Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (10): 1354-1371   https://doi.org/10.1007/s11705-022-2286-4
  本期目录
Localized high-concentration electrolytes for lithium metal batteries: progress and prospect
Jia-Xin Guo1, Wen-Bo Tang1, Xiaosong Xiong1, He Liu2(), Tao Wang1, Yuping Wu1(), Xin-Bing Cheng1()
1. School of Energy and Environment, Southeast University, Nanjing 211189, China
2. School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
 全文: PDF(4816 KB)   HTML
Abstract

With the increasing development of digital devices and electric vehicles, high energy-density rechargeable batteries are strongly required. As one of the most promising anode materials with an ultrahigh specific capacity and extremely low electrode potential, lithium metal is greatly considered an ideal candidate for next-generation battery systems. Nevertheless, limited Coulombic efficiency and potential safety risks severely hinder the practical applications of lithium metal batteries due to the inevitable growth of lithium dendrites and poor interface stability. Tremendous efforts have been explored to address these challenges, mainly focusing on the design of novel electrolytes. Here, we provide an overview of the recent developments of localized high-concentration electrolytes in lithium metal batteries. Firstly, the solvation structures and physicochemical properties of localized high-concentration electrolytes are analyzed. Then, the developments of localized high-concentration electrolytes to suppress the formation of dendritic lithium, broaden the voltage window of electrolytes, enhance safety, and render low-temperature operation for robust lithium metal batteries are discussed. Lastly, the remaining challenges and further possible research directions for localized high-concentration electrolytes are outlined, which can promisingly render the practical applications of lithium metal batteries.

Key wordshigh-concentration electrolyte    localized high-concentration electrolyte    lithium metal battery    solid electrolyte interphase    dendrite
收稿日期: 2022-09-28      出版日期: 2023-10-07
Corresponding Author(s): He Liu,Yuping Wu,Xin-Bing Cheng   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(10): 1354-1371.
Jia-Xin Guo, Wen-Bo Tang, Xiaosong Xiong, He Liu, Tao Wang, Yuping Wu, Xin-Bing Cheng. Localized high-concentration electrolytes for lithium metal batteries: progress and prospect. Front. Chem. Sci. Eng., 2023, 17(10): 1354-1371.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2286-4
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I10/1354
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 Y Yang, M T McDowell, A Jackson, J J Cha, S S Hong, Y Cui. New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Letters, 2010, 10(4): 1486–1491
https://doi.org/10.1021/nl100504q
2 L Chen, X Fan, E Hu, X Ji, J Chen, S Hou, T Deng, J Li, D Su, X Yang, C Wang. Achieving high energy density through increasing the output voltage: a highly reversible 5.3 V battery. Chem, 2019, 5(4): 896–912
https://doi.org/10.1016/j.chempr.2019.02.003
3 Y Tang, Y Zhang, W Li, B Ma, X Chen. Rational material design for ultrafast rechargeable lithium-ion batteries. Chemical Society Reviews, 2015, 44(17): 5926–5940
https://doi.org/10.1039/C4CS00442F
4 J B Goodenough, K S Park. The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society, 2013, 135(4): 1167–1176
https://doi.org/10.1021/ja3091438
5 X Shen, X Q Zhang, F Ding, J Q Huang, R Xu, X Chen, C Yan, F Y Su, C M Chen, X Liu, Q Zhang. Advanced electrode materials in lithium batteries: retrospect and prospect. Energy Material Advances, 2021, 2021(1): 1205324
https://doi.org/10.34133/2021/1205324
6 W Xu, J L Wang, F Ding, X L Chen, E Nasybutin, Y H Zhang, J G Zhang. Lithium metal anodes for rechargeable batteries. Energy & Environmental Science, 2014, 7(2): 513–537
https://doi.org/10.1039/C3EE40795K
7 J Peng, D Wu, F Song, S Wang, Q Niu, J Xu, P Lu, H Li, L Chen, F Wu. High current density and long cycle life enabled by sulfide solid electrolyte and dendrite-free liquid lithium anode. Advanced Functional Materials, 2022, 32(2): 2105776
https://doi.org/10.1002/adfm.202105776
8 X Xu, X Jiao, O O Kapitanova, J Wang, V S Volkov, Y Liu, S Xiong. Diffusion limited current density: a watershed in electrodeposition of lithium metal anode. Advanced Energy Materials, 2022, 12(19): 2200244
https://doi.org/10.1002/aenm.202200244
9 J Liu, Z N Bao, Y Cui, E J Dufek, J B Goodenough, P Khalifah, Q Y Li, B Y Liaw, P Liu, A Manthiram, Y S Meng, V R Subramanian, M F Toney, V V Viswanathan, M S Whittingham, J Xiao, W Xu, J Yang, X Q Yang, J G Zhang. Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy, 2019, 4(3): 180–186
https://doi.org/10.1038/s41560-019-0338-x
10 T Liu, L Yu, J Lu, T Zhou, X Huang, Z Cai, A Dai, J Gim, Y Ren, X Xiao, M V Holt, Y S Chu, I Arslan, J Wen, K Amine. Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy. Nature Communications, 2021, 12(1): 6024
https://doi.org/10.1038/s41467-021-26290-z
11 X Q Xu, F N Jiang, S J Yang, Y Xiao, H Liu, F Y Liu, L Liu, X B Cheng. Dual-layer vermiculite nanosheet based hybrid film to suppress dendrite growth in lithium metal batteries. Journal of Energy Chemistry, 2022, 69(10): 205–210
https://doi.org/10.1016/j.jechem.2022.01.019
12 K N Wood, E Kazyak, A F Chadwick, K H Chen, J G Zhang, K Thornton, N P Dasgupta. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Central Science, 2016, 2(11): 790–801
https://doi.org/10.1021/acscentsci.6b00260
13 Y Qiao, Q Li, X B Cheng, F Liu, Y Yang, Z Lu, J Zhao, J Wu, H Liu, S Yang, Y Liu. Three-dimensional superlithiophilic interphase for dendrite-free lithium metal anodes. ACS Applied Materials & Interfaces, 2020, 12(5): 5767–5774
https://doi.org/10.1021/acsami.9b18315
14 P Shi, X B Cheng, T Li, R Zhang, H Liu, C Yan, X Q Zhang, J Q Huang, Q Zhang. Electrochemical diagram of an ultrathin lithium metal anode in pouch cells. Advanced Materials, 2019, 31(37): 1902785
https://doi.org/10.1002/adma.201902785
15 X Xu, Y Liu, J Y Hwang, O O Kapitanova, Z Song, Y K Sun, A Matic, S Xiong. Role of Li-ion depletion on electrode surface: underlying mechanism for electrodeposition behavior of lithium metal anode. Advanced Energy Materials, 2020, 10(44): 2002390
https://doi.org/10.1002/aenm.202002390
16 F Zhang, Y Sun, Z Wang, D Fu, J Li, J Hu, J Xu, X Wu. Highly conductive polymeric ionic liquid electrolytes for ambient-temperature solid-state lithium batteries. ACS Applied Materials & Interfaces, 2020, 12(21): 23774–23780
https://doi.org/10.1021/acsami.9b22945
17 Z Wang, H Zhang, R Han, J Xu, A Pan, F Zhang, D Huang, Y Wei, L Wang, H Song, Y Liu, Y Shen, J Hu, X Wu. Establish an advanced electrolyte/graphite interphase by an ionic liquid-based localized highly concentrated electrolyte for low-temperature and rapid-charging Li-ion batteries. ACS Sustainable Chemistry & Engineering, 2022, 10(36): 12023–12029
https://doi.org/10.1021/acssuschemeng.2c03938
18 A Heist, S H Lee. Improved stability and rate capability of ionic liquid electrolyte with high concentration of LiFSI. Journal of the Electrochemical Society, 2019, 166(10): A1860–A1866
https://doi.org/10.1149/2.0381910jes
19 S Xu, R Xu, T Yu, K Chen, C Sun, G Hu, S Bai, H M Cheng, Z Sun, F Li. Decoupling of ion pairing and ion conduction in ultrahigh-concentration electrolytes enables wide-temperature solid-state batteries. Energy & Environmental Science, 2022, 15(8): 3379–3387
https://doi.org/10.1039/D2EE01053D
20 K K Fu, Y Gong, B Liu, Y Zhu, S Xu, Y Yao, W Luo, C Wang, S D Lacey, J Dai, Y Chen, Y Mo, E Wachsman, L Hu. Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Science Advances, 2017, 3(4): e1601659
https://doi.org/10.1126/sciadv.1601659
21 J Q Zhou, T Qian, J Liu, M F Wang, L Zhang, C L Yan. High-safety all-solid-state lithium-metal battery with high-ionic-conductivity thermoresponsive solid polymer electrolyte. Nano Letters, 2019, 19(5): 3066–3073
https://doi.org/10.1021/acs.nanolett.9b00450
22 Q Zhou, X Y Yang, X S Xiong, Q Y Zhang, B H Peng, Y H Chen, Z G Wang, L J Fu, Y P Wu. A solid electrolyte based on electrochemical active Li4Ti5O12 with PVDF for solid state lithium metal battery. Advanced Energy Materials, 2022, 12(39): 2201991
https://doi.org/10.1002/aenm.202201991
23 S Chai, Y Zhang, Y Wang, Q He, S Zhou, A Pan. Biodegradable composite polymer as advanced gel electrolyte for quasi-solid-state lithium-metal battery. eScience, 2022, 2(5): 494–508
24 Z Yan, H Y Pan, J Y Wang, R S Chen, Q Li, F Luo, X Q Yu, H Li. Enhancing cycle stability of Li metal anode by using polymer separators coated with Ti-containing solid electrolytes. Rare Metals, 2021, 40(6): 1357–1365
https://doi.org/10.1007/s12598-020-01494-2
25 H Zhang, Y Chen, C Li, M Armand. Electrolyte and anode-electrolyte interphase in solid-state lithium metal polymer batteries: a perspective. SusMat, 2021, 1(1): 24–37
https://doi.org/10.1002/sus2.6
26 J Wang, Y Yamada, K Sodeyama, C H Chiang, Y Tateyama, A Yamada. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nature Communications, 2016, 7(1): 12032
https://doi.org/10.1038/ncomms12032
27 S H Jiao, X D Ren, R G Cao, M H Engelhard, Y Z Liu, D H Hu, D H Mei, J M Zheng, W G Zhao, Q Y Li, N Liu, B D Adams, C Ma, J Liu, J G Zhang, W Xu. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nature Energy, 2018, 3(9): 739–746
https://doi.org/10.1038/s41560-018-0199-8
28 X D Ren, L F Zou, S H Jiao, D H Mei, M H Engelhard, Q Y Li, H Y Lee, C J Niu, B D Adams, C M Wang, J Liu, J G Zhang, W Xu. High-concentration ether electrolytes for stable high-voltage lithium metal batteries. ACS Energy Letters, 2019, 4(4): 896–903
https://doi.org/10.1021/acsenergylett.9b00381
29 X B Cheng, H Liu, H Yuan, H J Peng, C Tang, J Q Huang, Q Zhang. A perspective on sustainable energy materials for lithium batteries. SusMat, 2021, 1(1): 38–50
https://doi.org/10.1002/sus2.4
30 Y Ren, W Shin, A Manthiram. Operating high-energy lithium-metal pouch cells with reduced stack pressure through a rational lithium-host design. Advanced Energy Materials, 2022, 12(19): 2200190
https://doi.org/10.1002/aenm.202200190
31 X S Xiong, W Q Yan, Y S Zhu, L L Liu, L J Fu, Y H Chen, N F Yu, Y P Wu, B Wang, R Xiao. Li4Ti5O12 coating on copper foil as ion redistributor layer for stable lithium metal anode. Advanced Energy Materials, 2022, 12(13): 2103112
https://doi.org/10.1002/aenm.202103112
32 X S Xiong, R Sun, W Q Yan, Q Qiao, Y S Zhu, L L Liu, L J Fu, N F Yu, Y P Wu, B Wang. A lithiophilic AlN-modified copper layer for high-performance lithium metal anodes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(26): 13814–13820
https://doi.org/10.1039/D2TA02138B
33 X S Xiong, R Y Zhi, Q Zhou, W Q Yan, Y S Zhu, Y H Chen, L J Fu, N F Yu, Y P Wu. A binary PMMA/PVDF blend film modified substrate enables a superior lithium metal anode for lithium batteries. Materials Advances, 2021, 2(13): 4240–4245
https://doi.org/10.1039/D1MA00121C
34 X Meng, K C Lau, H Zhou, S K Ghosh, M Benamara, M Zou. Molecular layer deposition of crosslinked polymeric lithicone for superior lithium metal anodes. Energy Material Advances, 2021, 2021(1): 9786201
https://doi.org/10.34133/2021/9786201
35 W J Fan, Z W Sun, Y Yuan, X H Yuan, C You, Q H Huang, J Ye, L J Fu, V Kondratiev, Y P Wu. High cycle stability of Zn anodes boosted by an artificial electronic-ionic mixed conductor coating layer. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(14): 7645–7652
https://doi.org/10.1039/D2TA00697A
36 Q Zhao, X Chen, W Hou, B R Ye, Y Q Zhang, X H Xia, J S Wang. A facile, scalable, high stability lithium metal anode. SusMat, 2022, 2(1): 104–112
https://doi.org/10.1002/sus2.43
37 F Varenne, J P Alper, F Miserque, C S Bongu, A Boulineau, J F Martin, V Dauvois, A Demarque, M Bouhier, F Boismain, S Franger, N Herlin-Boime, Caër S Le. Ex situ solid electrolyte interphase synthesis via radiolysis of Li-ion battery anode-electrolyte system for improved coulombic efficiency. Sustainable Energy & Fuels, 2018, 2(9): 2100–2108
https://doi.org/10.1039/C8SE00257F
38 F Lorandi, T Liu, M Fantin, J Manser, A Al-Obeidi, M Zimmerman, K Matyjaszewski, J F Whitacre. Comparative performance of ex situ artificial solid electrolyte interphases for Li metal batteries with liquid electrolytes. iScience, 2021, 24(6): 102578
https://doi.org/10.1016/j.isci.2021.102578
39 X Cao, H Jia, W Xu, J G Zhang. Review—localized high-concentration electrolytes for lithium batteries. Journal of the Electrochemical Society, 2021, 168(1): 010522
https://doi.org/10.1149/1945-7111/abd60e
40 C Wu, Y Zhou, X L Zhu, M Z Zhan, H X Yang, J Qian. Research progress on high concentration electrolytes for Li metal batteries. Acta Physico-Chimica Sinica, 2021, 37(2): 2008044 (in Chinese)
41 L Su, X Zhao, M Yi, H Charalambous, H Celio, Y Liu, A Manthiram. Uncovering the solvation structure of LiPF6-based localized saturated electrolytes and their effect on LiNiO2-based lithium-metal batteries. Advanced Energy Materials, 2022, 12(36): 2201911
https://doi.org/10.1002/aenm.202201911
42 Z Geng, J Z Lu, Q Li, J L Qiu, Y Wang, J Y Peng, J Huang, W J Li, X Q Yu, H Li. Lithium metal batteries capable of stable operation at elevated temperature. Energy Storage Materials, 2019, 23(8): 646–652
https://doi.org/10.1016/j.ensm.2019.03.005
43 H T Lu, C P Yang, F F Wang, L Wang, J H Zhou, W Chen, Q H Yang. Interfacial high-concentration electrolyte for stable lithium metal anode: theory, design, and demonstration. Nano Research, 2022, 15(10): 1–8
https://doi.org/10.1007/s12274-022-5018-7
44 Y Yamada, M Yaegashi, T Abe, A Yamada. A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Chemical Communications, 2013, 49(95): 11194–11196
https://doi.org/10.1039/c3cc46665e
45 Y Yamada, A Yamada. Review—superconcentrated electrolytes for lithium batteries. Journal of the Electrochemical Society, 2015, 162(14): A2406–A2423
https://doi.org/10.1149/2.0041514jes
46 L L Jiang, C Yan, Y X Yao, W Cai, J Q Huang, Q Zhang. Inhibiting solvent Co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries. Angewandte Chemie International Edition, 2021, 60(7): 3402–3406
https://doi.org/10.1002/anie.202009738
47 J C Jiang, Q N Fan, H K Liu, S L Chou, K Konstantinov, J Z Wang. Understanding the effects of the low-concentration electrolyte on the performance of high-energy-density Li-S batteries. ACS Applied Materials & Interfaces, 2021, 13(24): 28405–28414
https://doi.org/10.1021/acsami.1c07883
48 Y Wang, H Zheng, L Hong, F Jiang, Y Liu, X Feng, R Zhou, Y Sun, H Xiang. Lithium difluoro(bisoxalato) phosphate-based multi-salt low concentration electrolytes for wide-temperature lithium metal batteries: experiments and theoretical calculations. Chemical Engineering Journal, 2022, 445(13): 136802
https://doi.org/10.1016/j.cej.2022.136802
49 L Hong, H Ren, Y Wang, Y Liu, H Xiang. Designing on solvent composition of dual-salt low concentration electrolyte for inhibiting lithium dendrite growth at –20 °C. Electrochimica Acta, 2022, 414(14): 140238
https://doi.org/10.1016/j.electacta.2022.140238
50 H Zheng, H F Xiang, F Y Jiang, Y C Liu, Y Sun, X Liang, Y Z Feng, Y Yu. Lithium difluorophosphate-based dual-salt low concentration electrolytes for lithium metal batteries. Advanced Energy Materials, 2020, 10(30): 2001440
https://doi.org/10.1002/aenm.202001440
51 J Zhang, Q Li, Y Zeng, Z Tang, D Sun, D Huang, Z Peng, Y Tang, H Wang. Non-flammable ultralow concentration mixed ether electrolyte for advanced lithium metal batteries. Energy Storage Materials, 2022, 51(8): 660–670
https://doi.org/10.1016/j.ensm.2022.07.014
52 S Sayah, A Ghosh, M Baazizi, R Amine, M Dahbi, Y Amine, F Ghamouss, K Amine. How do super concentrated electrolytes push the Li-ion batteries and supercapacitors beyond their thermodynamic and electrochemical limits?. Nano Energy, 2022, 98(11): 107336
https://doi.org/10.1016/j.nanoen.2022.107336
53 J Qian, W A Henderson, W Xu, P Bhattacharya, M Engelhard, O Borodin, J G Zhang. High rate and stable cycling of lithium metal anode. Nature Communications, 2015, 6(1): 6362–6371
https://doi.org/10.1038/ncomms7362
54 J Takeyoshi, N Kobori, K Kanamura. Electrochemical evaluation of lithium-metal anode in highly concentrated ethylene carbonate based electrolytes. Electrochemistry, 2020, 88(6): 540–547
https://doi.org/10.5796/electrochemistry.20-00087
55 D W McOwen, D M Seo, O Borodin, J Vatamanu, P D Boyle, W A Henderson. Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy & Environmental Science, 2014, 7(1): 416–426
https://doi.org/10.1039/C3EE42351D
56 Y Maeyoshi, D Ding, M Kubota, H Ueda, K Abe, K Kanamura, H Abe. Long-term stable lithium metal anode in highly concentrated sulfolane-based electrolytes with ultrafine porous polyimide separator. ACS Applied Materials & Interfaces, 2019, 11(29): 25833–25843
https://doi.org/10.1021/acsami.9b05257
57 A X Zhou, J K Zhang, M Chen, J M Yue, T S Lv, B H Liu, X Z Zhu, K Qin, G Feng, L M Suo. An electric-field-reinforced hydrophobic cationic sieve lowers the concentration threshold of water-in-salt electrolytes. Advanced Materials, 2022, 34(38): 2207040
https://doi.org/10.1002/adma.202207040
58 S Chen, J Zheng, D Mei, K S Han, M H Engelhard, W Zhao, W Xu, J Liu, J G Zhang. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Advanced Materials, 2018, 30(21): 1706102
https://doi.org/10.1002/adma.201706102
59 Y M Lu, Q T Sun, Y Liu, P P Yu, Y Y Zhang, J C Lu, H C Huang, H Yang, T Cheng. DFT-ReaxFF hybrid molecular dynamics investigation of the decomposition effects of localized high-concentration electrolyte in lithium metal batteries: LiFSI/DME/TFEO. Physical Chemistry Chemical Physics, 2022, 24(31): 18684–18690
https://doi.org/10.1039/D2CP02130G
60 S Angarita-Gomez, P B Balbuena. Ion mobility and solvation complexes at liquid-solid interfaces in dilute, high concentration, and localized high concentration electrolytes. Materials Advances, 2022, 3(15): 6352–6363
https://doi.org/10.1039/D2MA00541G
61 X Ren, P Gao, L Zou, S Jiao, X Cao, X Zhang, H Jia, M H Engelhard, B E Matthews, H Wu, H Lee, C Niu, C Wang, B W Arey, J Xiao, J Liu, J G Zhang, W Xu. Role of inner solvation sheath within salt-solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(46): 28603–28613
https://doi.org/10.1073/pnas.2010852117
62 Y Z Wu, A P Wang, Q Hu, H M Liang, H Xu, L Wang, X M He. Significance of antisolvents on solvation structures enhancing interfacial chemistry in localized high-concentration electrolytes. ACS Central Science, 2022, 8(9): 1290–1298
https://doi.org/10.1021/acscentsci.2c00791
63 S J Yang, X Q Xu, X B Cheng, X M Wang, J X Chen, Y Xiao, H Yuan, H Liu, A B Chen, W C Zhu, J Huang, Q Zhang. Columnar lithium metal deposits: the role of non-aqueous electrolyte additive. Acta Physico-Chimica Sinica, 2021, 37(1): 2007058 (in Chinese)
64 X Tang, W C Zhang, L Y Cao. Multifunctional high-fluorine-content molecule with high dipole moment as electrolyte additive for high performance lithium metal batteries. Rare Metals, 2022, 41(3): 726–729
https://doi.org/10.1007/s12598-021-01843-9
65 J Langdon, A Manthiram. Crossover effects in lithium-metal batteries with a localized high concentration electrolyte and high-nickel cathodes. Advanced Materials, 2022, 34(41): 2205188
https://doi.org/10.1002/adma.202205188
66 J Holoubek, Q Yan, H Liu, E J Hopkins, Z Wu, S Yu, J Luo, T A Pascal, Z Chen, P Liu. Oxidative stabilization of dilute ether electrolytes via anion modification. ACS Energy Letters, 2022, 7(2): 675–682
https://doi.org/10.1021/acsenergylett.1c02723
67 W W Han, R E A Ardhi, G C Liu. Dual impact of superior SEI and separator wettability to inhibit lithium dendrite growth. Rare Metals, 2022, 41(2): 353–355
https://doi.org/10.1007/s12598-021-01878-y
68 X Chen, L Qin, J Sun, S Zhang, D Xiao, Y Wu. Phase transfer-mediated degradation of ether-based localized high-concentration electrolytes in alkali metal batteries. Angewandte Chemie International Edition, 2022, 61(33): 202207018
https://doi.org/10.1002/anie.202207018
69 H Liu, X Sun, X B Cheng, C Guo, F Yu, W Z Bao, T Wang, J F Li, Q Zhang. Working principles of lithium metal anode in pouch cells. Advanced Energy Materials, 2022, 12(39): 2202518
https://doi.org/10.1002/aenm.202202518
70 X Shen, R Zhang, P Shi, X Chen, Q Zhang. How does external pressure shape Li dendrites in Li metal batteries?. Advanced Energy Materials, 2021, 11(10): 2003416
https://doi.org/10.1002/aenm.202003416
71 J Moon, D O Kim, L Bekaert, M Song, J Chung, D Lee, A Hubin, J Lim. Non-fluorinated non-solvating cosolvent enabling superior performance of lithium metal negative electrode battery. Nature Communications, 2022, 13(1): 4538–4549
https://doi.org/10.1038/s41467-022-32192-5
72 S Wang, J Qu, F Wu, K Yan, C Zhang. Cycling performance and kinetic mechanism analysis of a Li metal anode in series-concentrated ether electrolytes. ACS Applied Materials & Interfaces, 2020, 12(7): 8366–8375
https://doi.org/10.1021/acsami.9b23251
73 J Fu, X Ji, J Chen, L Chen, X Fan, D Mu, C Wang. Lithium nitrate regulated sulfone electrolytes for lithium metal batteries. Angewandte Chemie International Edition, 2020, 59(49): 22194–22201
https://doi.org/10.1002/anie.202009575
74 L P Hou, N Yao, J Xie, P Shi, S Y Sun, C B Jin, C M Chen, Q B Liu, B Q Li, X Q Zhang, Q Zhang. Modification of nitrate ion enables stable solid electrolyte interphase in lithium metal batteries. Angewandte Chemie International Edition, 2022, 61(20): e202201406
https://doi.org/10.1002/anie.202201406
75 X Cao, P Gao, X Ren, L Zou, M H Engelhard, B E Matthews, J Hu, C Niu, D Liu, B W Arey, C Wang, J Xiao, J Liu, W Xu, J G Zhang. Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(9): e2020357118
https://doi.org/10.1073/pnas.2020357118
76 F Ren, Z Li, J Chen, P Huguet, Z Peng, S Deabate. Solvent-diluent interaction-mediated solvation structure of localized high-concentration electrolytes. ACS Applied Materials & Interfaces, 2022, 14(3): 4211–4219
https://doi.org/10.1021/acsami.1c21638
77 S J Yang, N Yao, X Q Xu, F N Jiang, X Chen, H Liu, H Yuan, J Q Huang, X B Cheng. Formation mechanism of the solid electrolyte interphase in different ester electrolytes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(35): 19664–19668
https://doi.org/10.1039/D1TA02615A
78 F N Jiang, S J Yang, H Liu, X B Cheng, L Liu, R Xiang, Q Zhang, S Kaskel, J Q Huang. Mechanism understanding for stripping electrochemistry of Li metal anode. SusMat, 2021, 1(4): 506–536
https://doi.org/10.1002/sus2.37
79 Y Liu, X Xu, O O Kapitanova, P V Evdokimov, Z Song, A Matic, S Xiong. Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes. Advanced Energy Materials, 2022, 12(9): 2103589
https://doi.org/10.1002/aenm.202103589
80 Z X Wen, W Q Fang, X Y Wu, Z Y Qin, H Kang, L Chen, N Zhang, X H Liu, G Chen. High-concentration additive and triiodide/iodide redox couple stabilize lithium metal anode and rejuvenate the inactive lithium in carbonate-based electrolyte. Advanced Functional Materials, 2022, 32(35): 2204768
https://doi.org/10.1002/adfm.202204768
81 H Wang, L Wu, B Xue, F Wang, Z Luo, X Zhang, L Calvez, P Fan, B Fan. Improving cycling stability of the lithium anode by a spin-coated high-purity Li3PS4 artificial SEI layer. ACS Applied Materials & Interfaces, 2022, 14(13): 15214–15224
https://doi.org/10.1021/acsami.1c25224
82 X Q Xu, R Xu, X B Cheng, Y Xiao, H J Peng, H Yuan, F Y Liu. A two-dimension laminar composite protective layer for dendrite-free lithium metal anode. Journal of Energy Chemistry, 2020, 56(17): 391–394
83 L Yu, S R Chen, H Lee, L C Zhang, M H Engelhard, Q Y Li, S H Jiao, J Liu, W Xu, J G Zhang. A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate)borate additive for stable lithium metal batteries. ACS Energy Letters, 2018, 3(9): 2059–2067
https://doi.org/10.1021/acsenergylett.8b00935
84 Y Zheng, F A Soto, V Ponce, J M Seminario, X Cao, J G Zhang, P B Balbuena. Localized high concentration electrolyte behavior near a lithium-metal anode surface. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(43): 25047–25055
https://doi.org/10.1039/C9TA08935G
85 Z Peng, X Cao, P Y Gao, H P Jia, X D Ren, S Roy, Z D Li, Y Zhu, W P Xie, D Y Liu, Q Li, D Wang, W Xu, J G Zhang. High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive. Advanced Functional Materials, 2020, 30(24): 2001285
https://doi.org/10.1002/adfm.202001285
86 D J Yoo, S Yang, K J Kim, J W Choi. Fluorinated aromatic diluent for high-performance lithium metal batteries. Angewandte Chemie International Edition, 2020, 59(35): 14869–14876
https://doi.org/10.1002/anie.202003663
87 T Li, Y Li, Y L Sun, Z F Qian, R H Wang. New insights on the good compatibility of ether-based localized high-concentration electrolyte with lithium metal. ACS Materials Letters, 2021, 3(6): 838–844
https://doi.org/10.1021/acsmaterialslett.1c00276
88 X S Xiong, Q Zhou, Y S Zhu, Y H Chen, L J Fu, L L Liu, N F Yu, Y P Wu, T van Ree. In pursuit of a dendrite-free electrolyte/electrode interface on lithium metal anodes: a minireview. Energy & Fuels, 2020, 34(9): 10503–10512
https://doi.org/10.1021/acs.energyfuels.0c02211
89 S Perez Beltran, X Cao, J G Zhang, P Z El-Khoury, P B Balbuena. Influence of diluent concentration in localized high concentration electrolytes: elucidation of hidden diluent-Li+ interactions and Li+ transport mechanism. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(32): 17459–17473
https://doi.org/10.1039/D1TA04737J
90 Q Wu, X Tang, Y Qian, J D Duan, R Wang, J H Teng, J Li. Enhancing the cycling stability for lithium-metal batteries by localized high-concentration electrolytes with 2-fluoropyridine additive. ACS Applied Energy Materials, 2021, 4(9): 10234–10243
https://doi.org/10.1021/acsaem.1c02115
91 S Zhu, J Chen. Dual strategy with Li-ion solvation and solid electrolyte interphase for high Coulombic efficiency of lithium metal anode. Energy Storage Materials, 2022, 44(8): 48–56
https://doi.org/10.1016/j.ensm.2021.10.007
92 T D Pham, A Bin Faheem, K K Lee. Design of a LiF-rich solid electrolyte interphase layer through highly concentrated LiFSI-THF electrolyte for stable lithium metal batteries. Small, 2021, 17(46): 2103375
https://doi.org/10.1002/smll.202103375
93 Y Maeyoshi, K Yoshii, M Shikano, H Sakaebe. Improving cycling stability of vanadium sulfide (VS4) as a Li battery cathode material using a localized high-concentration carbonate-based electrolyte. ACS Applied Energy Materials, 2021, 4(12): 13627–13635
https://doi.org/10.1021/acsaem.1c02312
94 Y Maeyoshi, K Yoshii, H Sakaebe. Stable lithium metal plating/stripping in a localized high-concentration cyclic carbonate-based electrolyte. Electrochemistry, 2022, 90(4): 047001–047001
https://doi.org/10.5796/electrochemistry.22-00014
95 P Shi, L P Hou, C B Jin, Y Xiao, Y X Yao, J Xie, B Q Li, X Q Zhang, Q Zhang. A successive conversion-deintercalation delithiation mechanism for practical composite lithium anodes. Journal of the American Chemical Society, 2022, 144(1): 212–218
https://doi.org/10.1021/jacs.1c08606
96 R Zhang, X Shen, Y T Zhang, X L Zhong, H T Ju, T X Huang, X Chen, J D Zhang, J Q Huang. Dead lithium formation in lithium metal batteries: a phase field model. Journal of Energy Chemistry, 2022, 71(8): 29–35
https://doi.org/10.1016/j.jechem.2021.12.020
97 Y Liu, Q T Sun, P P Yu, B Y Ma, H Yang, J Y Zhang, M Xie, T Cheng. In situ formation of circular and branched oligomers in a localized high concentration electrolyte at the lithium-metal solid electrolyte interphase: a hybrid ab initio and reactive molecular dynamics study. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(2): 632–639
https://doi.org/10.1039/D1TA08182A
98 M C Liu, X Li, B Y Zhai, Z Q Zeng, W Hu, S Lei, H Zhang, S J Cheng, J Xie. Diluted high-concentration electrolyte based on phosphate for high-performance lithium-metal batteries. Batteries & Supercaps, 2022, 5(5): e202100407
https://doi.org/10.1002/batt.202100407
99 G Z Zhang, X L Deng, J W Li, J Wang, G L Shi, Y Yang, J Chang, K Yu, S S Chi, H Wang, P Wang, Z Liu, Y Gao, Z Zheng, Y Deng, C Wang. A bifunctional fluorinated ether co-solvent for dendrite-free and long-term lithium metal batteries. Nano Energy, 2022, 95(5): 107014–107025
https://doi.org/10.1016/j.nanoen.2022.107014
100 C Y Chang, Y Yao, R R Li, Z F Cong, L W Li, Z H Guo, W G Hu, X Pu. Stable lithium metal batteries enabled by localized high-concentration electrolytes with sevoflurane as a diluent. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(16): 9001–9009
https://doi.org/10.1039/D1TA10618J
101 C N Zhu, C C Sun, R H Li, S T Weng, L W Fan, X F Wang, L X Chen, M Noked, X L Fan. Anion-diluent pairing for stable high-energy Li metal batteries. ACS Energy Letters, 2022, 7(4): 1338–1347
https://doi.org/10.1021/acsenergylett.2c00232
102 E C Huangzhang, X Y Zeng, T X Yang, H Y Liu, C H Sun, Y C Fan, H L Hu, X Y Zhao, X X Zuo, J M Nan. A localized high-concentration electrolyte with lithium bis(fluorosulfonyl) imide (LiFSI) salt and F-containing cosolvents to enhance the performance of Li||LiNi0.8Co0.1Mn0.1O2 lithium metal batteries. Chemical Engineering Journal, 2022, 439(24): 135534
https://doi.org/10.1016/j.cej.2022.135534
103 A L Chen, N Shang, Y Ouyang, L Mo, C Y Zhou, W W Tjiu, F Lai, Y E Miao, T Liu. Electroactive polymeric nanofibrous composite to drive in situ construction of lithiophilic SEI for stable lithium metal anodes. eScience, 2022, 2(2): 192–200
104 Y C Liu, L Hong, R Jiang, Y D Wang, S V Patel, X Y Feng, H F Xiang. Multifunctional electrolyte additive stabilizes electrode-electrolyte interface layers for high-voltage lithium metal batteries. ACS Applied Materials & Interfaces, 2021, 13(48): 57430–57441
https://doi.org/10.1021/acsami.1c18783
105 F W Bai, Y Li, Z Y Chen, Y C Zhou, C Z Li, T Li. Targeted stabilization of solid electrolyte interphase and cathode electrolyte interphase in high-voltage lithium-metal batteries by an asymmetric sustained-release strategy. Journal of Power Sources, 2022, 548(32): 232045
https://doi.org/10.1016/j.jpowsour.2022.232045
106 M M Fang, J E Chen, B Y Chen, J H Wang. Salt-solvent synchro-constructed robust electrolyte-electrode interphase for high-voltage lithium metal batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(37): 19903–19913
https://doi.org/10.1039/D2TA02267B
107 M Xia, M Lin, G Liu, Y Cheng, T Jiao, A Fu, Y Yang, M Wang, J Zheng. Stable cycling and fast charging of high-voltage lithium metal batteries enabled by functional solvation chemistry. Chemical Engineering Journal, 2022, 442(16): 136351
https://doi.org/10.1016/j.cej.2022.136351
108 J F Qian, B D Adams, J M Zheng, W Xu, W A Henderson, J Wang, M E Bowden, S C Xu, J Z Hu, J G Zhang. Anode-free rechargeable lithium metal batteries. Advanced Functional Materials, 2016, 26(39): 7094–7102
https://doi.org/10.1002/adfm.201602353
109 Y Wang, L Xing, W Li, D Bedrov. Why do sulfone-based electrolytes show stability at high voltages? Insight from density functional theory. Journal of Physical Chemistry Letters, 2013, 4(22): 3992–3999
https://doi.org/10.1021/jz401726p
110 X D Ren, S R Chen, H Lee, D H Mei, M H Engelhard, S D Burton, W G Zhao, J M Zheng, Q Y Li, M S Ding, M Schroeder, J Alvarado, K Xu, Y S Meng, J Liu, J G Zhang, W Xu. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem, 2018, 4(8): 1877–1892
https://doi.org/10.1016/j.chempr.2018.05.002
111 H Liu, T Li, X Q Xu, P Shi, X Q Zhang, R Xu, X B Cheng, J Q Huang. Stable interfaces constructed by concentrated ether electrolytes to render robust lithium metal batteries. Chinese Journal of Chemical Engineering, 2021, 37(9): 152–158
https://doi.org/10.1016/j.cjche.2021.03.021
112 V A Afrifah, J M Kim, Y M Lee, I Phiri, Y G Lee, S Y Ryou. Synergistic effects between dual salts and Li nitrate additive in ether electrolytes for Li-metal anode protection in Li secondary batteries. Journal of Power Sources, 2022, 548(32): 232017
https://doi.org/10.1016/j.jpowsour.2022.232017
113 T Zhou, Y Zhao, M El Kazzi, J W Choi, A Coskun. Integrated ring-chain design of a new fluorinated ether solvent for high-voltage lithium-metal batteries. Angewandte Chemie International Edition, 2022, 61(19): e202115884
https://doi.org/10.1002/anie.202115884
114 X D Ren, L F Zou, X Cao, M H Engelhard, W Liu, S D Burton, H Lee, C J Niu, B E Matthews, Z H Zhu, C Wang, B W Arey, J Xiao, J Liu, J G Zhang, W Xu. Enabling high-voltage lithium-metal batteries under practical conditions. Joule, 2019, 3(7): 1662–1676
https://doi.org/10.1016/j.joule.2019.05.006
115 S Lin, H Hua, Z Li, J Zhao. Functional localized high-concentration ether-based electrolyte for stabilizing high-voltage lithium-metal battery. ACS Applied Materials & Interfaces, 2020, 12(30): 33710–33718
https://doi.org/10.1021/acsami.0c07904
116 W Wang, J Zhang, Q Yang, S Wang, W Wang, B Li. Stable cycling of high-voltage lithium-metal batteries enabled by high-concentration FEC-based electrolyte. ACS Applied Materials & Interfaces, 2020, 12(20): 22901–22909
https://doi.org/10.1021/acsami.0c03952
117 H F Xiang, P C Shi, P Bhattacharya, X L Chen, D H Mei, M E Bowden, J M Zheng, J G Zhang, W Xu. Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes. Journal of Power Sources, 2016, 318(18): 170–177
https://doi.org/10.1016/j.jpowsour.2016.04.017
118 X D Peng, Y K Lin, Y Wang, Y J Li, T S Zhao. A lightweight localized high-concentration ether electrolyte for high-voltage Li-ion and Li-metal batteries. Nano Energy, 2022, 96(11): 107102
https://doi.org/10.1016/j.nanoen.2022.107102
119 H MoonS J ChoD E YuS Y Lee. Nitrile electrolyte strategy for 4.9 V-class lithium-metal batteries operating in flame. Energy & Environmental Materials, 2022
120 T D Pham, A Bin Faheem, J Kim, H M Oh, K K Lee. Practical high-voltage lithium metal batteries enabled by tuning the solvation structure in weakly solvating electrolyte. Small, 2022, 18(14): 2107492
https://doi.org/10.1002/smll.202107492
121 T D Pham, K K Lee. Simultaneous stabilization of the solid/cathode electrolyte interface in lithium metal batteries by a new weakly solvating electrolyte. Small, 2021, 17(20): 2100133
https://doi.org/10.1002/smll.202100133
122 H Xue, W He, J Li, D Zhang, X Wang, S Zhou, W Yang. Stable dendrite-free high-voltage lithium metal batteries enabled by localized high concentration fluoroethylene carbonate based electrolytes. ACS Applied Energy Materials, 2022, 5(10): 12553–12560
https://doi.org/10.1021/acsaem.2c02194
123 X Q Xu, X B Cheng, F N Jiang, S J Yang, D S Ren, P Shi, H J Hsu, H Yuan, J Q Huang, M G Ouyang, Q Zhang. Dendrite-accelerated thermal runaway mechanisms of lithium metal pouch batteries. SusMat, 2022, 2(4): 435–444
https://doi.org/10.1002/sus2.74
124 F N Jiang, S J Yang, X B Cheng, P Shi, J F Ding, X Chen, H Yuan, L Liu, J Q Huang, Q Zhang. Thermal safety of dendritic lithium against non-aqueous electrolyte in pouch-type lithium metal batteries. Journal of Energy Chemistry, 2022, 72(10): 158–165
https://doi.org/10.1016/j.jechem.2022.05.005
125 S J Yang, N Yao, F N Jiang, J Xie, S Y Sun, X Chen, H Yuan, X B Cheng, J Q Huang, Q Zhang. Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells. Angewandte Chemie International Edition, 2022, 61(51): e20221454
126 T Ma, Y Ni, Q Wang, J Xiao, Z Huang, Z Tao, J Chen. Lithium dendrites inhibition by regulating electrodeposition kinetics. Energy Storage Materials, 2022, 52(9): 69–75
https://doi.org/10.1016/j.ensm.2022.07.038
127 Z Q Zeng, V Murugesan, K S Han, X Y Jiang, Y L Cao, L F Xiao, X P Ai, H X Yang, J G Zhang, M L Sushko, J Liu. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nature Energy, 2018, 3(8): 674–681
https://doi.org/10.1038/s41560-018-0196-y
128 X Fan, L Chen, O Borodin, X Ji, J Chen, S Hou, T Deng, J Zheng, C Yang, S C Liou, K Amine, K Xu, C Wang. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nature Nanotechnology, 2018, 13(8): 715–722
https://doi.org/10.1038/s41565-018-0183-2
129 X L Fan, X Ji, L Chen, J Chen, T Deng, F D Han, J Yue, N Piao, R X Wang, X Q Zhou, X Xiao, L Chen, C Wang. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nature Energy, 2019, 4(10): 882–890
https://doi.org/10.1038/s41560-019-0474-3
130 H R Zhang, L Huang, H T Xu, X H Zhang, Z Chen, C H Gao, C L Lu, Z Liu, M F Jiang, G L Cui. A polymer electrolyte with a thermally induced interfacial ion-blocking function enables safety-enhanced lithium metal batteries. eScience, 2022, 2(2): 201–208
131 P Shi, H Zheng, X Liang, Y Sun, S Cheng, C Chen, H Xiang. A highly concentrated phosphate-based electrolyte for high-safety rechargeable lithium batteries. Chemical Communications, 2018, 54(35): 4453–4456
https://doi.org/10.1039/C8CC00994E
132 S R Chen, J M Zheng, L Yu, X D Ren, M H Engelhard, C J Niu, H Lee, W Xu, J Xiao, J Liu, J G Zhang. High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule, 2018, 2(8): 1548–1558
https://doi.org/10.1016/j.joule.2018.05.002
133 J X Hou, L G Lu, L Wang, A Ohma, D S Ren, X N Feng, Y Li, Y L Li, I Ootani, X B Han, W Ren, X He, Y Nitta, M Ouyang. Thermal runaway of lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nature Communications, 2020, 11(1): 5100
https://doi.org/10.1038/s41467-020-18868-w
134 M M JiaC ZhangY W GuoL S PengX Y ZhangW W QianL ZhangS J Zhang. Advanced nonflammable localized high-concentration electrolyte for high energy density lithium battery. Energy & Environmental Materials, 2022, in press
135 M C Liu, Z Q Zeng, W Zhong, Z C Ge, L Q Li, S Lei, Q Wu, H Zhang, S J Cheng, J Xie. Non-flammable fluorobenzene-diluted highly concentrated electrolytes enable high-performance Li-metal and Li-ion batteries. Journal of Colloid and Interface Science, 2022, 619(15): 399–406
https://doi.org/10.1016/j.jcis.2022.03.133
136 Z Xu, K Deng, S Zhou, Z Liu, X Guan, D Mo. Nonflammable localized high-concentration electrolytes with long-term cycling stability for high-performance Li metal batteries. ACS Applied Materials & Interfaces, 2022, 14(43): 48694–48704
https://doi.org/10.1021/acsami.2c13922
137 Q Wu, Y Qan, X Tang, J H Teng, H Y Ding, H M Zhao, J Li. Stable cycling of lithium-metal batteries in hydrofluoroether-based localized high-concentration electrolytes with 2-fluoropyridine additive. ACS Applied Energy Materials, 2022, 5(5): 5742–5749
https://doi.org/10.1021/acsaem.2c00037
138 S J Cho, D E Yu, T P Pollard, H Moon, M Jang, O Borodin, S Y Lee. Nonflammable lithium metal full cells with ultra-high energy density based on coordinated carbonate electrolytes. iScience, 2020, 23(2): 100844
https://doi.org/10.1016/j.isci.2020.100844
139 Z C Wang, F R Zhang, Y Y Sun, L Zheng, Y B Shen, D S Fu, W F Li, A R Pan, L Wang, J J Xu, J Hu, X Wu. Intrinsically nonflammable ionic liquid-based localized highly concentrated electrolytes enable high-performance Li-metal batteries. Advanced Energy Materials, 2021, 11(17): 2003752
https://doi.org/10.1002/aenm.202003752
140 H Sun, G Zhu, Y Zhu, M C Lin, H Chen, Y Y Li, W H Hung, B Zhou, X Wang, Y Bai, M Gu, C L Huang, H C Tai, X Xu, M Angell, J J Shyue, H Dai. High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte. Advanced Materials, 2020, 32(26): 2001741
https://doi.org/10.1002/adma.202001741
141 Q K Zhang, X Q Zhang, L P Hou, S Y Sun, Y X Zhan, J L Liang, F S Zhang, X N Feng, B Q Li, J Q Huang. Regulating solvation structure in nonflammable amide-based electrolytes for long-cycling and safe lithium metal batteries. Advanced Energy Materials, 2022, 12(24): 2200139
https://doi.org/10.1002/aenm.202200139
142 C Zhang, S C Gu, D F Zhang, J B Ma, H Zheng, M Y Zheng, R T Lv, K Yu, J Q Wu, X M Wang, Q H Yang, F Kang, W Lv. Nonflammable, localized high-concentration electrolyte towards a high-safety lithium metal battery. Energy Storage Materials, 2022, 52(8): 355–364
https://doi.org/10.1016/j.ensm.2022.08.018
143 Y Liu, W Li, L Cheng, Q Liu, J Wei, Y Huang. Anti-freezing strategies of electrolyte and their application in electrochemical energy devices. Chemical Record, 2022, 22(10): e202200068
https://doi.org/10.1002/tcr.202200068
144 H Liu, X B Cheng, C Yan, Z H Li, C Z Zhao, R Xiang, H Yuan, J Q Huang, E Kuzmina, E Karaseva, V Kolosnitsyn, Q Zhang. A perspective on energy chemistry of low-temperature lithium metal batteries. iEnergy, 2022, 1(1): 72–81
145 Q Li, S Jiao, L Luo, M S Ding, J Zheng, S S Cartmell, C M Wang, K Xu, J G Zhang, W Xu. Wide-temperature electrolytes for lithium-ion batteries. ACS Applied Materials & Interfaces, 2017, 9(22): 18826–18835
https://doi.org/10.1021/acsami.7b04099
146 X Dong, Y Lin, P Li, Y Ma, J Huang, D Bin, Y Wang, Y Qi, Y Xia. High-energy rechargeable metallic lithium battery at –70 °C enabled by a cosolvent electrolyte. Angewandte Chemie International Edition, 2019, 58(17): 5623–5627
https://doi.org/10.1002/anie.201900266
147 S S Lin, H M Hua, P B Lai, J B Zhao. A multifunctional dual-salt localized high-concentration electrolyte for fast dynamic high-voltage lithium battery in wide temperature range. Advanced Energy Materials, 2021, 11(36): 2101775
https://doi.org/10.1002/aenm.202101775
148 K Park, Y Jo, B Koo, H Lee, H Lee. Wide temperature cycling of Li-metal batteries with hydrofluoroether dilution of high-concentration electrolyte. Chemical Engineering Journal, 2022, 427(27): 131889–131900
https://doi.org/10.1016/j.cej.2021.131889
149 S Kuang, H Hua, P Lai, J Li, X Deng, Y Yang, J Zhao. Anion-containing solvation structure reconfiguration enables wide-temperature electrolyte for high-energy-density lithium-metal batteries. ACS Applied Materials & Interfaces, 2022, 14(16): 19056–19066
https://doi.org/10.1021/acsami.2c02221
150 S J Xu, Z H Sun, C G Sun, F Li, K Chen, Z H Zhang, G J Hou, H M Cheng, F Li. Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature. Advanced Functional Materials, 2020, 30(51): 2007172
151 J Zheng, C Sun, Z Wang, S Liu, B An, Z Sun, F Li. Double ionic-electronic transfer interface layers for all-solid-state lithium batteries. Angewandte Chemie International Edition, 2021, 60(34): 18448–18453
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed