cao, C G Hu, Z L Wang. High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator. Nano Energy, 2017, 38: 101–108
https://doi.org/10.1016/j.nanoen.2017.04.053
86 X Fan, J Chen, J Yang, P Bai, Z L Li, Z L Wang. Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS Nano, 2015, 9(4): 4236–4243
https://doi.org/10.1021/acsnano.5b00618
87 J Yang, J Chen, Y Liu, W Q Yang, Y J Su, Z L Wang. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano, 2014, 8(3): 2649–2657
https://doi.org/10.1021/nn4063616
88 D M Lee, N Rubab, I Hyun, W Kang, Y J Kim, M Kang, B O Choi, S W Kim. Ultrasound-mediated triboelectric nanogenerator for powering on-demand transient electronics. Science Advances, 2022, 8(1): eabl8423
https://doi.org/10.1126/sciadv.abl8423
89 J Park, D H Kang, H Chae, S K Ghosh, C Jeong, Y Park, S Cho, Y Lee, J Kim, Y Ko, J J Kim, H Ko. Frequency-selective acoustic and haptic smart skin for dual-mode dynamic/static human-machine interface. Science Advances, 2022, 8(12): eabj9220
https://doi.org/10.1126/sciadv.abj9220
90 J Wang, L Ma, J He, Y Yao, X Zhu, L Peng, J Yang, K Li, M Qu. Superwettable hybrid dielectric based multimodal triboelectric nanogenerator with superior durability and efficiency for biomechanical energy and hydropower harvesting. Chemical Engineering Journal, 2022, 431: 134002
https://doi.org/10.1016/j.cej.2021.134002
91 J H Lee, S Kim, T Y Kim, U Khan, S W Kim. Water droplet-driven triboelectric nanogenerator with superhydrophobic surfaces. Nano Energy, 2019, 58: 579–584
https://doi.org/10.1016/j.nanoen.2019.01.078
92 L Liu, Q F Shi, J S Ho, C Lee. Study of thin film blue energy harvester based on triboelectric nanogenerator and seashore IoT applications. Nano Energy, 2019, 66: 104167
https://doi.org/10.1016/j.nanoen.2019.104167
93 W Zhong, L Xu, H M Wang, D Li, Z L Wang. Stacked pendulum-structured triboelectric nanogenerators for effectively harvesting low-frequency water wave energy. Nano Energy, 2019, 66: 104108
https://doi.org/10.1016/j.nanoen.2019.104108
94 M Wu, Y X Wang, S J Gao, R X Wang, C X Ma, Z Y Tang, N Bao, W X Wu, F R Fan, W Z Wu. Solution-synthesized chiral piezoelectric selenium nanowires for wearable self-powered human-integrated monitoring. Nano Energy, 2019, 56: 693–699
https://doi.org/10.1016/j.nanoen.2018.12.003
95 J H Nie, T Jiang, J J Shao, Z W Ren, Y Bai, M Iwamoto, X Y Chen, Z L Wang. Motion behavior of water droplets driven by triboelectric nanogenerator. Applied Physics Letters, 2018, 112(18): 183701
https://doi.org/10.1063/1.5030152
96 Y K Pang, S E Chen, Y H Chu, Z L Wang, C Y Cao. Matryoshka-inspired hierarchically structured triboelectric nanogenerators for wave energy harvesting. Nano Energy, 2019, 66: 104131
https://doi.org/10.1016/j.nanoen.2019.104131
97 T Jiang, H Pang, J An, P Lu, Y Feng, X Liang, W Zhong, Z L Wang. Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Advanced Energy Materials, 2020, 10(23): 2000064
https://doi.org/10.1002/aenm.202000064
98 K Xia, J Fu, Z Xu. Multiple-frequency high-output triboelectric nanogenerator based on a water balloon for all-weather water wave energy harvesting. Advanced Energy Materials, 2020, 10(28): 2000426
https://doi.org/10.1002/aenm.202000426
99 C Zhang, L Zhou, P Cheng, D Liu, C Zhang, X Li, S Li, J Wang, Z L Wang. Bifilar-pendulum-assisted multilayer-structured triboelectric nanogenerators for wave energy harvesting. Advanced Energy Materials, 2021, 11(12): 2003616
https://doi.org/10.1002/aenm.202003616
100 H Wu, N Mendel, S Ham, L Shui, G Zhou, F Mugele. Charge trapping-based electricity generator (CTEG): an ultrarobust and high efficiency nanogenerator for energy harvesting from water droplets. Advanced Materials, 2020, 32(33): 2001699
https://doi.org/10.1002/adma.202001699
101 D Zhang, W Yang, W Gong, W Ma, C Hou, Y Li, Q Zhang, H Wang. Abrasion resistant/waterproof stretchable triboelectric yarns based on fermat spirals. Advanced Materials, 2021, 33(26): 2100782
https://doi.org/10.1002/adma.202100782
102 C Cai, B Luo, Y Liu, Q Fu, T Liu, S Wang, S Nie. Advanced triboelectric materials for liquid energy harvesting and emerging application. Materials Today, 2022, 52: 299–326
https://doi.org/10.1016/j.mattod.2021.10.034
103 H Li, K Shin, G Henkelman. Effects of ensembles, ligand, and strain on adsorbate binding to alloy surfaces. Journal of Chemical Physics, 2018, 149(17): 174705
https://doi.org/10.1063/1.5053894
104 A Y Li, Y L Zi, H Y Guo, Z L Wang, F M Fernandez. Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry. Nature Nanotechnology, 2017, 12(5): 481–487
https://doi.org/10.1038/nnano.2017.17
105 H Li, S J Guo, K Shin, M S Wong, G Henkelman. Design of a Pd-Au nitrite reduction catalyst by identifying and optimizing active ensembles. ACS Catalysis, 2019, 9(9): 7957–7966
https://doi.org/10.1021/acscatal.9b02182
106 Y Feng, J Han, M Xu, X Liang, T Jiang, H Li, Z L Wang. Blue energy for green hydrogen fuel: a self-powered electrochemical conversion system driven by triboelectric nanogenerators. Advanced Energy Materials, 2022, 12(1): 2103143
https://doi.org/10.1002/aenm.202103143
107 X Liu, J Mo, W Wu, H Song, S Nie. Triboelectric pulsed direct-current enhanced radical generation for efficient degradation of organic pollutants in wastewater. Applied Catalysis B: Environmental, 2022, 312: 121422
https://doi.org/10.1016/j.apcatb.2022.121422
108 J Wang, S M Li, F Yi, Y L Zi, J Lin, X F Wang, Y L Xu, Z L Wang. Sustainably powering wearable electronics solely by biomechanical energy. Nature Communications, 2016, 7(1): 12744
https://doi.org/10.1038/ncomms12744
109 K Dong, X Peng, Z L Wang. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Advanced Materials, 2020, 32(5): 1902549
https://doi.org/10.1002/adma.201902549
110 J Luo, W Gao, Z L Wang. The triboelectric nanogenerator as an innovative technology toward intelligent sports. Advanced Materials, 2021, 33(17): 2004178
https://doi.org/10.1002/adma.202004178
111 P Tan, X Han, Y Zou, X Qu, J Xue, T Li, Y Wang, R Luo, X Cui, Y Xi, L Wu, B Xue, D Luo, Y Fan, X Chen, Z Li, Z L Wang. Self-powered gesture recognition wristband enabled by machine learning for full keyboard and multicommand input. Advanced Materials, 2022, 34(21): 2200793
https://doi.org/10.1002/adma.202200793
112 Z Zhang, Z Wang, Y Chen, Y Feng, S Dong, H Zhou, Z L Wang, C Zhang. Semiconductor contact-electrification-dominated tribovoltaic effect for ultrahigh power generation. Advanced Materials, 2022, 34(20): 2200146
https://doi.org/10.1002/adma.202200146
113 K Dong, X Peng, R Cheng, C Ning, Y Jiang, Y Zhang, Z L Wang. Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures. Advanced Materials, 2022, 34(21): 2109355
https://doi.org/10.1002/adma.202109355
114 H Wu, W He, C Shan, Z Wang, S Fu, Q Tang, H Guo, Y Du, W Liu, C Hu. Achieving remarkable charge density via self-polarization of polar high-k material in a charge-excitation triboelectric nanogenerator. Advanced Materials, 2022, 34(13): 2109918
https://doi.org/10.1002/adma.202109918
115 S A Pullano, D C Critello, A S Fiorillo. Triboelectric-induced pseudo-ICG for cardiovascular risk assessment on flexible electronics. Nano Energy, 2020, 67: 104278
https://doi.org/10.1016/j.nanoen.2019.104278
116 H N Huo, F Liu, Y X Luo, Q Gu, Y Liu, Z Z Wang, R Y Chen, L H Ji, Y J Lu, R Yao, J Cheng. Triboelectric nanogenerators for electro-assisted cell printing. Nano Energy, 2020, 67: 104150
https://doi.org/10.1016/j.nanoen.2019.104150
117 G B Lim. Pacemaker powered by cardiac motion. Nature Reviews. Cardiology, 2019, 16(7): 386–386
118 Q Zheng, Y Zou, Y L Zhang, Z Liu, B J Shi, X X Wang, Y M Jin, H Ouyang, Z Li, Z L Wang. Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Science Advances, 2016, 2(3): e1501478
https://doi.org/10.1126/sciadv.1501478
119 Z Liu, J Nie, B Miao, J Li, Y Cui, S Wang, X Zhang, G Zhao, Y Deng, Y Wu, Z Li, L Li, Z L Wang. Self-powered intracellular drug delivery by a biomechanical energy-driven triboelectric nanogenerator. Advanced Materials, 2019, 31(12): 1807795
https://doi.org/10.1002/adma.201807795
120 F Jin, T Li, T Yuan, L Du, C Lai, Q Wu, Y Zhao, F Sun, L Gu, T Wang, Z Q Feng. Physiologically self-regulated, fully implantable, battery-free system for peripheral nerve restoration. Advanced Materials, 2021, 33(48): 2104175
https://doi.org/10.1002/adma.202104175
121 Q Song, C Zheng, J Jia, H Zhao, Q Feng, H Zhang, L Wang, Z Zhang, Y Zhang. A probiotic spore-based oral autonomous nanoparticles generator for cancer therapy. Advanced Materials, 2019, 31(43): 1903793
https://doi.org/10.1002/adma.201903793
122 Z Y Huo, Y J Kim, I Y Suh, D M Lee, J H Lee, Y Du, S Wang, H J Yoon, S W Kim. Triboelectrification induced self-powered microbial disinfection using nanowire-enhanced localized electric field. Nature Communications, 2021, 12(1): 3693
https://doi.org/10.1038/s41467-021-24028-5
123 S Wu, P Dong, X Cui, Y Zhang. The strategy of circuit design for high performance nanogenerator based self-powered heart rate monitor system. Nano Energy, 2022, 96: 107136
https://doi.org/10.1016/j.nanoen.2022.107136
124 S Yao, X Zhao, X Wang, T Huang, Y Ding, J Zhang, Z Zhang, Z L Wang, L Li. Bioinspired electron polarization of nanozymes with a human self-generated electric field for cancer catalytic therapy. Advanced Materials, 2022, 34(15): 2109568
https://doi.org/10.1002/adma.202109568
125 P Jiang, L Zhang, H Guo, C Chen, C Wu, S Zhang, Z L Wang. Signal output of triboelectric nanogenerator at oil-water-solid multiphase interfaces and its application for dual-signal chemical sensing. Advanced Materials, 2019, 31(39): 1902793
https://doi.org/10.1002/adma.201902793
126 S Li, Z Zhao, D Liu, J An, Y Gao, L Zhou, Y Li, S Cui, J Wang, Z L Wang. A self-powered dual-type signal vector sensor for smart robotics and automatic vehicles. Advanced Materials, 2022, 34(14): 2110363
https://doi.org/10.1002/adma.202110363
127 Y Zou, P Tan, B Shi, H Ouyang, D Jiang, Z Liu, H Li, M Yu, C Wang, X Qu, L Zhao, Y Fan, Z L Wang, Z Li. A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nature Communications, 2019, 10(1): 2695
https://doi.org/10.1038/s41467-019-10433-4
128 C Zhang, J Chen, W Xuan, S Huang, B You, W Li, L Sun, H Jin, X Wang, S Dong, J Luo, A J Flewitt, Z L Wang. Conjunction of triboelectric nanogenerator with induction coils as wireless power sources and self-powered wireless sensors. Nature Communications, 2020, 11(1): 58
https://doi.org/10.1038/s41467-019-13653-w
129 Y Hao, J Wen, X Gao, D Nan, J Pan, Y Yang, B Chen, Z L Wang. Self-rebound cambered triboelectric nanogenerator array for self-powered sensing in kinematic analytics. ACS Nano, 2022, 16(1): 1271–1279
https://doi.org/10.1021/acsnano.1c09096
130 K Shrestha, S Sharma, G B Pradhan, T Bhatta, P Maharjan, S S Rana, S Lee, S Seonu, Y Shin, J Y Park. A siloxene/ecoflex nanocomposite-based triboelectric nanogenerator with enhanced charge retention by MoS2/LIG for self-powered touchless sensor applications. Advanced Functional Materials, 2022, 32(27): 2113005
https://doi.org/10.1002/adfm.202113005
131 X Wei, B Wang, Z Wu, Z L Wang. An open-environment tactile sensing system: toward simple and efficient material identification. Advanced Materials, 2022, 34(29): 2203073
https://doi.org/10.1002/adma.202203073
132 Y Yang, H L Zhang, J Chen, Q S Jing, Y S Zhou, X N Wen, Z L Wang. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano, 2013, 7(8): 7342–7351
https://doi.org/10.1021/nn403021m
133 Z L Wang. Triboelectric nanogenerator (TENG)-sparking an energy and sensor revolution. Advanced Energy Materials, 2020, 10(17): 2000137
https://doi.org/10.1002/aenm.202000137
134 H Wu, J Wang, Z Wu, S Kang, X Wei, H Wang, H Luo, L Yang, R Liao, Z L Wang. Multi-parameter optimized triboelectric nanogenerator based self-powered sensor network for broadband aeolian vibration online-monitoring of transmission lines. Advanced Energy Materials, 2022, 12(13): 2103654
https://doi.org/10.1002/aenm.202103654
135 J Luo, Z Wang, L Xu, A C Wang, K Han, T Jiang, Q Lai, Y Bai, W Tang, F R Fan, Z L Wang. Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nature Communications, 2019, 10(1): 5147
https://doi.org/10.1038/s41467-019-13166-6
136 W Zhou, H Du, L Kang, X Du, Y Shi, X Qiang, H Li, J Zhao. Microstructure evolution and improved permeability of ceramic waste-based bricks. Materials, 2022, 15(3): 1130
https://doi.org/10.3390/ma15031130
137 Y S Zhou, G Zhu, S M Niu, Y Liu, P S Bai, Q Jing, Z L Wang. Nanometer resolution self-powered static and dynamic motion sensor based on micro-grated triboelectrification. Advanced Materials, 2014, 26(11): 1719–1724
https://doi.org/10.1002/adma.201304619
138 J Sun, L Zhang, Z Li, Q Tang, J Chen, Y Huang, C Hu, H Guo, Y Peng, Z L Wang. A mobile and self-powered micro-flow pump based on triboelectricity driven electroosmosis. Advanced Materials, 2021, 33(34): 2102765
https://doi.org/10.1002/adma.202102765
139 Q S Jing, G Zhu, W Z Wu, P Bai, Y N Xie, R P S Han, Z L Wang. Self-powered triboelectric velocity sensor for dual-mode sensing of rectified linear and rotary motions. Nano Energy, 2014, 10: 305–312
https://doi.org/10.1016/j.nanoen.2014.09.018
140 Z H Lin, G Zhu, Y S Zhou, Y Yang, P Bai, J Chen, Z L Wang. A self-powered triboelectric nanosensor for mercury ion detection. Angewandte Chemie International Edition, 2013, 52(19): 5065–5069
https://doi.org/10.1002/anie.201300437
141 H L Zhang, Y Yang, Y J Su, J Chen, C G Hu, Z K Wu, Y Liu, C P Wong, Y Bando, Z L Wang. Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol. Nano Energy, 2013, 2(5): 693–701
https://doi.org/10.1016/j.nanoen.2013.08.004
142 Z H Lin, G Cheng, W Z Wu, K C Pradel, Z L Wang. Dual-mode triboelectric nanogenerator for harvesting water energy and as a self-powered ethanol nanosensor. ACS Nano, 2014, 8(6): 6440–6448
https://doi.org/10.1021/nn501983s
143 L Zhang, S Bai, C Su, Y B Zheng, Y Qin, C Xu, Z L Wang. A high-reliability kevlar fiber-ZnO nanowires hybrid nanogenerator and its application on self-powered UV detection. Advanced Functional Materials, 2015, 25(36): 5794–5798
https://doi.org/10.1002/adfm.201502646
144 L Cheng, Y B Zheng, Q Xu, Y Qin. A light sensitive nanogenerator for self-powered UV detection with two measuring ranges. Advanced Optical Materials, 2017, 5(1): 1600623
https://doi.org/10.1002/adom.201600623
145 Y B Zheng, L Cheng, M M Yuan, Z Wang, L Zhang, Y Qin, T Jing. An electrospun nanowire-based triboelectric nanogenerator and its application in a fully self-powered UV detector. Nanoscale, 2014, 6(14): 7842–7846
https://doi.org/10.1039/C4NR01934B
146 S Bai, W W Wu, Y Qin, N Y Cui, D J Bayerl, X D Wang. High-performance integrated ZnO nanowire UV sensors on rigid and flexible substrates. Advanced Functional Materials, 2011, 21(23): 4464–4469
https://doi.org/10.1002/adfm.201101319
147 G D Li, Z Sun, D Y Zhang, Q Xu, L X Meng, Y Qin. Mechanism of sensitivity enhancement of a ZnO nanofilm gas sensor by UV light illumination. ACS Sensors, 2019, 4(6): 1577–1585
https://doi.org/10.1021/acssensors.9b00259
148 G Zhu, W Q Yang, T J Zhang, Q S Jing, J Chen, Y S Zhou, P Bai, Z L Wang. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Letters, 2014, 14(6): 3208–3213
https://doi.org/10.1021/nl5005652
149 Q L Hua, J L Sun, H T Liu, R R Bao, R M Yu, J Y Zhai, C F Pan, Z L Wang. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nature Communications, 2018, 9(1): 244
https://doi.org/10.1038/s41467-017-02685-9
150 X H Li, Z H Lin, G Cheng, X N Wen, Y Liu, S M Niu, Z L Wang. 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor. ACS Nano, 2014, 8(10): 10674–10681
https://doi.org/10.1021/nn504243j
151 L Y Wang, W A Daoud. Hybrid conductive hydrogels for washable human motion energy harvester and self-powered temperature-stress dual sensor. Nano Energy, 2019, 66: 104080
https://doi.org/10.1016/j.nanoen.2019.104080
152 J Lai, Y Ke, Z Cao, W Xu, J Pan, Y Dong, Q Zhou, G Meng, C Pan, F Xia. Bimetallic strip based triboelectric nanogenerator for self-powered high temperature alarm system. Nano Today, 2022, 43: 101437
https://doi.org/10.1016/j.nantod.2022.101437
153 T Jiang, X Y Chen, C B Han, W Tang, Z L Wang. Theoretical study of rotary freestanding triboelectric nanogenerators. Advanced Functional Materials, 2015, 25(19): 2928–2938
https://doi.org/10.1002/adfm.201500447
154 Y N Xie, S H Wang, S M Niu, L Lin, Q S Jing, J Yang, Z Y Wu, Z L Wang. Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Advanced Materials, 2014, 26(38): 6599–6607
https://doi.org/10.1002/adma.201402428
155 Y L Zi, H Y Guo, Z Wen, M H Yeh, C G Hu, Z L Wang. Harvesting low-frequency (< 5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator. ACS Nano, 2016, 10(4): 4797–4805
https://doi.org/10.1021/acsnano.6b01569
156 P Chen, J An, S Shu, R Cheng, J Nie, T Jiang, Z L Wang. Super-durable, low-wear, and high-performance fur-brush triboelectric nanogenerator for wind and water energy harvesting for smart agriculture. Advanced Energy Materials, 2021, 11(9): 2003066
https://doi.org/10.1002/aenm.202003066
157 H Wu, Z Wang, Y Zi. Multi-mode water-tube-based triboelectric nanogenerator designed for low-frequency energy harvesting with ultrahigh volumetric charge density. Advanced Energy Materials, 2021, 11(16): 2100038
https://doi.org/10.1002/aenm.202100038
158 J C Maxwell. XXV. On physical lines of force: Part I.—The theory of molecular vortices applied to magnetic phenomena. London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1861, 21(139): 161–175
https://doi.org/10.1080/14786446108643033
159 Z L Wang. On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Materials Today, 2017, 20(2): 74–82
https://doi.org/10.1016/j.mattod.2016.12.001
160 P X Gao, Y Ding, W J Mai, W L Hughes, C S Lao, Z L Wang. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science, 2005, 309(5741): 1700–1704
https://doi.org/10.1126/science.1116495
161 X Y Kong, Y Ding, R Yang, Z L Wang. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science, 2004, 303(5662): 1348–1351
https://doi.org/10.1126/science.1092356
162 Z W Pan, Z R Dai, Z L Wang. Nanobelts of semiconducting oxides. Science, 2001, 291(5510): 1947–1949
https://doi.org/10.1126/science.1058120
163 W Z Guo, C X Tan, K M Shi, J W Li, X X Wang, B Sun, X Y Huang, Y Z Long, P K Jiang. Wireless piezoelectric devices based on electrospun PVDF/BaTiO3 NW nanocomposite fibers for human motion monitoring. Nanoscale, 2018, 10(37): 17751–17760
https://doi.org/10.1039/C8NR05292A
164 K M Shi, X Y Huang, B Sun, Z Y Wu, J L He, P K Jiang. Cellulose/BaTiO3 aerogel paper based flexible piezoelectric nanogenerators and the electric coupling with triboelectricity. Nano Energy, 2019, 57: 450–458
https://doi.org/10.1016/j.nanoen.2018.12.076
165 R S Yang, Y Qin, L M Dai, Z L Wang. Power generation with laterally packaged piezoelectric fine wires. Nature Nanotechnology, 2009, 4(1): 34–39
https://doi.org/10.1038/nnano.2008.314
166 W Z Wu, Z L Wang. Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nature Reviews. Materials, 2016, 1(7): 16031
https://doi.org/10.1038/natrevmats.2016.31
167 W Z Wu, L Wang, Y L Li, F Zhang, L Lin, S M Niu, D Chenet, X Zhang, Y F Hao, T F Heinz, J Hone, Z L Wang. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature, 2014, 514(7523): 470–474
https://doi.org/10.1038/nature13792
168 W Li, D Torres, R Diaz, Z J Wang, C S Wu, C Wang, Z L Wang, N Sepulveda. Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for flexible electronics. Nature Communications, 2017, 8(1): 15310
https://doi.org/10.1038/ncomms15310
169 C F Pan, L Dong, G Zhu, S M Niu, R M Yu, Q Yang, Y Liu, Z L Wang. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nature Photonics, 2013, 7(9): 752–758
https://doi.org/10.1038/nphoton.2013.191
170 S Xu, B J Hansen, Z L Wang. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nature Communications, 2010, 1(1): 93
https://doi.org/10.1038/ncomms1098
171 Y Qin, X D Wang, Z L Wang. Microfibre-nanowire hybrid structure for energy scavenging. Nature, 2008, 451(7180): 809–813
https://doi.org/10.1038/nature06601
172 M Matsunaga, J Hirotani, S Kishimoto, Y Ohno. High-output, transparent, stretchable triboelectric nanogenerator based on carbon nanotube thin film toward wearable energy harvesters. Nano Energy, 2020, 67: 104297
https://doi.org/10.1016/j.nanoen.2019.104297
173 C S Wu, A C Wang, W B Ding, H Y Guo, Z L Wang. Triboelectric nanogenerator: a foundation of the energy for the new era. Advanced Energy Materials, 2019, 9(1): 1802906
https://doi.org/10.1002/aenm.201802906
174 H Y Zou, Y Zhang, L T Guo, P H Wang, X He, G Z Dai, H W Zheng, C Y Chen, A C Wang, C Xu, Z L Wang. Quantifying the triboelectric series. Nature Communications, 2019, 10(1): 1427
https://doi.org/10.1038/s41467-019-09461-x
175 Z L Wang. Triboelectric nanogenerators as new energy technology and self-powered sensors—principles, problems and perspectives. Faraday Discussions, 2014, 176: 447–458
https://doi.org/10.1039/C4FD00159A
176 J Dong, S Huang, J Luo, J Zhao, F R Fan, Z Q Tian. Supercapacitor-inspired triboelectric nanogenerator based on electrostatic double layer. Nano Energy, 2022, 95: 106971
https://doi.org/10.1016/j.nanoen.2022.106971
177 H J Guo, X T Jia, L Liu, X Cao, N Wang, Z L Wang. Freestanding triboelectric nanogenerator enables noncontact motion-tracking and positioning. ACS Nano, 2018, 12(4): 3461–3467
https://doi.org/10.1021/acsnano.8b00140
178 Y H Yu, Z D Li, Y M Wang, S Q Gong, X D Wang. Sequential infiltration synthesis of doped polymer films with tunable electrical properties for efficient triboelectric nanogenerator development. Advanced Materials, 2015, 27(33): 4938–4944
https://doi.org/10.1002/adma.201502546
179 Z L Wang, L Lin, J Chen, S Niu, Y Zi. Triboelectric nanogenerator: vertical contact-separation mode. In: Triboelectric Nanogenerators. Cham, Switzerland: Springer International Publishing, 2016, 23–47
180 S Abu Nahian, R K Cheedarala, K K Ahn. A study of sustainable green current generated by the fluid-based triboelectric nanogenerator (FluTENG) with a comparison of contact and sliding mode. Nano Energy, 2017, 38: 458–466
181 Z C Zhang, J W Zhang, H Zhang, H G Wang, Z W Hu, W P Xuan, S R Dong, J K Luo. A portable triboelectric nanogenerator for real-time respiration monitoring. Nanoscale Research Letters, 2019, 14(1): 354
https://doi.org/10.1186/s11671-019-3187-4
182 M T Rahman, M Salauddin, P Maharjan, M S Rasel, H Cho, J Y Park. Natural wind-driven ultra-compact and highly efficient hybridized nanogenerator for self-sustained wireless environmental monitoring system. Nano Energy, 2019, 57: 256–268
https://doi.org/10.1016/j.nanoen.2018.12.052
183 Q Tang, X J Pu, Q X Zeng, H M Yang, J Li, Y Wu, H Y Guo, Z Y Huang, C G Hu. A strategy to promote efficiency and durability for sliding energy harvesting by designing alternating magnetic stripe arrays in triboelectric nanogenerator. Nano Energy, 2019, 66: 104087
https://doi.org/10.1016/j.nanoen.2019.104087
184 S H Wang, L Lin, Y N Xie, Q S Jing, S M Niu, Z L Wang. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Letters, 2013, 13(5): 2226–2233
https://doi.org/10.1021/nl400738p
185 G Khandelwal, T Minocha, S K Yadav, A Chandrasekhar, N P Maria Joseph Raj, S C Gupta, S J Kim. All edible materials derived biocompatible and biodegradable triboelectric nanogenerator. Nano Energy, 2019, 65: 104016
https://doi.org/10.1016/j.nanoen.2019.104016
186 J Chen, H Y Guo, Z Y Wu, G Q Xu, Y L Zi, C G Hu, Z L Wang. Actuation and sensor integrated self-powered cantilever system based on TENG technology. Nano Energy, 2019, 64: 103920
https://doi.org/10.1016/j.nanoen.2019.103920
187 W Paosangthong, M Wagih, R Torah, S Beeby. Textile-based triboelectric nanogenerator with alternating positive and negative freestanding grating structure. Nano Energy, 2019, 66: 104148
https://doi.org/10.1016/j.nanoen.2019.104148
188 D H Zhang, J W Shi, Y L Si, T Li. Multi-grating triboelectric nanogenerator for harvesting low-frequency ocean wave energy. Nano Energy, 2019, 61: 132–140
https://doi.org/10.1016/j.nanoen.2019.04.046
189 Z Q Bai, Z Zhang, J Y Li, J S Guo. Textile-based triboelectric nanogenerators with high-performance via optimized functional elastomer composited tribomaterials as wearable power source. Nano Energy, 2019, 65: 104012
https://doi.org/10.1016/j.nanoen.2019.104012
190 S Ankanahalli Shankaregowda, R F Sagade Muktar Ahmed, C B Nanjegowda, J Wang, S Guan, M Puttaswamy, A Amini, Y Zhang, D Kong, K Sannathammegowda, F Wang, C Cheng. Single-electrode triboelectric nanogenerator based on economical graphite coated paper for harvesting waste environmental energy. Nano Energy, 2019, 66: 104141
https://doi.org/10.1016/j.nanoen.2019.104141</jrn
191 Y H Wu, Y Luo, J K Qu, W A Daoud, T Qi. Liquid single-electrode triboelectric nanogenerator based on graphene oxide dispersion for wearable electronics. Nano Energy, 2019, 64: 103948
https://doi.org/10.1016/j.nanoen.2019.103948
192 S M Niu, Y Liu, X Y Chen, S H Wang, Y S Zhou, L Lin, Y N Xie, Z L Wang. Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy, 2015, 12: 760–774
https://doi.org/10.1016/j.nanoen.2015.01.013
193 H Y Shao, Z Wen, P Cheng, N Sun, Q Q Shen, C J Zhou, M F Peng, Y Q Yang, X K Xie, X H Sun. Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy. Nano Energy, 2017, 39: 608–615
https://doi.org/10.1016/j.nanoen.2017.07.045
194 Y L Chen, Y C Wang, Y Zhang, H Y Zou, Z M Lin, G B Zhang, C W Zou, Z L Wang. Elastic-beam triboelectric nanogenerator for high-performance multifunctional applications: sensitive scale, acceleration/force/vibration sensor, and intelligent keyboard. Advanced Energy Materials, 2018, 8(29): 1802159
https://doi.org/10.1002/aenm.201802159
195 S H Wang, Y N Xie, S M Niu, L Lin, Z L Wang. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Advanced Materials, 2014, 26(18): 2818–2824
https://doi.org/10.1002/adma.201305303
196 Z Wen, M H Yeh, H Y Guo, J Wang, Y L Zi, W D Xu, J N Deng, L Zhu, X Wang, C G Hu, L Zhu, X Sun, Z L Wang. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Science Advances, 2016, 2(10): e1600097
https://doi.org/10.1126/sciadv.1600097
197 X J Pu, H Y Guo, J Chen, X Wang, Y Xi, C G Hu, Z L Wang. Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Science Advances, 2017, 3(7): e1700694
https://doi.org/10.1126/sciadv.1700694
198 C R Liu, Y S Wang, N Zhang, X Yang, Z K Wang, L B Zhao, W H Yang, L X Dong, L F Che, G F Wang, X Zhou. A self-powered and high sensitivity acceleration sensor with V-Q-a model based on triboelectric nanogenerators (TENGs). Nano Energy, 2020, 67: 104228
https://doi.org/10.1016/j.nanoen.2019.104228
199 J Wang, H L Zhang, X Y Xie, M Gao, W Q Yang, Y Lin. Water energy harvesting and self-powered visible light communication based on triboelectric nanogenerator. Energy Technology, 2018, 6(10): 1929–1934
https://doi.org/10.1002/ente.201800035
200 Y Wu, Q X Zeng, Q Tang, W L Liu, G L Liu, Y Zhang, J Wu, C G Hu, X Wang. A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy. Nano Energy, 2020, 67: 104205
https://doi.org/10.1016/j.nanoen.2019.104205
201 G L Liu, H Y Guo, S X Xu, C G Hu, Z L Wang. Oblate spheroidal triboelectric nanogenerator for all-weather blue energy harvesting. Advanced Energy Materials, 2019, 9(26): 1900801
https://doi.org/10.1002/aenm.201900801
202 H Sun, J Sun, K Zhao, L Wang, K Wang. Data-driven ICA-Bi-LSTM-combined lithium battery SOH estimation. Mathematical Problems in Engineering, 2022, 2022: 9645892
203 D Li, S Li, S Zhang, J Sun, L Wang, K Wang. Aging state prediction for supercapacitors based on heuristic Kalman filter optimization extreme learning machine. Energy, 2022, 250: 123773
https://doi.org/10.1016/j.energy.2022.123773
204 Q Li, D Li, K Zhao, L Wang, K Wang. State of health estimation of lithium-ion battery based on improved ant lion optimization and support vector regression. Journal of Energy Storage, 2022, 50: 104215
https://doi.org/10.1016/j.est.2022.104215
205 A H Abd El-Kareem, M Abd Elhameed, M M Elkholy. Effective damping of local low frequency oscillations in power systems integrated with bulk PV generation. Protection and Control of Modern Power Systems, 2021, 6(1): 41
https://doi.org/10.1186/s41601-021-00219-6
206 S K Injeti, V K Thunuguntla. Optimal integration of DGs into radial distribution network in the presence of plug-in electric vehicles to minimize daily active power losses and to improve the voltage profile of the system using bio-inspired optimization algorithms. Protection and Control of Modern Power Systems, 2020, 5(1): 3
https://doi.org/10.1186/s41601-019-0149-x
207 D Li, L Wang, C Duan, Q Li, K Wang. Temperature prediction of lithium-ion batteries based on electrochemical impedance spectrum: a review. International Journal of Energy Research, 2022, 46(8): 10372–10388
https://doi.org/10.1002/er.7905
208 Z Cui, J Dai, J Sun, D Li, L Wang, K Wang. Hybrid methods using neural network and kalman filter for the state of charge estimation of lithium-ion battery. Mathematical Problems in Engineering, 2022, 2022: 9616124
https://doi.org/10.1155/2022/9616124
209 C Liu, D Li, L Wang, L Li, K Wang. Strong robustness and high accuracy in predicting remaining useful life of supercapacitors. APL Materials, 2022, 10(6): 061106
https://doi.org/10.1063/5.0092074
210 M Bozorg, A Bracale, P Caramia, G Carpinelli, M Carpita, P De Falco. Bayesian bootstrap quantile regression for probabilistic photovoltaic power forecasting. Protection and Control of Modern Power Systems, 2020, 5(1): 21
https://doi.org/10.1186/s41601-020-00167-7
211 P K Guchhait, A Banerjee. Stability enhancement of wind energy integrated hybrid system with the help of static synchronous compensator and symbiosis organisms search algorithm. Protection and Control of Modern Power Systems, 2020, 5(1): 11
https://doi.org/10.1186/s41601-020-00158-8
212 Z Cui, L Wang, Q Li, K Wang. A comprehensive review on the state of charge estimation for lithium-ion battery based on neural network. International Journal of Energy Research, 2022, 46(5): 5423–5440
https://doi.org/10.1002/er.7545
213 C Liu, Y Zhang, J Sun, Z Cui, K Wang. Stacked bidirectional LSTM RNN to evaluate the remaining useful life of supercapacitor. International Journal of Energy Research, 2022, 46(3): 3034–3043
https://doi.org/10.1002/er.7360
214 Z Yi, K Zhao, J Sun, L Wang, K Wang, Y Ma. Prediction of the remaining useful life of supercapacitors. Mathematical Problems in Engineering, 2022, 2022: 7620382
https://doi.org/10.1155/2022/7620382
215 L Zhang, L Cheng, S Bai, C Su, X B Chen, Y Qin. Controllable fabrication of ultrafine oblique organic nanowire arrays and their application in energy harvesting. Nanoscale, 2015, 7(4): 1285–1289
https://doi.org/10.1039/C4NR06237J
216 Y Wang, Y Yang, Z L Wang. Triboelectric nanogenerators as flexible power sources. npj Flexible Electronics, 2017, 1(1): 10
217 L Jin, B B Zhang, L Zhang, W Q Yang. Nanogenerator as new energy technology for self-powered intelligent transportation system. Nano Energy, 2019, 66: 104086
https://doi.org/10.1016/j.nanoen.2019.104086
218 Y Gai, Y Bai, Y Cao, E Wang, J Xue, X Qu, Z Liu, D Luo, Z Li. A gyroscope nanogenerator with frequency up-conversion effect for fitness and energy harvesting. Small, 2022, 18(14): 2108091
https://doi.org/10.1002/smll.202108091
219 D Liu, X Yin, H Y Guo, L L Zhou, X Y Li, C L Zhang, J Wang, Z L Wang. A constant current triboelectric nanogenerator arising from electrostatic breakdown. Science Advances, 2019, 5(4): eaav6437
https://doi.org/10.1126/sciadv.aav6437
220 J M Liu, L Gu, N Y Cui, Q Xu, Y Qin, R S Yang. Fabric-based triboelectric nanogenerators. Research, 2019, 2019: 1091632
https://doi.org/10.34133/2019/1091632
221 J B Qi, A C Wang, W F Yang, M Y Zhang, C Y Hou, Q H Zhang, Y G Li, H Z Wang. Hydrogel-based hierarchically wrinkled stretchable nanofibrous membrane for high performance wearable triboelectric nanogenerator. Nano Energy, 2020, 67: 104206
https://doi.org/10.1016/j.nanoen.2019.104206
222 J Chen, Y Huang, N N Zhang, H Y Zou, R Y Liu, C Y Tao, X Fan, Z L Wang. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nature Energy, 2016, 1(10): 16138
https://doi.org/10.1038/nenergy.2016.138
223 H Y Guo, X J Pu, J Chen, Y Meng, M H Yeh, G L Liu, Q Tang, B D Chen, D Liu, S Qi, C Wu, C Hu, J Wang, Z L Wang. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Science Robotics, 2018, 3(20): eaat2516
https://doi.org/10.1126/scirobotics.aat2516
224 L Zhang, C Su, L Cheng, N Y Cui, L Gu, Y Qin, R S Yang, F Zhou. Enhancing the performance of textile triboelectric nanogenerators with oblique microrod arrays for wearable energy harvesting. ACS Applied Materials & Interfaces, 2019, 11(30): 26824–26829
https://doi.org/10.1021/acsami.9b06627
225 X X Wang, G F Yu, J Zhang, M Yu, S Ramakrishna, Y Z Long. Conductive polymer ultrafine fibers via electrospinning: preparation, physical properties and applications. Progress in Materials Science, 2021, 115: 100704
https://doi.org/10.1016/j.pmatsci.2020.100704
226 B Dudem, R D I G Dharmasena, R Riaz, V Vivekananthan, K G U Wijayantha, P Lugli, L Petti, S R P Silva. Wearable triboelectric nanogenerator from waste materials for autonomous information transmission via morse code. ACS Applied Materials & Interfaces, 2022, 14(4): 5328–5337
https://doi.org/10.1021/acsami.1c20984
227 H Ouyang, Z Liu, N Li, B J Shi, Y Zou, F Xie, Y Ma, Z Li, H Li, Q Zheng, X Qu, Y Fan, Z L Wang, H Zhang, Z Li. Symbiotic cardiac pacemaker. Nature Communications, 2019, 10(1): 1821
https://doi.org/10.1038/s41467-019-09851-1
228 W Wang, J Pang, J Su, F Li, Q Li, X Wang, J Wang, B Ibarlucea, X Liu, Y Li, W Zhou, K Wang, Q Han, L Liu, R Zang, M H Rümmeli, Y Li, H Liu, H Hu, G Cuniberti. Applications of nanogenerators for biomedical engineering and healthcare systems. InfoMat, 2022, 4(2): e12262
https://doi.org/10.1002/inf2.12262
229 F Yang, J M Guo, L Zhao, W Y Shang, Y Y Gao, S Zhang, G Q Gu, B Zhang, P Cui, G Cheng, Z Du. Tuning oxygen vacancies and improving UV sensing of ZnO nanowire by micro-plasma powered by a triboelectric nanogenerator. Nano Energy, 2020, 67: 104210
https://doi.org/10.1016/j.nanoen.2019.104210
230 Q K Han, Z Ding, Z Y Qin, T Y Wang, X P Xu, F L Chu. A triboelectric rolling ball bearing with self-powering and self-sensing capabilities. Nano Energy, 2020, 67: 104277
https://doi.org/10.1016/j.nanoen.2019.104277
231 D Z Zhang, Z Y Xu, Z M Yang, X S Song. High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator. Nano Energy, 2020, 67: 104251
https://doi.org/10.1016/j.nanoen.2019.104251
232 F Wen, H Wang, T Y Y He, Q F Shi, Z D Sun, M L Zhu, Z X Zhang, Z G Cao, Y B Dai, T Zhang, C Lee. Battery-free short-range self-powered wireless sensor network (SS-WSN) using TENG based direct sensory transmission (TDST) mechanism. Nano Energy, 2020, 67: 104266
https://doi.org/10.1016/j.nanoen.2019.104266
233 C Bu, F Li, K Yin, J Pang, L Wang, K Wang. Research progress and prospect of triboelectric nanogenerators as self-powered human body sensors. ACS Applied Electronic Materials, 2020, 2(4): 863–878
https://doi.org/10.1021/acsaelm.0c00022
234 W Lei, S Lu, Q Wanga, P Yuan, H Yu. A method of measuring weak-charge of self-powered sensors based on triboelectric nanogenerator. Nano Energy, 2022, 95: 106997
https://doi.org/10.1016/j.nanoen.2022.106997
235 C Li, X Liu, D Yang, Z Liu. Triboelectric nanogenerator based on a moving bubble in liquid for mechanical energy harvesting and water level monitoring. Nano Energy, 2022, 95: 106998
https://doi.org/10.1016/j.nanoen.2022.106998
236 C Zhao, D Liu, Y Wang, Z Hu, Q Zhang, Z Zhang, H Wang, T Du, Y Zou, H Yuan, X Pan, J Mi, M Xu. Highly-stretchable rope-like triboelectric nanogenerator for self-powered monitoring in marine structures. Nano Energy, 2022, 94: 106926
https://doi.org/10.1016/j.nanoen.2022.106926
237 X Q Zhang, M Yu, Z R Ma, H Ouyang, Y Zou, S L Zhang, H K Niu, X X Pan, M Y Xu, Z Li, Z L Wang. Self-powered distributed water level sensors based on liquid−solid triboelectric nanogenerators for ship draft detecting. Advanced Functional Materials, 2019, 29(41): 1900327
https://doi.org/10.1002/adfm.201900327
238 X Xiao, X Q Zhang, S Y Wang, H Ouyang, P F Chen, L G Song, H C Yuan, Y L Ji, P H Wang, Z Li, M Xu, Z L Wang. Honeycomb structure inspired triboelectric nanogenerator for highly effective vibration energy harvesting and self-powered engine condition monitoring. Advanced Energy Materials, 2019, 9(40): 1902460
https://doi.org/10.1002/aenm.201902460
239 J W Lee, S Jung, T W Lee, J Jo, H Y Chae, K Choi, J J Kim, J H Lee, C Yang, J M Baik. High-output triboelectric nanogenerator based on dual inductive and resonance effects-controlled highly transparent polyimide for self-powered sensor network systems. Advanced Energy Materials, 2019, 9(36): 1901987
https://doi.org/10.1002/aenm.201901987
240 C C Qian, L H Li, M Gao, H Y Yang, Z R Cai, B D Chen, Z Y Xiang, Z J Zhang, Y L Song. All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors. Nano Energy, 2019, 63: 103885
https://doi.org/10.1016/j.nanoen.2019.103885
241 C Chen, Z Wen, A M Wei, X K Xie, N N Zhai, X L Wei, M F Peng, Y N Liu, X H Sun, J T W Yeow. Self-powered on-line ion concentration monitor in water transportation driven by triboelectric nanogenerator. Nano Energy, 2019, 62: 442–448
https://doi.org/10.1016/j.nanoen.2019.05.029
242 J H Ahn, J Y Hwang, C G Kim, G H Nam, K K Ahn. Unsteady streaming flow based teng using hydrophobic film tube with different charge affinity. Nano Energy, 2020, 67: 104269
https://doi.org/10.1016/j.nanoen.2019.104269
243 Y Chen, B Xie, J Long, Y Kuang, X Chen, M Hou, J Gao, S Zhou, B Fan, Y He, Y T Zhang, C P Wong, Z Wang, N Zhao. Interfacial laser-induced graphene enabling high-performance liquid−solid triboelectric nanogenerator. Advanced Materials, 2021, 33(44): 2104290
https://doi.org/10.1002/adma.202104290
244 Q Zhang, Y Li, H Cai, M Yao, H Zhang, L Guo, Z Lv, M Li, X Lu, C Ren, P Zhang, Y Zhang, X Shi, G Ding, J Yao, Z Yang, Z L Wang. A single-droplet electricity generator achieves an ultrahigh output over 100 V without pre-charging. Advanced Materials, 2021, 33(51): 2105761
https://doi.org/10.1002/adma.202105761
245 J Nie, Z Ren, L Xu, S Lin, F Zhan, X Chen, Z L Wang. Probing contact-electrification-induced electron and ion transfers at a liquid−solid interface. Advanced Materials, 2020, 32(2): 1905696
https://doi.org/10.1002/adma.201905696
246 J Nie, Z Wang, Z Ren, S Li, X Chen, Z L Wang. Power generation from the interaction of a liquid droplet and a liquid membrane. Nature Communications, 2019, 10(1): 2264
https://doi.org/10.1038/s41467-019-10232-x
247 S Lin, L Xu, A Chi Wang, Z L Wang. Quantifying electron-transfer in liquid−solid contact electrification and the formation of electric double-layer. Nature Communications, 2020, 11(1): 399
https://doi.org/10.1038/s41467-019-14278-9
248 X J Zhao, S Y Kuang, Z L Wang, G Zhu. Highly adaptive solid-liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy. ACS Nano, 2018, 12(5): 4280–4285
https://doi.org/10.1021/acsnano.7b08716
249 Q Zhang, Q Liang, Q Liao, M Ma, F Gao, X Zhao, Y Song, L Song, X Xun, Y Zhang. An amphiphobic hydraulic triboelectric nanogenerator for a self-cleaning and self-charging power system. Advanced Functional Materials, 2018, 28(35): 1803117
https://doi.org/10.1002/adfm.201803117
250 W Tang, T Jiang, F R Fan, A F Yu, C Zhang, X Cao, Z L Wang. Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Advanced Functional Materials, 2015, 25(24): 3718–3725
https://doi.org/10.1002/adfm.201501331
251 H Zhou, J Dong, H Liu, L Zhu, C Xu, X He, S Zhang, Q Song. The coordination of displacement and conduction currents to boost the instantaneous power output of a water-tube triboelectric nanogenerator. Nano Energy, 2022, 95: 107050
https://doi.org/10.1016/j.nanoen.2022.107050
252 D Choi, D W Kim, D Yoo, K J Cha, M La, D S Kim. Spontaneous occurrence of liquid–solid contact electrification in nature: toward a robust triboelectric nanogenerator inspired by the natural lotus leaf. Nano Energy, 2017, 36: 250–259
https://doi.org/10.1016/j.nanoen.2017.04.026
253 X Y Li, J Tao, X D Wang, J Zhu, C F Pan, Z L Wang. Networks of high performance triboelectric nanogenerators based on liquid−solid interface contact electrification for harvesting low-frequency blue energy. Advanced Energy Materials, 2018, 8(21): 1800705
https://doi.org/10.1002/aenm.201800705
254 D Y Jiang, F Guo, M Y Xu, J C Cai, S Cong, M Jia, G J Chen, Y C Song. Conformal fluorine coated carbon paper for an energy harvesting water wheel. Nano Energy, 2019, 58: 842–851
https://doi.org/10.1016/j.nanoen.2019.01.083
255 Y P Liu, Y B Zheng, T H Li, D A Wang, F Zhou. Water−solid triboelectrification with self-repairable surfaces for water-flow energy harvesting. Nano Energy, 2019, 61: 454–461
https://doi.org/10.1016/j.nanoen.2019.05.007
256 H Cho, I Kim, J Park, D Kim. A waterwheel hybrid generator with disk triboelectric nanogenerator and electromagnetic generator as a power source for an electrocoagulation system. Nano Energy, 2022, 95: 107048
https://doi.org/10.1016/j.nanoen.2022.107048
257 Y N Xie, S H Wang, S M Niu, L Lin, Q S Jing, Y J Su, Z Y Wu, Z L Wang. Multi-layered disk triboelectric nanogenerator for harvesting hydropower. Nano Energy, 2014, 6: 129–136
https://doi.org/10.1016/j.nanoen.2014.03.015
258 J S Chun, B U Ye, J W Lee, D Choi, C Y Kang, S W Kim, Z L Wang, J M Baik. Boosted output performance of triboelectric nanogenerator via electric double layer effect. Nature Communications, 2016, 7(1): 12985
https://doi.org/10.1038/ncomms12985
259 X Xu, Y Wang, P Li, W Xu, L Wei, Z Wang, Z Yang. A leaf-mimic rain energy harvester by liquid−solid contact electrification and piezoelectricity. Nano Energy, 2021, 90: 106573
https://doi.org/10.1016/j.nanoen.2021.106573
260 G Cheng, Z H Lin, Z L Du, Z L Wang. Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator. ACS Nano, 2014, 8(2): 1932–1939
https://doi.org/10.1021/nn406565k
261 K Tao, H P Yi, Y Yang, H L Chang, J Wu, L H Tang, Z S Yang, N Wang, L X Hu, Y Q Fu, J Miao, W Yuan. Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting. Nano Energy, 2020, 67: 104197
https://doi.org/10.1016/j.nanoen.2019.104197
262 C Zhang, Z Zhao, O Yang, W Yuan, L Zhou, X Yin, L Liu, Y Li, Z L Wang, J Wang. Bionic-fin-structured triboelectric nanogenerators for undersea energy harvesting. Advanced Materials Technologies, 2020, 5(9): 2000531
https://doi.org/10.1002/admt.202000531
263 H M Yang, M F Wang, M M Deng, H Y Guo, W Zhang, H K Yang, Y Xi, X G Li, C G Hu, Z L Wang. A full-packaged rolling triboelectric−electromagnetic hybrid nanogenerator for energy harvesting and building up self-powered wireless systems. Nano Energy, 2019, 56: 300–306
https://doi.org/10.1016/j.nanoen.2018.11.043
264 B Zhang, C Zhang, W Yuan, O Yang, Y Liu, L He, Y Hu, L Zhou, J Wang, Z L Wang. Highly stable and eco-friendly marine self-charging power systems composed of conductive polymer supercapacitors with seawater as an electrolyte. ACS Applied Materials & Interfaces, 2022, 14(7): 9046–9056
https://doi.org/10.1021/acsami.1c22129
265 W Zhong, L Xu, X Yang, W Tang, J Shao, B Chen, Z L Wang. Open-book-like triboelectric nanogenerators based on low-frequency roll-swing oscillators for wave energy harvesting. Nanoscale, 2019, 11(15): 7199–7208
https://doi.org/10.1039/C8NR09978B
266 R Lei, H Zhai, J Nie, W Zhong, Y Bai, X Liang, L Xu, T Jiang, X Chen, Z L Wang. Butterfly-inspired triboelectric nanogenerators with spring-assisted linkage structure for water wave energy harvesting. Advanced Materials Technologies, 2019, 4(3): 1800514
https://doi.org/10.1002/admt.201800514
267 D Tan, Q Zeng, X Wang, S Yuan, Y Luo, X Zhang, L Tan, C Hu, G Liu. Anti-overturning fully symmetrical triboelectric nanogenerator based on an elliptic cylindrical structure for all-weather blue energy harvesting. Nano-Micro Letters, 2022, 14(1): 124
https://doi.org/10.1007/s40820-022-00866-w
268 L Liu, X Yang, L Zhao, H Hong, H Cui, J Duan, Q Yang, Q Tang. Nodding duck structure multi-track directional freestanding triboelectric nanogenerator toward low-frequency ocean wave energy harvesting. ACS Nano, 2021, 15(6): 9412–9421
https://doi.org/10.1021/acsnano.1c00345
269 J Chen, J Yang, Z L Li, X Fan, Y L Zi, Q S Jing, H Y Guo, Z Wen, K C Pradel, S M Niu, Z L Wang. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. ACS Nano, 2015, 9(3): 3324–3331
https://doi.org/10.1021/acsnano.5b00534
270 X F Wang, S M Niu, Y J Yin, F Yi, Z You, Z L Wang. Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Advanced Energy Materials, 2015, 5(24): 1501467
https://doi.org/10.1002/aenm.201501467
271 P Cheng, H Y Guo, Z Wen, C L Zhang, X Yin, X Y Li, D Liu, W X Song, X H Sun, J Wang, Z L Wang. Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy, 2019, 57: 432–439
https://doi.org/10.1016/j.nanoen.2018.12.054
272 L Xu, T Jiang, P Lin, J J Shao, C He, W Zhong, X Y Chen, Z L Wang. Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting. ACS Nano, 2018, 12(2): 1849–1858
https://doi.org/10.1021/acsnano.7b08674
273 C S Wu, R Y Liu, J Wang, Y L Zi, L Lin, Z L Wang. A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy. Nano Energy, 2017, 32: 287–293
https://doi.org/10.1016/j.nanoen.2016.12.061
274 T Jiang, Y Y Yao, L Xu, L M Zhang, T X Xiao, Z L Wang. Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy. Nano Energy, 2017, 31: 560–567
https://doi.org/10.1016/j.nanoen.2016.12.004
275 T Zhou, L M Zhang, F Xue, W Tang, C Zhang, Z L Wang. Multilayered electret films based triboelectric nanogenerator. Nano Research, 2016, 9(5): 1442–1451
https://doi.org/10.1007/s12274-016-1040-y
276 L M Zhang, C B Han, T Jiang, T Zhou, X H Li, C Zhang, Z L Wang. Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy. Nano Energy, 2016, 22: 87–94
https://doi.org/10.1016/j.nanoen.2016.01.009
277 D Tantraviwat, P Buarin, S Suntalelat, W Sripumkhai, P Pattamang, G Rujijanagul, B Inceesungvorn. Highly dispersed porous polydimethylsiloxane for boosting power-generating performance of triboelectric nanogenerators. Nano Energy, 2020, 67: 104214
https://doi.org/10.1016/j.nanoen.2019.104214
278 W Liu, Z Wang, G Wang, G Liu, J Chen, X Pu, Y Xi, X Wang, H Guo, C Hu, Z L Wang. Integrated charge excitation triboelectric nanogenerator. Nature Communications, 2019, 10(1): 1426
https://doi.org/10.1038/s41467-019-09464-8
279 J Wang, C S Wu, Y J Dai, Z H Zhao, A Wang, T J Zhang, Z L Wang. Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nature Communications, 2017, 8(1): 88
https://doi.org/10.1038/s41467-017-00131-4
280 M Y Ma, Q L Liao, G J Zhang, Z Zhang, Q J Liang, Y Zhang. Self-recovering triboelectric nanogenerator as active multifunctional sensors. Advanced Functional Materials, 2015, 25(41): 6489–6494
https://doi.org/10.1002/adfm.201503180
281 L Xu, Y K Pang, C Zhang, T Jiang, X Y Chen, J J Luo, W Tang, X Cao, Z L Wang. Integrated triboelectric nanogenerator array based on air-driven membrane structures for water wave energy harvesting. Nano Energy, 2017, 31: 351–358
https://doi.org/10.1016/j.nanoen.2016.11.037
282 Z Xu, K Bao, K Di, H Chen, J Tan, X Xie, Y Shao, J Cai, S Lin, T Cheng, S e, K Liu, Z L Wang. High-performance dielectric elastomer nanogenerator for efficient energy harvesting and sensing via alternative current method. Advanced Science, 2022, 9(18): 2201098
https://doi.org/10.1002/advs.202201098
283 H Y Li, L Su, S Y Kuang, C F Pan, G Zhu, Z L Wang. Significant enhancement of triboelectric charge density by fluorinated surface modification in nanoscale for converting mechanical energy. Advanced Functional Materials, 2015, 25(35): 5691–5697
https://doi.org/10.1002/adfm.201502318
284 M Y Xu, T C Zhao, C Wang, S L Zhang, Z Li, X X Pan, Z L Wang. High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy. ACS Nano, 2019, 13(2): 1932–1939
https://doi.org/10.1021/acsnano.8b08274
285 L M Zhao, Q Zheng, H Ouyang, H Li, L Yan, B J Shi, Z Li. A size-unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator. Nano Energy, 2016, 28: 172–178
https://doi.org/10.1016/j.nanoen.2016.08.024
286 Y Wang, X Liu, Y Wang, H Wang, H Wang, S L Zhang, T Zhao, M Xu, Z L Wang. Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine internet of things. ACS Nano, 2021, 15(10): 15700–15709
https://doi.org/10.1021/acsnano.1c05127
287 C Zhang, L He, L Zhou, O Yang, W Yuan, X Wei, Y Liu, L Lu, J Wang, Z L Wang. Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy. Joule, 2021, 5(6): 1613–1623
https://doi.org/10.1016/j.joule.2021.04.016
288 H Ryu, H J Yoon, S W Kim. Hybrid energy harvesters: toward sustainable energy harvesting. Advanced Materials, 2019, 31(34): 1802898
https://doi.org/10.1002/adma.201802898
289 Z Ma, J Ai, Y Shi, K Wang, B Su. A superhydrophobic droplet-based magnetoelectric hybrid system to generate electricity and collect water simultaneously. Advanced Materials, 2020, 32(50): 2006839
https://doi.org/10.1002/adma.202006839
290 S Liu, X Liu, G Zhou, F Qin, M Jing, L Li, W Song, Z Sun. A high-efficiency bioinspired photoelectric-electromechanical integrated nanogenerator. Nature Communications, 2020, 11(1): 6158
https://doi.org/10.1038/s41467-020-19987-0
291 C Zhang, W Yuan, B Zhang, O Yang, Y Liu, L He, J Wang, Z L Wang. High space efficiency hybrid nanogenerators for effective water wave energy harvesting. Advanced Functional Materials, 2022, 32(18): 2111775
https://doi.org/10.1002/adfm.202111775
292 H Y Wang, Q Y Zhu, Z Y Ding, Z L Li, H W Zheng, J J Fu, C L Diao, X A Zhang, J J Tian, Y L Zi. A fully-packaged ship-shaped hybrid nanogenerator for blue energy harvesting toward seawater self-desalination and self-powered positioning. Nano Energy, 2019, 57: 616–624
https://doi.org/10.1016/j.nanoen.2018.12.078
293 Q Zhang, Q J Liang, Q L Liao, F Yi, X Zheng, M Y Ma, F F Gao, Y Zhang. Service behavior of multifunctional triboelectric nanogenerators. Advanced Materials, 2017, 29(17): 1606703
https://doi.org/10.1002/adma.201606703
294 L Feng, G L Liu, H Y Guo, Q Tang, X J Pu, J Chen, X Wang, Y Xi, C G Hu. Hybridized nanogenerator based on honeycomb-like three electrodes for efficient ocean wave energy harvesting. Nano Energy, 2018, 47: 217–223
https://doi.org/10.1016/j.nanoen.2018.02.042
295 X Liang, T Jiang, G X Liu, T X Xiao, L Xu, W Li, F B Xi, C Zhang, Z L Wang. Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting. Advanced Functional Materials, 2019, 29(41): 1807241
https://doi.org/10.1002/adfm.201807241
296 Z Wen, J Chen, M H Yeh, H Y Guo, Z L Li, X Fan, T J Zhang, L P Zhu, Z L Wang. Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy, 2015, 16: 38–46
https://doi.org/10.1016/j.nanoen.2015.06.006
297 S M Li, S H Wang, Y L Zi, Z Wen, L Lin, G Zhang, Z L Wang. Largely improving the robustness and lifetime of triboelectric nanogenerators through automatic transition between contact and noncontact working states. ACS Nano, 2015, 9(7): 7479–7487
https://doi.org/10.1021/acsnano.5b02575
298 F Zheng, Y Sun, X Wei, J Chen, Z Yuan, X Jin, L Tao, Z Wu. A hybridized water wave energy harvester with a swing magnetic structure toward intelligent fishing ground. Nano Energy, 2021, 90: 106631
https://doi.org/10.1016/j.nanoen.2021.106631
299 K Q Xia, H C Tang, J M Fu, Y Tian, Z W Xu, J G Lu, Z Y Zhu. A high strength triboelectric nanogenerator based on rigid-flexible coupling design for energy storage system. Nano Energy, 2020, 67: 104259
https://doi.org/10.1016/j.nanoen.2019.104259
300 Z Yang, Y Yang, H Wang, F Liu, Y Lu, L Ji, Z L Wang, J Cheng. Charge pumping for sliding-mode triboelectric nanogenerator with voltage stabilization and boosted current. Advanced Energy Materials, 2021, 11(28): 2101147
https://doi.org/10.1002/aenm.202101147
301 P Zhuang, Y Sun, L Li, M O L Chee, P Dong, L Pei, H Chu, Z Sun, J Shen, M Ye, P M Ajayan. FIB-patterned nano-supercapacitors: minimized size with ultrahigh performances. Advanced Materials, 2020, 32(14): 1908072
https://doi.org/10.1002/adma.201908072
302 L Cheng, Q Xu, Y Zheng, X Jia, Y Qin. A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed. Nature Communications, 2018, 9(1): 3773
https://doi.org/10.1038/s41467-018-06045-z
303 W He, W Liu, J Chen, Z Wang, Y Liu, X Pu, H Yang, Q Tang, H Yang, H Guo, C Hu. Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nature Communications, 2020, 11(1): 4277
https://doi.org/10.1038/s41467-020-18086-4
304 X Feng, Y Zhang, L Kang, L Wang, C Duan, K Yin, J Pang, K Wang. Integrated energy storage system based on triboelectric nanogenerator in electronic devices. Frontiers of Chemical Science and Engineering, 2021, 15(2): 238–250
https://doi.org/10.1007/s11705-020-1956-3
305 K Wang, J Pang, L Li, S Zhou, Y Li, T Zhang. Synthesis of hydrophobic carbon nanotubes/reduced graphene oxide composite films by flash light irradiation. Frontiers of Chemical Science and Engineering, 2018, 12(3): 376–382
306 M Zhang, Y Liu, D Li, X Cui, L Wang, L Li, K Wang. Electrochemical impedance spectroscopy: a new chapter in the fast and accurate estimation of the state of health for lithium-ion batteries. Energies, 2023, 16: 1599
307 G Xia, Y Huang, F Li, L Wang, J Pang, L Li, K Wang. A thermally flexible and multi-site tactile sensor for remote 3D dynamic sensing imaging. Frontiers of Chemical Science and Engineering, 2020, 14(6): 1039–1051
308 M Zhang, W Wang, G Xia, L Wang, K Wang. Self-powered electronic skin for remote human–machine synchronization. ACS Applied Electronic Materials, 2023, 5(1): 498–508
309 D Feng, H Du, H Ran, T Lu, S Xia, L Xu, Z Wang, C Ma. Antiferroelectric stability and energy storage properties of Co-doped AgNbO3 ceramics. Journal of Solid State Chemistry, 2022, 310: 123081
https://doi.org/10.1016/j.jssc.2022.123081
310 X Li, J Su, Z Li, Z Zhao, F Zhang, L Zhang, W Ye, Q Li, K Wang, X Wang, H Li, H Hu, S Yan, G X Miao, Q Li. Revealing interfacial space charge storage of Li+/Na+/K+ by operando magnetometry. Science Bulletin, 2022, 67(11): 1145–1153
https://doi.org/10.1016/j.scib.2022.04.001
311 Y Fu, H Wang, G Tian, Z Li, H Hu. Two-agent stochastic flow shop deteriorating scheduling via a hybrid multi-objective evolutionary algorithm. Journal of Intelligent Manufacturing, 2019, 30(5): 2257–2272
https://doi.org/10.1007/s10845-017-1385-4
312 H Sun, D Yang, L Wang, K Wang. A method for estimating the aging state of lithium-ion batteries based on a multi-linear integrated model. International Journal of Energy Research, 2022, 46(15): 24091–24104
https://doi.org/10.1002/er.8709
313 D Li, D Yang, L Li, L Wang, K Wang. Electrochemical impedance spectroscopy based on the state of health estimation for lithium-ion batteries. Energies, 2022, 15(18): 6665
https://doi.org/10.3390/en15186665
314 J Cheng, W B Ding, Y L Zi, Y J Lu, L H Ji, F Liu, C S Wu, Z L Wang. Triboelectric microplasma powered by mechanical stimuli. Nature Communications, 2018, 9(1): 3733
https://doi.org/10.1038/s41467-018-06198-x
315 J Kim, H Cho, M Han, Y Jung, S S Kwak, H J Yoon, B Park, H Kim, H Kim, J Park, S W Kim. Ultrahigh power output from triboelectric nanogenerator based on serrated electrode via spark discharge. Advanced Energy Materials, 2020, 10(44): 2002312
https://doi.org/10.1002/aenm.202002312
316 L Zhou, D Liu, Z Zhao, S Li, Y Liu, L Liu, Y Gao, Z L Wang, J Wang. Simultaneously enhancing power density and durability of sliding-mode triboelectric nanogenerator via interface liquid lubrication. Advanced Energy Materials, 2020, 10(45): 2002920
https://doi.org/10.1002/aenm.202002920
317 X Xia, J Fu, Y Zi. A universal standardized method for output capability assessment of nanogenerators. Nature Communications, 2019, 10(1): 4428
https://doi.org/10.1038/s41467-019-12465-2
318 H Wang, L Xu, Y Bai, Z L Wang. Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nature Communications, 2020, 11(1): 4203
https://doi.org/10.1038/s41467-020-17891-1
319 Z Zhao, Y Dai, D Liu, L Zhou, S Li, Z L Wang, J Wang. Rationally patterned electrode of direct-current triboelectric nanogenerators for ultrahigh effective surface charge density. Nature Communications, 2020, 11(1): 6186
https://doi.org/10.1038/s41467-020-20045-y
320 Z Cui, L Kang, L Li, L Wang, K Wang. A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF. Energy, 2022, 259: 124933
https://doi.org/10.1016/j.energy.2022.124933
321 X Q Liang, R J Qi, M Zhao, Z L Zhang, M Y Liu, X Pu, Z L Wang, X M Lu. Ultrafast lithium-ion capacitors for efficient storage of energy generated by triboelectric nanogenerators. Energy Storage Materials, 2020, 24: 297–303
https://doi.org/10.1016/j.ensm.2019.08.002
322 J Chen, H Y Guo, X J Pu, X Wang, Y Xi, C G Hu. Traditional weaving craft for one-piece self-charging power textile for wearable electronics. Nano Energy, 2018, 50: 536–543
https://doi.org/10.1016/j.nanoen.2018.06.009
323 R Hinchet, H J Yoon, H Ryu, M K Kim, E K Choi, D S Kim, S W Kim. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science, 2019, 365(6452): 491–494
https://doi.org/10.1126/science.aan3997
324 H Sun, Y Zhang, J Zhang, X M Sun, H S Peng. Energy harvesting and storage in 1D devices. Nature Reviews. Materials, 2017, 2(6): 17023
https://doi.org/10.1038/natrevmats.2017.23
325 X Liang, T Jiang, Y Feng, P Lu, J An, Z L Wang. Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting. Advanced Energy Materials, 2020, 10(40): 2002123
https://doi.org/10.1002/aenm.202002123
326 Y Guo, P Yu, C Zhu, K Zhao, L Wang, K Wang. A state-of-health estimation method considering capacity recovery of lithium batteries. International Journal of Energy Research, 2022, 46(15): 23730–23745
https://doi.org/10.1002/er.8671
327 Y L Zi, J Wang, S H Wang, S M Li, Z Wen, H Y Guo, Z L Wang. Effective energy storage from a triboelectric nanogenerator. Nature Communications, 2016, 7(1): 10987
https://doi.org/10.1038/ncomms10987
328 E Pomerantseva, F Bonaccorso, X L Feng, Y Cui, Y Gogotsi. Energy storage: the future enabled by nanomaterials. Science, 2019, 366(6468): 969–681
https://doi.org/10.1126/science.aan8285
329 X Li, X Yin, Z Zhao, L Zhou, D Liu, C Zhang, C Zhang, W Zhang, S Li, J Wang, Z L Wang. Long-lifetime triboelectric nanogenerator operated in conjunction modes and low crest factor. Advanced Energy Materials, 2020, 10(7): 1903024
https://doi.org/10.1002/aenm.201903024
330 H Wu, S Wang, Z Wang, Y Zi. Achieving ultrahigh instantaneous power density of 10 MW·m–2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG). Nature Communications, 2021, 12(1): 5470
https://doi.org/10.1038/s41467-021-25753-7
331 W Liu, Z Wang, G Wang, Q Zeng, W He, L Liu, X Wang, Y Xi, H Guo, C Hu, Z L Wang. Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator. Nature Communications, 2020, 11(1): 1883
https://doi.org/10.1038/s41467-020-15373-y
332 Z Cui, L Kang, L Li, L Wang, K Wang. A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures. Renewable Energy, 2022, 98: 1328–1340
https://doi.org/10.1016/j.renene.2022.08.123
333 Z M Lin, B B Zhang, H Y Guo, Z Y Wu, H Y Zou, J Yang, Z L Wang. Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy, 2019, 64: 103908
https://doi.org/10.1016/j.nanoen.2019.103908
334 F Peng, D Liu, W Zhao, G Q Zheng, Y X Ji, K Dai, L W Mi, D B Zhang, C T Liu, C Y Shen. Facile fabrication of triboelectric nanogenerator based on low-cost thermoplastic polymeric fabrics for large-area energy harvesting and self-powered sensing. Nano Energy, 2019, 65: 104068
https://doi.org/10.1016/j.nanoen.2019.104068
335 X D Yang, L Xu, P Lin, W Zhong, Y Bai, J J Luo, J Chen, Z L Wang. Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting. Nano Energy, 2019, 60: 404–412
https://doi.org/10.1016/j.nanoen.2019.03.054
336 Q Jiang, C S Wu, Z J Wang, A C Wang, J H He, Z L Wang, H N Alshareef. Mxene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit. Nano Energy, 2018, 45: 266–272
https://doi.org/10.1016/j.nanoen.2018.01.004
337 K Zhao, Y Yang, X Liu, Z L Wang. Triboelectrification-enabled self-charging lithium-ion batteries. Advanced Energy Materials, 2017, 7(21): 1700103
https://doi.org/10.1002/aenm.201700103
338 H D Hou, Q K Xu, Y K Pang, L Li, J L Wang, C Zhang, C W Sun. Efficient storing energy harvested by triboelectric nanogenerators using a safe and durable all-solid-state sodium-ion battery. Advanced Science, 2017, 4(8): 1700072
https://doi.org/10.1002/advs.201700072
339 H F Qin, G Cheng, Y L Zi, G Q Gu, B Zhang, W Y Shang, F Yang, J J Yang, Z L Du, Z L Wang. High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits. Advanced Functional Materials, 2018, 28(51): 1805216
https://doi.org/10.1002/adfm.201805216
340 J J Yang, F Yang, L Zhao, W Y Shang, H F Qin, S J Wang, X H Jiang, G Cheng, Z L Du. Managing and optimizing the output performances of a triboelectric nanogenerator by a self-powered electrostatic vibrator switch. Nano Energy, 2018, 46: 220–228
https://doi.org/10.1016/j.nanoen.2018.02.013
341 A Ahmed, I Hassan, T Ibn-Mohammed, H Mostafa, I M Reaney, L S C Koh, J Zu, Z L Wang. Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators. Energy & Environmental Science, 2017, 10(3): 653–671
https://doi.org/10.1039/C7EE00158D
342 J Peng, S D Kang, G J Snyder. Optimization principles and the figure of merit for triboelectric generators. Science Advances, 2017, 3(12): eaap8576
https://doi.org/10.1126/sciadv.aap8576
343 Y L Zi, S M Niu, J Wang, Z Wen, W Tang, Z L Wang. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nature Communications, 2015, 6(1): 8376
https://doi.org/10.1038/ncomms9376
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed