Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (8): 1038-1050   https://doi.org/10.1007/s11705-022-2279-3
  本期目录
Encapsulation of polyethylene glycol in cellulose-based porous capsules for latent heat storage and light-to-thermal conversion
Jiangwei Li, Lina Meng, Jiaxuan Chen, Xu Chen, Yonggui Wang(), Zefang Xiao, Haigang Wang, Daxin Liang, Yanjun Xie()
Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
 全文: PDF(6586 KB)   HTML
Abstract

Phase change materials are potential candidates for the application of latent heat storage. Herein, we fabricated porous capsules as shape-stable materials from cellulose-based polyelectrolyte complex, which were first prepared using cellulose 6-(N-pyridinium)hexanoyl ester as the cationic polyelectrolyte and carboxymethyl cellulose as the anionic polyelectrolyte to encapsulate polyethylene glycol by the vacuum impregnation method. Furthermore, the multi-walled carbon nanotube or graphene oxide, which were separately composited into the polyelectrolytes complex capsules to enhance thermal conductivity and light-to-thermal conversion efficiency. These capsules owned a typical core–shell structure, with an extremely high polyethylene glycol loading up to 34.33 g∙g‒1. After loading of polyethylene glycol, the resulted cellulose-based composite phase change materials exhibited high thermal energy storage ability with the latent heat up to 142.2 J∙g‒1, which was 98.5% of pure polyethylene glycol. Further results showed that the composite phase change materials demonstrated good form-stable property and thermal stability. Moreover, studies involving light-to-thermal conversion determined that composite phase change materials exhibited outstanding light-to-thermal conversion performance. Considering their exceptional comprehensive features, innovative composite phase change materials generated from cellulose presented a highly interesting choice for thermal management and renewable thermal energy storage.

Key wordscellulose    polyelectrolytes    phase change materials    thermal energy storage    light-to-thermal conversion
收稿日期: 2022-07-05      出版日期: 2023-07-20
Corresponding Author(s): Yonggui Wang,Yanjun Xie   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(8): 1038-1050.
Jiangwei Li, Lina Meng, Jiaxuan Chen, Xu Chen, Yonggui Wang, Zefang Xiao, Haigang Wang, Daxin Liang, Yanjun Xie. Encapsulation of polyethylene glycol in cellulose-based porous capsules for latent heat storage and light-to-thermal conversion. Front. Chem. Sci. Eng., 2023, 17(8): 1038-1050.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2279-3
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I8/1038
SampleTemperature/°CTime/ha)Molar ratiob)N/(wt %)c)DSSolubilityd)
CPHE-15022
CPHE-2100213.270.94
CPHE-3100224.432.70+
CPHE-4100524.492.91+
Tab.1  
Fig.1  
  
Fig.2  
Fig.3  
SampleMelting processCrystallization processλ
Tm/°CHm/(J?g?1)Tc/°CHc/(J?g?1)
PEG63.86144.440.58141.8
PEG@CPEC65.41139.542.51136.996.6
PEG@CPEC/GO-0.565.01140.642.23138.297.4
PEG@CPEC/GO-164.72142.042.12135.098.3
PEG@CPEC/GO-365.47142.242.32137.498.5
PEG@CPEC/CNT-0.565.36136.542.57134.894.5
PEG@CPEC/CNT-165.59135.641.83136.193.9
PEG@CPEC/CNT-364.98138.642.67131.295.9
Tab.2  
Fig.4  
Fig.5  
Fig.6  
1 J Guo, Y Jiang, Y Wang, B Zou. Thermal storage and thermal management properties of a novel ventilated mortar block integrated with phase change material for floor heating: an experimental study. Energy Conversion and Management, 2020, 205: 112288
https://doi.org/10.1016/j.enconman.2019.112288
2 H Yang, Y Bai, C Ge, L He, W Liang, X Zhang. Polyethylene glycol-based phase change materials with high photothermal conversion efficiency and shape stability in an aqueous environment for solar water heater. Composites Part A: Applied Science and Manufacturing, 2022, 154: 106778
https://doi.org/10.1016/j.compositesa.2021.106778
3 C Li, H Yu, Y Song, Z Liu. Novel hybrid microencapsulated phase change materials incorporated wallboard for year-long year energy storage in buildings. Energy Conversion and Management, 2019, 183: 791–802
https://doi.org/10.1016/j.enconman.2019.01.036
4 Z Huang, X Gao, T Xu, Y Fang, Z Zhang. Thermal property measurement and heat storage analysis of LiNO3/KCl-expanded graphite composite phase change material. Applied Energy, 2014, 115: 265–271
https://doi.org/10.1016/j.apenergy.2013.11.019
5 Z Khan, Z Khan, A Ghafoor. A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility. Energy Conversion and Management, 2016, 115: 132–158
https://doi.org/10.1016/j.enconman.2016.02.045
6 S Y Kee, Y Munusamy, K S Ong. Review of solar water heaters incorporating solid-liquid organic phase change materials as thermal storage. Applied Thermal Engineering, 2018, 131: 455–471
https://doi.org/10.1016/j.applthermaleng.2017.12.032
7 K Sun, Y Kou, Y Zhang, T Liu, Q Shi. Photo-triggered hierarchical porous carbon-based composite phase-change materials with superior thermal energy conversion capacity. ACS Sustainable Chemistry & Engineering, 2020, 8(8): 3445–3453
https://doi.org/10.1021/acssuschemeng.9b07659
8 Z Sun, K Sun, H Zhang, H Liu, D Wu, X Wang. Development of poly(ethylene glycol)/silica phase-change microcapsules with well-defined core–shell structure for reliable and durable heat energy storage. Solar Energy Materials and Solar Cells, 2021, 225: 111069
https://doi.org/10.1016/j.solmat.2021.111069
9 Z Zheng, T Shi, H Liu, D Wu, X Wang. Polyimide/phosphorene hybrid aerogel-based composite phase change materials for high-efficient solar energy capture and photothermal conversion. Applied Thermal Engineering, 2022, 207: 118173
https://doi.org/10.1016/j.applthermaleng.2022.118173
10 Z Lang, Y Ju, Y Wang, Z Xiao, H Wang, D Liang, J Li, Y Xie. Cellulose-derived solid-solid phase change thermal energy storage membrane with switchable optical transparency. Chemical Engineering Journal, 2022, 435: 134851
https://doi.org/10.1016/j.cej.2022.134851
11 Z Yu, D Feng, Y Feng, X Zhang. Thermal conductivity and energy storage capacity enhancement and bottleneck of shape-stabilized phase change composites with graphene foam and carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2022, 152: 106703
https://doi.org/10.1016/j.compositesa.2021.106703
12 P A Advincula, A C de Leon, B J Rodier, J Kwon, R C Advincula, E B Pentzer. Accommodating volume change and imparting thermal conductivity by encapsulation of phase change materials in carbon nanoparticles. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(6): 2461–2467
https://doi.org/10.1039/C7TA09664J
13 Z Sun, T Shi, Y Wang, J Li, H Liu, X Wang. Hierarchical microencapsulation of phase change material with carbon-nanotubes/polydopamine/silica shell for synergistic enhancement of solar photothermal conversion and storage. Solar Energy Materials and Solar Cells, 2022, 236: 111539
https://doi.org/10.1016/j.solmat.2021.111539
14 L Zhang, L An, Y Wang, A Lee, Y Schuman, A Ural, A S Fleischer, G Feng. Thermal enhancement and shape stabilization of a phase-change energy-storage material via copper nanowire aerogel. Chemical Engineering Journal, 2019, 373: 857–869
https://doi.org/10.1016/j.cej.2019.05.104
15 A Arshad, M Jabbal, Y Yan, J Darkwa. The micro-/nano-PCMs for thermal energy storage systems: a state of art review. International Journal of Energy Research, 2019, 43(11): 5572–5620
https://doi.org/10.1002/er.4550
16 G Bahsi Kaya, Y Kim, K Callahan, S Kundu. Microencapsulated phase change material via Pickering emulsion stabilized by cellulose nanofibrils for thermal energy storage. Carbohydrate Polymers, 2022, 276: 118745
https://doi.org/10.1016/j.carbpol.2021.118745
17 F Wang, Y Zhang, X Li, B Wang, X Feng, H Xu, Z Mao, X Sui. Cellulose nanocrystals-composited poly (methyl methacrylate) encapsulated n-eicosane via a Pickering emulsion-templating approach for energy storage. Carbohydrate Polymers, 2020, 234: 115934
https://doi.org/10.1016/j.carbpol.2020.115934
18 Y Yoo, C Martinez, J P Youngblood. Synthesis and characterization of microencapsulated phase change materials with poly(urea-urethane) shells containing cellulose nanocrystals. ACS Applied Materials & Interfaces, 2017, 9(37): 31763–31776
https://doi.org/10.1021/acsami.7b06970
19 Z Zheng, H Liu, D Wu, X Wang. Polyimide/MXene hybrid aerogel-based phase-change composites for solar-driven seawater desalination. Chemical Engineering Journal, 2022, 440: 135862
https://doi.org/10.1016/j.cej.2022.135862
20 T Xu, K Liu, N Sheng, M Zhang, W Liu, H Liu, L Dai, X Zhang, C Si, H Du, K Zhang. Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Materials, 2022, 48: 244–262
https://doi.org/10.1016/j.ensm.2022.03.013
21 H Liu, H Du, T Zheng, K Liu, X Ji, T Xu, X Zhang, C Si. Cellulose based composite foams and aerogels for advanced energy storage devices. Chemical Engineering Journal, 2021, 426: 130817
https://doi.org/10.1016/j.cej.2021.130817
22 M Cheng, J Hu, J Xia, Q Liu, T Wei, Y Ling, W Li, B Liu. One-step in-situ green synthesis of cellulose nanocrystal aerogel based shape stable phase change material. Chemical Engineering Journal, 2022, 431: 133935
https://doi.org/10.1016/j.cej.2021.133935
23 Y Qian, N Han, X Gao, X Gao, W Li, X Zhang. Cellulose-based phase change fibres for thermal energy storage and management applications. Chemical Engineering Journal, 2021, 412: 128596
https://doi.org/10.1016/j.cej.2021.128596
24 D Xiao, W Liang, Z Xie, J Cheng, Y Du, J Zhao. A temperature-responsive release cellulose-based microcapsule loaded with chlorpyrifos for sustainable pest control. Journal of Hazardous Materials, 2021, 403: 123654
https://doi.org/10.1016/j.jhazmat.2020.123654
25 K Yuan, J Liu, X Fang, Z Zhang. Novel facile self-assembly approach to construct graphene oxide-decorated phase-change microcapsules with enhanced photo-to-thermal conversion performance. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(10): 4535–4543
https://doi.org/10.1039/C8TA00215K
26 Y Lin, C Zhu, G Alva, G Fang. Microencapsulation and thermal properties of myristic acid with ethyl cellulose shell for thermal energy storage. Applied Energy, 2018, 231: 494–501
https://doi.org/10.1016/j.apenergy.2018.09.154
27 S Han, S Lyu, S Wang, F Fu. High-intensity ultrasound assisted manufacturing of melamine-urea-formaldehyde/paraffin nanocapsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568: 75–83
https://doi.org/10.1016/j.colsurfa.2019.01.054
28 L Jasmani, S Eyley, R Wallbridge, W Thielemans. A facile one-pot route to cationic cellulose nanocrystals. Nanoscale, 2013, 5(21): 10207–10211
https://doi.org/10.1039/c3nr03456a
29 J F S Pedrosa, M G Rasteiro, C P Neto, P J T Ferreira. Effect of cationization pretreatment on the properties of cationic Eucalyptus micro/nanofibrillated cellulose. International Journal of Biological Macromolecules, 2022, 201: 468–479
https://doi.org/10.1016/j.ijbiomac.2022.01.068
30 M Matandabuzo, P A Ajibade. Synthesis, characterization, and physicochemical properties of hydrophobic pyridinium-based ionic liquids with N-propyl and N-isopropyl. Zeitschrift für Anorganische und Allgemeine Chemie, 2018, 644(10): 489–495
https://doi.org/10.1002/zaac.201800006
31 W Tan, Q Li, F Dong, J Zhang, F Luan, L Wei, Y Chen, Z Guo. Novel cationic chitosan derivative bearing 1,2,3-triazolium and pyridinium: synthesis, characterization, and antifungal property. Carbohydrate Polymers, 2018, 182: 180–187
https://doi.org/10.1016/j.carbpol.2017.11.023
32 S Liu, K J Edgar. Water-soluble co-polyelectrolytes by selective modification of cellulose esters. Carbohydrate Polymers, 2017, 162: 1–9
https://doi.org/10.1016/j.carbpol.2017.01.008
33 T Rashid, C F Kait, I Regupathi, T Murugesan. Dissolution of kraft lignin using protic ionic liquids and characterization. Industrial Crops and Products, 2016, 84: 284–293
https://doi.org/10.1016/j.indcrop.2016.02.017
34 X Zhang, B Shen, S Zhu, H Xu, L Tian. UiO-66 and its Br-modified derivates for elemental mercury removal. Journal of Hazardous Materials, 2016, 320: 556–563
https://doi.org/10.1016/j.jhazmat.2016.08.039
35 H Mao, Y Fu, H Yang, S Zhang, J Liu, S Wu, Q Wu, T Ma, X M Song. Structure-activity relationship toward electrocatalytic nitrogen reduction of MoS2 growing on polypyrrole/graphene oxide affected by pyridinium-type ionic liquids. Chemical Engineering Journal, 2021, 425: 131769
https://doi.org/10.1016/j.cej.2021.131769
36 K Shimizu, A Shchukarev, P A Kozin, J F Boily. X-ray photoelectron spectroscopy of fast-frozen hematite colloids in aqueous solutions. 5. Halide ion (F‒, Cl‒, Br‒, I‒) adsorption. Langmuir, 2013, 29(8): 2623–2630
https://doi.org/10.1021/la3039973
37 W Shi, Y C Ching, C H Chuah. Preparation of aerogel beads and microspheres based on chitosan and cellulose for drug delivery: a review. International Journal of Biological Macromolecules, 2021, 170: 751–767
https://doi.org/10.1016/j.ijbiomac.2020.12.214
38 M Rasoulzadeh, H Namazi. Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent. Carbohydrate Polymers, 2017, 168: 320–326
https://doi.org/10.1016/j.carbpol.2017.03.014
39 M Yadollahi, S Farhoudian, S Barkhordari, I Gholamali, H Farhadnejad, H Motasadizadeh. Facile synthesis of chitosan/ZnO bio-nanocomposite hydrogel beads as drug delivery systems. International Journal of Biological Macromolecules, 2016, 82: 273–278
https://doi.org/10.1016/j.ijbiomac.2015.09.064
40 Y Li, K Sun, Y Kou, H Liu, L Wang, N Yin, H Dong, Q Shi. One-step synthesis of graphene-based composite phase change materials with high solar-thermal conversion efficiency. Chemical Engineering Journal, 2022, 429: 132439
https://doi.org/10.1016/j.cej.2021.132439
41 Y Fang, S Liu, X Li, X Hu, H Wu, X Lu, J Qu. Biomass porous potatoes/MXene encapsulated PEG-based PCMs with improved photo-to-thermal conversion capability. Solar Energy Materials and Solar Cells, 2022, 237: 111559
https://doi.org/10.1016/j.solmat.2021.111559
42 X Chen, P Cheng, Z Tang, X Xu, H Gao, G Wang. Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion. Advanced Science, 2021, 8(9): 2001274
https://doi.org/10.1002/advs.202001274
43 F Xue, Y Lu, X D Qi, J H Yang, Y Wang. Melamine foam-templated graphene nanoplatelet framework toward phase change materials with multiple energy conversion abilities. Chemical Engineering Journal, 2019, 365: 20–29
https://doi.org/10.1016/j.cej.2019.02.023
44 Y Liu, Y Yang, S Li. Graphene oxide modified hydrate salt hydrogels: form-stable phase change materials for smart thermal management. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(46): 18134–18143
https://doi.org/10.1039/C6TA08850C
45 Y Wang, Z Qiu, Z Lang, Y Xie, Z Xiao, H Wang, D Liang, J Li, K Zhang. Multifunctional reversible self-assembled structures of cellulose-derived phase-change nanocrystals. Advanced Materials, 2021, 33(3): e2005263
https://doi.org/10.1002/adma.202005263
46 S Hou, M Wang, S Guo, M Su. Photothermally driven refreshable microactuators based on graphene oxide doped paraffin. ACS Applied Materials & Interfaces, 2017, 9(31): 26476–26482
https://doi.org/10.1021/acsami.7b08728
47 N Nandihalli, C J Liu, T Mori. Polymer based thermoelectric nanocomposite materials and devices: fabrication and characteristics. Nano Energy, 2020, 78: 105186
https://doi.org/10.1016/j.nanoen.2020.105186
48 Y Xie, W Li, H Huang, D Dong, X Zhang, L Zhang, Y Chen, X Sheng, X Lu. Bio-based radish@PDA/PEG sandwich composite with high efficiency solar thermal energy storage. ACS Sustainable Chemistry & Engineering, 2020, 8(22): 8448–8457
https://doi.org/10.1021/acssuschemeng.0c02959
[1] FCE-22104-OF-LJ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed