Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (9): 1244-1253   https://doi.org/10.1007/s11705-022-2293-5
  本期目录
Vanadium oxide cathode with synergistic engineering of calcium-ion intercalation and polyaniline coating for high performance zinc-ion batteries
Lin Zhang1, Xinghua Qin2, Lang Wang2, Zifang Zhao3(), Liwei Mi1(), Qiongqiong Lu4,5()
1. Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, China
2. Institute of Materials and Technology, Dalian Maritime University, Dalian 116026, China
3. School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China
4. Institute of Materials, Henan Academy of Sciences, Zhengzhou 450046, China
5. Leibniz Institute for Solid State and Materials Research (IFW) Dresden E.V., Dresden 01069, Germany
 全文: PDF(4353 KB)   HTML
Abstract

Vanadium oxides as cathode for zinc-ion batteries have attracted much attention because of their high theoretical capacity, flexible layered structure and abundant resources. However, cathodes are susceptible to the collapse of their layered structure and the dissolution of vanadium after repeated long cycles, which worsen their capacities and cycling stabilities. Herein, a synergistic engineering of calcium-ion intercalation and polyaniline coating was developed to achieve the superior electrochemical performance of vanadium pentoxide for zinc-ion batteries. The pre-intercalation of calcium-ion between vanadium pentoxide layers as pillars increase the crystal structure’s stability, while the polyaniline coating on the cathodes improves the conductivity and inhibits the dissolution of vanadium. This synergistic engineering enables that the battery system based-on the polyaniline coated calcium vanadate cathode to deliver a high capacity of 406.4 mAh·g−1 at 1 A·g−1, an ultralong cycle life over 6000 cycles at 10 A·g−1 with 93% capacity retention and high-rate capability. The vanadium oxide cathode with synergistic engineering of calcium-ion intercalation and polyaniline coating was verified to effectively improve the electrochemical performance of zinc-ion batteries.

Key wordszinc-ion battery    CaV8O20    polyaniline coating    synergistic engineering    high capacity    long durability
收稿日期: 2022-09-28      出版日期: 2023-08-29
Corresponding Author(s): Zifang Zhao,Liwei Mi,Qiongqiong Lu   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(9): 1244-1253.
Lin Zhang, Xinghua Qin, Lang Wang, Zifang Zhao, Liwei Mi, Qiongqiong Lu. Vanadium oxide cathode with synergistic engineering of calcium-ion intercalation and polyaniline coating for high performance zinc-ion batteries. Front. Chem. Sci. Eng., 2023, 17(9): 1244-1253.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-022-2293-5
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I9/1244
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 G Jin, J Zhang, B Dang, F Wu, J Li. Engineering zirconium-based metal-organic framework-801 films on carbon cloth as shuttle-inhibiting interlayers for lithium–sulfur batteries. Frontiers of Chemical Science and Engineering, 2022, 16(4): 511–522
https://doi.org/10.1007/s11705-021-2068-4
2 Y Li, T Gao, D Ni, Y Zhou, M Yousaf, Z Guo, J Zhou, P Zhou, Q Wang, S Guo. Two birds with one stone: interfacial engineering of multifunctional janus separator for lithium–sulfur batteries. Advanced Materials, 2022, 34(5): 2107638
https://doi.org/10.1002/adma.202107638
3 W Bi, J Huang, M Wang, E P Jahrman, G T Seidler, J Wang, Y Wu, G Gao, G Wu, G Cao. V2O5 conductive polymer nanocables with built-in local electric field derived from interfacial oxygen vacancies for high energy density supercapacitors. Journal of Materials Chemistry A, 2019, 7(30): 17966–17973
https://doi.org/10.1039/C9TA04264D
4 G J Sim, K Ma, Z Huang, S Huang, Y Wang, H Yang. Two-dimensional SnS2 nanosheets on Prussian blue template for high performance sodium ion batteries. Frontiers of Chemical Science and Engineering, 2019, 13(3): 493–500
https://doi.org/10.1007/s11705-019-1826-z
5 M Du, C Liu, F Zhang, W Dong, X Zhang, Y Sang, J J Wang, Y G Guo, H Liu, S Wang. Tunable layered (Na,Mn)V8O20·nH2O cathode material for high-performance aqueous zinc ion batteries. Advanced Science, 2020, 7(13): 2000083
6 P Ruan, X Xu, D Zheng, X Chen, X Yin, S Liang, X Wu, W Shi, X Cao, J Zhou. Promoting reversible dissolution/deposition of MnO2 for high-energy-density zinc batteries via enhancing cut-off voltage. ChemSusChem, 2022, 15(18): 202201118
https://doi.org/10.1002/cssc.202201118
7 X Zeng, J Mao, J Hao, J Liu, S Liu, Z Wang, Y Wang, S Zhang, T Zheng, J Liu, P Rao, Z Guo. Electrolyte design for in situ construction of highly Zn2+ conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Advanced Materials, 2021, 33(11): 2007416
https://doi.org/10.1002/adma.202007416
8 N Wang, H Wan, J Duan, X Wang, L Tao, J Zhang, H Wang. A review of zinc-based battery from alkaline to acid. Materials Today Advances, 2021, 11: 100149
https://doi.org/10.1016/j.mtadv.2021.100149
9 S Chen, K Li, K S Hui, J Zhang. Regulation of lamellar structure of vanadium oxide via polyaniline intercalation for high-performance aqueous zinc-ion battery. Advanced Functional Materials, 2020, 30(43): 2003890
https://doi.org/10.1002/adfm.202003890
10 Q Pan, R Dong, H Lv, X Sun, Y Song, X X Liu. Fundamental understanding of the proton and zinc storage in vanadium oxide for aqueous zinc-ion batteries. Chemical Engineering Journal, 2021, 419: 129491
https://doi.org/10.1016/j.cej.2021.129491
11 H Yang, P Ning, Z Zhu, L Yuan, W Jia, J Wen, G Xu, Y Li, H Cao. Water-steam activation toward oxygen-deficient vanadium oxides for enhancing zinc ion storage. Journal of Materials Chemistry A, 2021, 9(43): 24517–24527
https://doi.org/10.1039/D1TA07599C
12 S Liu, H Zhu, B Zhang, G Li, H Zhu, Y Ren, H Geng, Y Yang, Q Liu, C C Li. Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance. Advanced Materials, 2020, 32(26): 2001113
https://doi.org/10.1002/adma.202001113
13 C Yin, C Pan, X Liao, Y Pan, L Yuan. Regulating the interlayer spacing of vanadium oxide by in situ polyaniline intercalation enables an improved aqueous zinc-ion storage performance. ACS Applied Materials & Interfaces, 2021, 13(33): 39347–39354
https://doi.org/10.1021/acsami.1c09722
14 H Zhao, Q Fu, D Yang, A Sarapulova, Q Pang, Y Meng, L Wei, H Ehrenberg, Y Wei, C Wang, G Chen. In operando synchrotron studies of NH4+ preintercalated V2O5·nH2O nanobelts as the cathode material for aqueous rechargeable zinc batteries. ACS Nano, 2020, 14(9): 11809–11820
https://doi.org/10.1021/acsnano.0c04669
15 K Zhu, T Wu, K Huang. A high capacity bilayer cathode for aqueous Zn-ion batteries. ACS Nano, 2019, 13(12): 14447–14458
https://doi.org/10.1021/acsnano.9b08039
16 C Xia, J Guo, P Li, X Zhang, H N Alshareef. Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angewandte Chemie International Edition, 2018, 57(15): 3943–3948
https://doi.org/10.1002/anie.201713291
17 P Ruan, S Liang, B Lu, H J Fan, J Zhou. Design strategies for high-energy-density aqueous zinc batteries. Angewandte Chemie International Edition, 2022, 61(17): 202200598
https://doi.org/10.1002/anie.202200598
18 X Liu, H Zhang, D Geiger, J Han, A Varzi, U Kaiser, A Moretti, S Passerini. Calcium vanadate sub-microfibers as highly reversible host cathode material for aqueous zinc-ion batteries. Chemical Communications, 2019, 55(16): 2265–2268
https://doi.org/10.1039/C8CC07243D
19 R Li, F Xing, T Li, H Zhang, J Yan, Q Zheng, X Li. Intercalated polyaniline in V2O5 as a unique vanadium oxide bronze cathode for highly stable aqueous zinc ion battery. Energy Storage Materials, 2021, 38: 590–598
https://doi.org/10.1016/j.ensm.2021.04.004
20 H Zhao, Q Fu, X Luo, X Wu, S Indris, M Bauer, Y Wang, H Ehrenberg, M Knapp, Y Wei. Unraveling a cathode/anode compatible electrolyte for high-performance aqueous rechargeable zinc batteries. Energy Storage Materials, 2022, 50: 464–472
https://doi.org/10.1016/j.ensm.2022.05.048
21 T Hu, Z Feng, Y Zhang, Y Liu, J Sun, J Zheng, H Jiang, P Wang, X Dong, C Meng. “Double guarantee mechanism” of Ca2+-intercalation and rGO-integration ensures hydrated vanadium oxide with high performance for aqueous zinc-ion batteries. Inorganic Chemistry Frontiers, 2021, 8(1): 79–89
https://doi.org/10.1039/D0QI00954G
22 X Li, Z Chen, Y Yang, S Liang, B Lu, J Zhou. The phosphate cathodes for aqueous zinc-ion batteries. Inorganic Chemistry Frontiers, 2022, 9(16): 3986–3998
https://doi.org/10.1039/D2QI01083F
23 S Liu, L Kang, J M Kim, Y T Chun, J Zhang, S C Jun. Recent advances in vanadium-based aqueous rechargeable zinc-ion batteries. Advanced Energy Materials, 2020, 10(25): 2000477
https://doi.org/10.1002/aenm.202000477
24 D Batyrbekuly, B Laïk, Ramos J P Pereira, Z Bakenov, Hadjean R Baddour. A porous puckered V2O5 polymorph as new high performance cathode material for aqueous rechargeable zinc batteries. Journal of Energy Chemistry, 2021, 61: 459–468
https://doi.org/10.1016/j.jechem.2021.01.042
25 X Wang, L Wang, B Zhang, J Feng, J Zhang, X Ou, F Hou, J Liang. A flexible carbon nanotube@V2O5 film as a high-capacity and durable cathode for zinc ion batteries. Journal of Energy Chemistry, 2021, 59: 126–133
https://doi.org/10.1016/j.jechem.2020.10.007
26 S Chen, Q Nian, L Zheng, B Q Xiong, Z Wang, Y Shen, X Ren. Highly reversible aqueous zinc metal batteries enabled by fluorinated interphases in localized high concentration electrolytes. Journal of Materials Chemistry A, 2021, 9(39): 22347–22352
https://doi.org/10.1039/D1TA06987J
27 Q Fu, J Wang, A Sarapulova, L Zhu, A Missyul, E Welter, X Luo, Z Ding, M Knapp, H Ehrenberg, S Dsoke. Electrochemical performance and reaction mechanism investigation of V2O5 positive electrode material for aqueous rechargeable zinc batteries. Journal of Materials Chemistry A, 2021, 9(31): 16776–16786
https://doi.org/10.1039/D1TA03518E
28 R Li, H Zhang, Q Zheng, X Li. Porous V2O5 yolk-shell microspheres for zinc ion battery cathodes: activation responsible for enhanced capacity and rate performance. Journal of Materials Chemistry A, 2020, 8(10): 5186–5193
https://doi.org/10.1039/C9TA11750D
29 T Wei, Q Li, G Yang, C Wang. An electrochemically induced bilayered structure facilitates long-life zinc storage of vanadium dioxide. Journal of Materials Chemistry A, 2018, 6(17): 8006–8012
https://doi.org/10.1039/C8TA02090F
30 B Wu, Y Wu, Z Lu, J Zhang, N Han, Y Wang, X M Li, M Lin, L Zeng. A cation selective separator induced cathode protective layer and regulated zinc deposition for zinc ion batteries. Journal of Materials Chemistry A, 2021, 9(8): 4734–4743
https://doi.org/10.1039/D0TA11841A
31 M Du, F Zhang, X Zhang, W Dong, Y Sang, J Wang, H Liu, S Wang. Calcium ion pinned vanadium oxide cathode for high-capacity and long-life aqueous rechargeable zinc-ion batteries. Science China Chemistry, 2020, 63(12): 1767–1776
https://doi.org/10.1007/s11426-020-9830-8
32 J Zeng, Z Zhang, X Guo, G Li. A conjugated polyaniline and water co-intercalation strategy boosting zinc-ion storage performances for rose-like vanadium oxide architectures. Journal of Materials Chemistry A, 2019, 7(37): 21079–21084
https://doi.org/10.1039/C9TA08086D
33 H Chen, L Chen, J Meng, Z Yang, J Wu, Y Rong, L Deng, Y Shi. Synergistic effects in V3O7/V2O5 composite material for high capacity and long cycling life aqueous rechargeable zinc ion batteries. Journal of Power Sources, 2020, 474: 228569
https://doi.org/10.1016/j.jpowsour.2020.228569
34 Y Li, Z Huang, P K Kalambate, Y Zhong, Z Huang, M Xie, Y Shen, Y Huang. V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery. Nano Energy, 2019, 60: 752–759
https://doi.org/10.1016/j.nanoen.2019.04.009
35 Y Dai, X Liao, R Yu, J Li, J Li, S Tan, P He, Q An, Q Wei, L Chen, X Hong, K Zhao, Y Ren, J Wu, Y Zhao, L Mai. Quicker and more Zn2+ storage predominantly from the interface. Advanced Materials, 2021, 33(26): 2100359
https://doi.org/10.1002/adma.202100359
36 W Xu, X Zhao, J Tang, C Zhang, Y Gao, S I Sasaki, H Tamiaki, A Li, X F Wang. Synthesis of Chl@Ti3C2 composites as an anode material for lithium storage. Frontiers of Chemical Science and Engineering, 2020, 15(3): 709–716
https://doi.org/10.1007/s11705-020-1984-z
37 J Song, K Xu, N Liu, D Reed, X Li. Crossroads in the renaissance of rechargeable aqueous zinc batteries. Materials Today, 2021, 45: 191–212
https://doi.org/10.1016/j.mattod.2020.12.003
38 N Wang, X Qiu, J Xu, J Huang, Y Cao, Y Wang. Cathode materials challenge varied with different electrolytes in zinc batteries. ACS Materials Letters, 2022, 4(1): 190–204
https://doi.org/10.1021/acsmaterialslett.1c00499
39 L Yu, J Miao, Y Jin, Y S Lin Jerry. A comparative study on polypropylene separators coated with different inorganic materials for lithium-ion batteries. Frontiers of Chemical Science and Engineering, 2017, 11(3): 346–352
https://doi.org/10.1007/s11705-017-1648-9
40 J Huang, X Qiu, N Wang, Y Wang. Aqueous rechargeable zinc batteries: challenges and opportunities. Current Opinion in Electrochemistry, 2021, 30: 100801
https://doi.org/10.1016/j.coelec.2021.100801
41 R F Service. Zinc aims to beat lithium batteries at storing energy. Science, 2021, 372(6545): 890–891
42 J Wu, Q Kuang, K Zhang, J Feng, C Huang, J Li, Q Fan, Y Dong, Y Zhao. Spinel Zn3V3O8: a high-capacity zinc supplied cathode for aqueous Zn-ion batteries. Energy Storage Materials, 2021, 41: 297–309
https://doi.org/10.1016/j.ensm.2021.06.006
43 X Yang, Z Qin, H Y Shi, Z Lin, W Wu, Y Song, D Guo, X X Liu, X Sun. Suppressing Cu-based cathode dissolution in rechargeable aqueous zinc batteries with equilibrium principles. Applied Surface Science, 2021, 568: 150948
https://doi.org/10.1016/j.apsusc.2021.150948
44 D Bin, Y Liu, B Yang, J Huang, X Dong, X Zhang, Y Wang, Y Xia. Engineering a high-energy-density and long lifespan aqueous zinc battery via ammonium vanadium bronze. ACS Applied Materials & Interfaces, 2019, 11(23): 20796–20803
https://doi.org/10.1021/acsami.9b03159
45 B Deka Boruah, A Mathieson, S K Park, X Zhang, B Wen, L Tan, A Boies, M de Volder. Vanadium dioxide cathodes for high-rate photo-rechargeable zinc-ion batteries. Advanced Energy Materials, 2021, 11(13): 2100115
https://doi.org/10.1002/aenm.202100115
46 L Fan, Y Ru, H Xue, H Pang, Q Xu. Vanadium-based materials as positive electrode for aqueous zinc-ion batteries. Advanved Sustainable Systems, 2020, 4(12): 2000178
https://doi.org/10.1002/adsu.202000178
47 S Liu, L Kang, J M Kim, Y T Chun, J Zhang, S C Jun. Recent advances in vanadium-based aqueous rechargeable zinc-ion batteries. Advanced Energy Materials, 2020, 10(25): 2000477
https://doi.org/10.1002/aenm.202000477
48 L Zhang, B Zhang, J Hu, J Liu, L Miao, J Jiang. An in situ artificial cathode electrolyte interphase strategy for suppressing cathode dissolution in aqueous zinc ion batteries. Small Methods, 2021, 5(6): 2100094
https://doi.org/10.1002/smtd.202100094
49 T Zhang, E Paillard. Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion battery. Frontiers of Chemical Science and Engineering, 2018, 12(3): 577–591
https://doi.org/10.1007/s11705-018-1758-z
50 C Huang, S Liu, J Feng, Y Wang, Q Fan, Q Kuang, Y Dong, Y Zhao. Optimizing engineering of rechargeable aqueous zinc ion batteries to enhance the zinc ions storage properties of cathode material. Journal of Power Sources, 2021, 490: 229528
https://doi.org/10.1016/j.jpowsour.2021.229528
[1] FCE-22118-OF-ZL_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed