Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (11): 1677-1697   https://doi.org/10.1007/s11705-023-2300-5
  本期目录
Pt–C interactions in carbon-supported Pt-based electrocatalysts
Yu-Xuan Xiao1, Jie Ying1(), Hong-Wei Liu1, Xiao-Yu Yang2()
1. School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
2. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan 430070, China
 全文: PDF(9322 KB)   HTML
Abstract

Carbon-supported Pt-based materials are highly promising electrocatalysts. The carbon support plays an important role in the Pt-based catalysts by remarkably influencing the growth, particle size, morphology, dispersion, electronic structure, physiochemical property and function of Pt. This review summarizes recent progress made in the development of carbon-supported Pt-based catalysts, with special emphasis being given to how activity and stability enhancements are related to Pt–C interactions in various carbon supports, including porous carbon, heteroatom doped carbon, carbon-based binary support, and their corresponding electrocatalytic applications. Finally, the current challenges and future prospects in the development of carbon-supported Pt-based catalysts are discussed.

Key wordsPt–C interactions    Pt-based materials    carbon support    electrocatalysis
收稿日期: 2022-11-04      出版日期: 2023-10-25
Corresponding Author(s): Jie Ying,Xiao-Yu Yang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(11): 1677-1697.
Yu-Xuan Xiao, Jie Ying, Hong-Wei Liu, Xiao-Yu Yang. Pt–C interactions in carbon-supported Pt-based electrocatalysts. Front. Chem. Sci. Eng., 2023, 17(11): 1677-1697.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-023-2300-5
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I11/1677
Fig.1  
Carbon materialSynthetic methodPore typeMean pore sizeRef.
Zeolite-templated carbonHard templateMicropore1.2 nm[42]
3D graphene-like microporous carbonHard templateMicropore1.33 or 1.21 nm[43]
Microporous 3D graphene-like carbonHard templateMicropore< 1.3 nm (74%)1.3–2.2 nm (8%)[44]
Disordered amorphous microporous carbonHard templateMicropore1.1–3.0 nm[45]
Microporous carbon nanospheresSoft templateMicropore0.4–2 nm[46]
Hierarchically porous amorphous carbonDirect pyrolysisMicropore0.4–1.08 nm[47]
Disordered amorphous ultramicroporous carbonDirect pyrolysisMicropore0.6–0.76 nm[48]
Amorphous microporous carbonHydrothermal/direct pyrolysisMicropore0.7–3 nm[49]
Mesoporous carbon hollow spheresHard templateMesopore13.9 nm[50]
Ordered mesoporous carbons (OMCs)Hard templateMesopore3.0–5.0 nm[51]
Porous carbonsSoft templateMesopore5.1 nm[52]
OMCsSoft templateMesopore4.5 nm[53]
OMCs spheresSoft templateMesopore5 nm[54]
Mesoporous carbon nanospheresSoft templateMesopore5–37 nm[55]
Mesoporous carbonDirect pyrolysisMesopore11 nm[56]
Porous carbon microspheresHydrothermalMesopore18.4–26.1 nm[57]
3D ordered macroporous carbon nanocompositeHard templateMesopore/macropore1–100 nm[58]
Ordered macroporous carbonHard templateMacropore~255 nm[59]
3D ultrathin macroporous carbonHard templateMacropore~300 nm[60]
Macroporous carbon rodsSoft templateMacropore~100 nm[61]
3D hierarchical bimodal macroporous carbon nanospheresSoft templateMacropore~120 nm[62]
Cornstalk-derived macroporous carbonDirect pyrolysisMacropore5.0–20.0 μm[63]
Macroporous carbonDirect pyrolysisMacropore250 nm[64]
Eggplant-derived macroporous carbon tubesDirect pyrolysisMacropore40–50 μm[65]
Well-ordered macroporous carbonDirect pyrolysisMacropore4–40?μm[66]
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 K L Zhou, Z Wang, C B Han, X Ke, C Wang, Y Jin, Q Zhang, J Liu, H Wang, H Yan. Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction. Nature Communications, 2021, 12(1): 3783
https://doi.org/10.1038/s41467-021-24079-8
2 M Li, Z Zhao, W Zhang, M Luo, L Tao, Y Sun, Z Xia, Y Chao, K Yin, Q H Zhang, L Gu, W Yang, Y Yu, G Lu, S Guo. Sub-monolayer YOx/MoOx on ultrathin Pt nanowires boosts alcohol oxidation electrocatalysis. Advanced Materials, 2021, 33(41): 2103762
https://doi.org/10.1002/adma.202103762
3 S M Wu, J Čejka, X Y Yang. Active sites in the right places. Nature Synthesis, 2022, 1(10): 757–758
https://doi.org/10.1038/s44160-022-00168-4
4 F Y Yu, Z L Lang, L Y Yin, K Feng, Y J Xia, H Q Tan, H T Zhu, J Zhong, Z H Kang, Y G Li. Pt–O bond as an active site superior to Pt0 in hydrogen evolution reaction. Nature Communications, 2020, 11(1): 490
https://doi.org/10.1038/s41467-019-14274-z
5 X Tian, X Zhao, Y Q Su, L Wang, H Wang, D Dang, B Chi, H Liu, E J Hensen, X W Lou, B Y Xia. Engineering bunched Pt–Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science, 2019, 366(6467): 850–856
https://doi.org/10.1126/science.aaw7493
6 J Ying, S Lenaerts, M D Symes, X Y Yang. Hierarchical design in nanoporous metals. Advanced Science, 2022, 9: 2106117
7 J Ying. Atomic-scale design of high-performance Pt-based electrocatalysts for oxygen reduction reaction. Frontiers in Chemistry, 2021, 9: 753604
https://doi.org/10.3389/fchem.2021.753604
8 J Ying, G Jiang, Z P Cano, Z Ma, Z Chen. Spontaneous weaving: 3D porous Pt−Cu networks with ultrathin jagged nanowires for highly efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 2018, 236: 359–367
https://doi.org/10.1016/j.apcatb.2018.04.035
9 Y X Xiao, J Ying, G Tian, X Q Zhang, C Janiak, K I Ozoemena, X Y Yang. Pt−Pd hollow nanocubes with enhanced alloy effect and active facets for efficient methanol oxidation reaction. Chemical Communications, 2021, 57(8): 986–989
https://doi.org/10.1039/D0CC06876D
10 Y X Xiao, J Ying, G Tian, X Yang, Y X Zhang, J B Chen, Y Wang, M D Symes, K I Ozoemena, J Wu, X Y Yang. Hierarchically fractal Pt−Pd−Cu sponges and their directed mass-and electron-transfer effects. Nano Letters, 2021, 21(18): 7870–7878
https://doi.org/10.1021/acs.nanolett.1c02268
11 Y Wang, H Z Yu, J Ying, G Tian, Y Liu, W Geng, J Hu, Y Lu, G G Chang, K I Ozoemena, C Janiak, X Y Yang. Ultimate corrosion to Pt–Cu electrocatalysts for enhancing methanol oxidation activity and stability in acidic media. Chemistry−A European Journal, 2021, 27(35): 9124–9128
https://doi.org/10.1002/chem.202100754
12 L Wang, L Zhang, W Ma, H Wan, X Zhang, X Zhang, S Jiang, J Y Zheng, Z Zhou. In situ anchoring massive isolated Pt atoms at cationic vacancies of α-NixFe1−x(OH)2 to regulate the electronic structure for overall water splitting. Advanced Functional Materials, 2022, 32(31): 2203342
https://doi.org/10.1002/adfm.202203342
13 X Feng, Y Bai, M Liu, Y Li, H Yang, X Wang, C Wu. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy & Environmental Science, 2021, 14(4): 2036–2089
https://doi.org/10.1039/D1EE00166C
14 C Hu, L Dai. Carbon-based metal-free catalysts for electrocatalysis beyond the ORR. Angewandte Chemie International Edition, 2016, 55(39): 11736–11758
https://doi.org/10.1002/anie.201509982
15 L Yang, J Shui, L Du, Y Shao, J Liu, L Dai, Z Hu. Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future. Advanced Materials, 2019, 31(13): 1804799
https://doi.org/10.1002/adma.201804799
16 L Zhang, S Jiang, W Ma, Z Zhou. Oxygen reduction reaction on Pt-based electrocatalysts: four-electron vs. two-electron pathway. Chinese Journal of Catalysis, 2022, 43(6): 1433–1443
https://doi.org/10.1016/S1872-2067(21)63961-X
17 Y Dong, J Ying, Y X Xiao, J B Chen, X Y Yang. Highly dispersed Pt nanoparticles embedded in N-doped porous carbon for efficient hydrogen evolution. Chemistry-an Asian Journal, 2021, 16(14): 1878–1881
https://doi.org/10.1002/asia.202100438
18 H Wei, Z Y Hu, Y X Xiao, G Tian, J Ying, G Van Tendeloo, C Janiak, X Y Yang, B L Su. Control of the interfacial wettability to synthesize highly dispersed PtPd nanocrystals for efficient oxygen reduction reaction. Chemistry-an Asian Journal, 2018, 13(9): 1119–1123
https://doi.org/10.1002/asia.201800191
19 L Shen, J Ying, G Tian, M Jia, X Y Yang. Ultralong PtPd alloyed nanowires anchored on graphene for efficient methanol oxidation reaction. Chemistry-an Asian Journal, 2021, 16(9): 1130–1137
https://doi.org/10.1002/asia.202100156
20 B Hammer, J K Norskov. Why gold is the noblest of all the metals. Nature, 1995, 376(6537): 238–240
https://doi.org/10.1038/376238a0
21 J Singh, R C Nelson, B C Vicente, S L Scott, J A van Bokhoven. Electronic structure of alumina-supported monometallic Pt and bimetallic Pt–Sn catalysts under hydrogen and carbon monoxide environment. Physical Chemistry Chemical Physics, 2010, 12(21): 5668–5677
https://doi.org/10.1039/c000403k
22 Y J Wang, N Zhao, B Fang, H Li, X T Bi, H Wang. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chemical Reviews, 2015, 115(9): 3433–3467
https://doi.org/10.1021/cr500519c
23 X Ren, Y Wang, A Liu, Z Zhang, Q Lv, B Liu. Current progress and performance improvement of Pt/C catalysts for fuel cells. Journal of Materials Chemistry A, 2020, 8(46): 24284–24306
https://doi.org/10.1039/D0TA08312G
24 X Q Zhang, Y X Xiao, G Tian, X Yang, Y Dong, F Zhang, X Y Yang. Enhancing resistance to chloride corrosion by controlling the morphologies of PtNi electrocatalysts for alkaline seawater hydrogen evolution. Chemistry–A European Journal, 2022, 29(5): e202202811
https://doi.org/10.1002/chem.202202811
25 Z Li, W Wang, Q Qian, Y Zhu, Y Feng, Y Zhang, H Zhang, M Cheng, G Zhang. Magic hybrid structure as multifunctional electrocatalyst surpassing benchmark Pt/C enables practical hydrazine fuel cell integrated with energy-saving H2 production. eScience, 2022, 2(4): 416–427
26 I C Gerber, P Serp. A theory/experience description of support effects in carbon-supported catalysts. Chemical Reviews, 2019, 120(2): 1250–1349
https://doi.org/10.1021/acs.chemrev.9b00209
27 J M Kim, Y J Lee, S Kim, K H Chae, K R Yoon, K A Lee, A Byeon, Y S Kang, H Y Park, M K Cho, H C Ham, J Y Kim. High-performance corrosion-resistant fluorine-doped tin oxide as an alternative to carbon support in electrodes for PEM fuel cells. Nano Energy, 2019, 65: 104008
https://doi.org/10.1016/j.nanoen.2019.104008
28 F Yang, X Bao, Y Zhao, X Wang, G Cheng, W Luo. Enhanced HOR catalytic activity of PGM-free catalysts in alkaline media: the electronic effect induced by different heteroatom doped carbon supports. Journal of Materials Chemistry A, 2019, 7(18): 10936–10941
https://doi.org/10.1039/C9TA01916B
29 W Geng, N Jiang, G Y Qing, X Liu, L Wang, H J Busscher, G Tian, T Sun, L Y Wang, Y Montelongo, C Janiak, G Zhang, X Y Yang, B L Su. Click reaction for reversible encapsulation of single yeast cells. ACS Nano, 2019, 13(12): 14459–14467
https://doi.org/10.1021/acsnano.9b08108
30 L Wang, Y Li, X Y Yang, B B Zhang, N Ninane, H J Busscher, Z Y Hu, C Delneuville, N Jiang, H Xie, G Van Tendeloo, T Hasan, B L Su. Single-cell yolk–shell nanoencapsulation for long-term viability with size-dependent permeability and molecular recognition. National Science Review, 2021, 8(4): nwaa097
https://doi.org/10.1093/nsr/nwaa097
31 H Doan, T Morais, N Borchtchoukova, Y Wijsboom, R Sharabi, M Chatenet, G Finkelshtain. Bimetallic Pt or Pd-based carbon supported nanoparticles are more stable than their monometallic counterparts for application in membraneless alkaline fuel cell anodes. Applied Catalysis B: Environmental, 2022, 301: 120811
https://doi.org/10.1016/j.apcatb.2021.120811
32 T Đukić, L J Moriau, L Pavko, M Kostelec, M Prokop, F Ruiz-Zepeda, M Šala, G Dražić, M Gatalo, N Hodnik. Understanding the crucial significance of the temperature and potential window on the stability of carbon supported Pt-alloy nanoparticles as oxygen reduction reaction electrocatalysts. ACS Catalysis, 2021, 12(1): 101–115
https://doi.org/10.1021/acscatal.1c04205
33 Y Yao, X Zhao, G Chang, X Yang, B Chen. Hierarchically porous metal–organic frameworks: synthetic strategies and applications. Small Structures, 2023, 4(1): 2200187
https://doi.org/10.1002/sstr.202200187
34 J F Huang, R H Zeng, J L Chen. Thermostable carbon-supported subnanometer-sized (< 1 nm) Pt clusters for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9(38): 21972–21980
https://doi.org/10.1039/D1TA06189E
35 Y Sun, X Li, J Wang, W Ning, J Fu, X Lu, Z Hou. Carbon film encapsulated Pt NPs for selective oxidation of alcohols in acidic aqueous solution. Applied Catalysis B: Environmental, 2017, 218: 538–544
https://doi.org/10.1016/j.apcatb.2017.06.086
36 L Shen, J Ying, K I Ozoemena, C Janiak, X Y Yang. Confinement effects in individual carbon encapsulated nonprecious metal-based electrocatalysts. Advanced Functional Materials, 2022, 32(15): 2110851
https://doi.org/10.1002/adfm.202110851
37 W Geng, L Wang, X Y Yang. Nanocell hybrids for green chemistry. Trends in Biotechnology, 2022, 40(8): 974–986
https://doi.org/10.1016/j.tibtech.2022.01.012
38 H Wang, Y Shao, S Mei, Y Lu, M Zhang, J K Sun, K Matyjaszewski, M Antonietti, J Yuan. Polymer-derived heteroatom-doped porous carbon materials. Chemical Reviews, 2020, 120(17): 9363–9419
https://doi.org/10.1021/acs.chemrev.0c00080
39 Z Zhou, T Liu, A U Khan, G Liu. Block copolymer-based porous carbon fibers. Science Advances, 2019, 5(2): eaau6852
https://doi.org/10.1126/sciadv.aau6852
40 G Yang, X Li, Z Guan, Y Tong, B Xu, X Wang, Z Wang, L Chen. Insights into lithium and sodium storage in porous carbon. Nano Letters, 2020, 20(5): 3836–3843
https://doi.org/10.1021/acs.nanolett.0c00943
41 J Yin, W Zhang, N A Alhebshi, N Salah, H N Alshareef. Synthesis strategies of porous carbon for supercapacitor applications. Small Methods, 2020, 4(3): 1900853
https://doi.org/10.1002/smtd.201900853
42 N P Stadie, S Wang, K V Kravchyk, M V Kovalenko. Zeolite-templated carbon as an ordered microporous electrode for aluminum batteries. ACS Nano, 2017, 11(2): 1911–1919
https://doi.org/10.1021/acsnano.6b07995
43 P Sazama, J Pastvova, C Rizescu, A Tirsoaga, V I Parvulescu, H Garcia, L Kobera, J Seidel, J Rathousky, P Klein, I Jirka, J Moravkova, V Blechta. Catalytic properties of 3D graphene-like microporous carbons synthesized in a zeolite template. ACS Catalysis, 2018, 8(3): 1779–1789
https://doi.org/10.1021/acscatal.7b04086
44 K Kim, T Lee, Y Kwon, Y Seo, J Song, J K Park, H Lee, J Y Park, H Ihee, S J Cho, R Ryoo. Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template. Nature, 2016, 535(7610): 131–135
https://doi.org/10.1038/nature18284
45 Y Xia, R Mokaya, G S Walker, Y Zhu. Superior CO2 asorption cpacity on N-doped, high-surface-area, microporous carbons templated from zeolite. Advanced Energy Materials, 2011, 1(4): 678–683
https://doi.org/10.1002/aenm.201100061
46 S E Bae, K J Kim, I H Choi, S Huh. Preparation of N-doped microporous carbon nanospheres by direct carbonization of as-prepared mesoporous silica nanospheres containing cetylpyridinium bromide template. Carbon, 2016, 99: 8–16
https://doi.org/10.1016/j.carbon.2015.11.069
47 K Li, S Tian, J Jiang, J Wang, X Chen, F Yan. Pine cone shell-based activated carbon used for CO2 adsorption. Journal of Materials Chemistry A, 2016, 4(14): 5223–5234
https://doi.org/10.1039/C5TA09908K
48 J Zhou, Z Li, W Xing, H Shen, X Bi, T Zhu, Z Qiu, S Zhuo. A new approach to tuning carbon ultramicropore size at sub-angstrom level for maximizing specific capacitance and CO2 uptake. Advanced Functional Materials, 2016, 26(44): 7955–7964
https://doi.org/10.1002/adfm.201601904
49 L S Blankenship, N Balahmar, R Mokaya. Oxygen-rich microporous carbons with exceptional hydrogen storage capacity. Nature Communications, 2017, 8(1): 1–12
https://doi.org/10.1038/s41467-017-01633-x
50 H Zhang, O Noonan, X Huang, Y Yang, C Xu, L Zhou, C Yu. Surfactant-free assembly of mesoporous carbon hollow spheres with large tunable pore sizes. ACS Nano, 2016, 10(4): 4579–4586
https://doi.org/10.1021/acsnano.6b00723
51 T N Phan, M K Gong, R Thangavel, Y S Lee, C H Ko. Enhanced electrochemical performance for EDLC using ordered mesoporous carbons (CMK-3 and CMK-8): role of mesopores and mesopore structures. Journal of Alloys and Compounds, 2019, 780: 90–97
https://doi.org/10.1016/j.jallcom.2018.11.348
52 Y Zhou, S L Candelaria, Q Liu, E Uchaker, G Cao. Porous carbon with high capacitance and graphitization through controlled addition and removal of sulfur-containing compounds. Nano Energy, 2015, 12: 567–577
https://doi.org/10.1016/j.nanoen.2015.01.026
53 S Feng, W Li, J Wang, Y Song, A A Elzatahry, Y Xia, D Zhao. Hydrothermal synthesis of ordered mesoporous carbons from a biomass-derived precursor for electrochemical capacitors. Nanoscale, 2014, 6(24): 14657–14661
https://doi.org/10.1039/C4NR05629A
54 J G Wang, H Liu, H Sun, W Hua, H Wang, X Liu, B Wei. One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon, 2018, 127: 85–92
https://doi.org/10.1016/j.carbon.2017.10.084
55 L Peng, C T Hung, S Wang, X Zhang, X Zhu, Z Zhao, C Wang, Y Tang, W Li, D Zhao. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. Journal of the American Chemical Society, 2019, 141(17): 7073–7080
https://doi.org/10.1021/jacs.9b02091
56 G A Ferrero, A B Fuertes, M Sevilla, M M Titirici. Efficient metal-free N-doped mesoporous carbon catalysts for ORR by a template-free approach. Carbon, 2016, 106: 179–187
https://doi.org/10.1016/j.carbon.2016.04.080
57 Y Qian, S Jiang, Y Li, Z Yi, J Zhou, J Tian, N Lin, Y Qian. Understanding mesopore volume-enhanced extra-capacity: optimizing mesoporous carbon for high-rate and long-life potassium-storage. Energy Storage Materials, 2020, 29: 341–349
https://doi.org/10.1016/j.ensm.2020.04.026
58 X Hu, Y Liu, J Chen, J Jia, H Zhan, Z Wen. FeS quantum dots embedded in 3D ordered macroporous carbon nanocomposite for high-performance sodium-ion hybrid capacitors. Journal of Materials Chemistry A, 2019, 7(3): 1138–1148
https://doi.org/10.1039/C8TA10468A
59 X Li, L Fan, B Xu, Y Shang, M Li, L Zhang, S Liu, Z Kang, Z Liu, X Lu, D Sun. Single-atom-like B-N3 sites in ordered macroporous carbon for efficient oxygen reduction reaction. ACS Applied Materials & Interfaces, 2021, 13(45): 53892–53903
https://doi.org/10.1021/acsami.1c15661
60 Z Fang, D Fernandez, N Wang, Z Bai, G Yu. Mo2C@3D ultrathin macroporous carbon realizing efficient and stable nitrogen fixation. Science China Chemistry, 2020, 63(11): 1570–1577
https://doi.org/10.1007/s11426-020-9740-8
61 J Wang, Y Yao, C Zhang, Q Sun, D Cheng, X Huang, J Feng, J Wan, J Zou, C Liu, C Yu. Superstructured macroporous carbon rods composed of defective graphitic nanosheets for efficient oxygen reduction reaction. Advanced Science, 2021, 8(18): 2100120
https://doi.org/10.1002/advs.202100120
62 R Balgis, W Widiyastuti, T Ogi, K Okuyama. Enhanced electrocatalytic activity of Pt/3D hierarchical bimodal macroporous carbon nanospheres. ACS Applied Materials & Interfaces, 2017, 9(28): 23792–23799
https://doi.org/10.1021/acsami.7b05873
63 J Li, N Zhang, H Zhao, Z Li, B Tian, Y Du. Cornstalk-derived macroporous carbon materials with enhanced microwave absorption. Journal of Materials Science Materials in Electronics, 2021, 32(21): 25758–25768
https://doi.org/10.1007/s10854-020-04571-5
64 T Meng, N Shang, J Zhao, M Su, C Wang, Y Zhang. Facile one-pot synthesis of Co coordination polymer spheres doped macroporous carbon and its application for electrocatalytic oxidation of glucose. Journal of Colloid and Interface Science, 2021, 589: 135–146
https://doi.org/10.1016/j.jcis.2020.12.119
65 Y Qu, G Zan, J Wang, Q Wu. Preparation of eggplant-derived macroporous carbon tubes and composites of EDMCT/Co (OH)(CO3)0.5 nano-cone-arrays for high-performance supercapacitors. Journal of Materials Chemistry A, 2016, 4(11): 4296–4304
https://doi.org/10.1039/C5TA09948J
66 S Dong, Z Yang, B Liu, J Zhang, P Xu, M Xiang, T Lu. (Pd, Au, Ag) nanoparticles decorated well-ordered macroporous carbon for electrochemical sensing applications. Journal of Electroanalytical Chemistry, 2021, 897: 115562
https://doi.org/10.1016/j.jelechem.2021.115562
67 H Wang, D Yang, S Liu, S Yin, H Yu, Y Xu, X Li, Z Wang, L Wang. Cage-bell structured Pt@N-doped hollow carbon sphere for oxygen reduction electrocatalysis. Chemical Engineering Journal, 2021, 409: 128101
https://doi.org/10.1016/j.cej.2020.128101
68 D Hu, W Fan, Z Liu, L Li. Three-dimensionally hierarchical Pt/C nanocomposite with ultra-high dispersion of Pt nanoparticles as a highly efficient catalyst for chemoselective cinnamaldehyde hydrogenation. ChemCatChem, 2018, 10(4): 779–788
https://doi.org/10.1002/cctc.201701301
69 A Eftekhari, Z Fan. Ordered mesoporous carbon and its applications for electrochemical energy storage and conversion. Materials Chemistry Frontiers, 2017, 1(6): 1001–1027
https://doi.org/10.1039/C6QM00298F
70 S M Wu, M Beller, X Y Yang. A clear view of zeolite-catalyzed processes. Matter, 2022, 5(10): 3104–3107
https://doi.org/10.1016/j.matt.2022.09.006
71 X L Zhou, H Zhang, L M Shao, F Lü, P J He. Preparation and application of hierarchical porous carbon materials from waste and biomass: a review. Waste and Biomass Valorization, 2021, 12(4): 1699–1724
https://doi.org/10.1007/s12649-020-01109-y
72 X K Wan, H B Wu, B Y Guan, D Luan, X W Lou. Confining sub-nanometer Pt clusters in hollow mesoporous carbon spheres for boosting hydrogen evolution activity. Advanced Materials, 2020, 32(7): 1901349
https://doi.org/10.1002/adma.201901349
73 P Kuang, Y Wang, B Zhu, F Xia, C W Tung, J Wu, H M Chen, J Yu. Pt single atoms supported on N-doped mesoporous hollow carbon spheres with enhanced electrocatalytic H2-evolution activity. Advanced Materials, 2021, 33(18): 2008599
https://doi.org/10.1002/adma.202008599
74 J Ying, X Y Yang, Z Y Hu, S C Mu, C Janiak, W Geng, M Pan, X Ke, G Van Tendeloo, B L Su. One particle@one cell: highly monodispersed PtPd bimetallic nanoparticles for enhanced oxygen reduction reaction. Nano Energy, 2014, 8: 214–222
https://doi.org/10.1016/j.nanoen.2014.06.010
75 J Ying, Z Y Hu, X Y Yang, H Wei, Y X Xiao, C Janiak, S C Mu, G Tian, M Pan, G Van Tendeloo, B L Su. High viscosity to highly dispersed PtPd bimetallic nanocrystals for enhanced catalytic activity and stability. Chemical Communications, 2016, 52(53): 8219–8222
https://doi.org/10.1039/C6CC00912C
76 F Yu, X Bai, M Liang, J Ma. Recent progress on metal–organic framework-derived porous carbon and its composite for pollutant adsorption from liquid phase. Chemical Engineering Journal, 2021, 405: 126960
https://doi.org/10.1016/j.cej.2020.126960
77 B Liu, H Shioyama, T Akita, Q Xu. Metal–organic framework as a template for porous carbon synthesis. Journal of the American Chemical Society, 2008, 130(16): 5390–5391
https://doi.org/10.1021/ja7106146
78 L Zhang, J M T A Fischer, Y Jia, X Yan, W Xu, X Wang, J Chen, D Yang, H Liu, L Zhuang, M Hankel, D J Searles, K Huang, S Feng, C L Brown, X Yao. Coordination of atomic Co–Pt coupling species at carbon defects as active sites for oxygen reduction reaction. Journal of the American Chemical Society, 2018, 140(34): 10757–10763
https://doi.org/10.1021/jacs.8b04647
79 X Q Wu, J Zhao, Y P Wu, W W Dong, D S Li, J R Li, Q Zhang. Ultrafine Pt nanoparticles and amorphous nickel supported on 3D mesoporous carbon derived from Cu-metal–organic framework for efficient methanol oxidation and nitrophenol reduction. ACS Applied Materials & Interfaces, 2018, 10(15): 12740–12749
https://doi.org/10.1021/acsami.8b01970
80 J Ying, G Jiang, Z P Cano, L Han, X Y Yang, Z Chen. Nitrogen-doped hollow porous carbon polyhedrons embedded with highly dispersed Pt nanoparticles as a highly efficient and stable hydrogen evolution electrocatalyst. Nano Energy, 2017, 40: 88–94
https://doi.org/10.1016/j.nanoen.2017.07.032
81 J Ying, J Li, G Jiang, Z P Cano, Z Ma, C Zhong, D Su, Z Chen. Metal–organic frameworks derived platinum-cobalt bimetallic nanoparticles in nitrogen-doped hollow porous carbon capsules as a highly active and durable catalyst for oxygen reduction reaction. Applied Catalysis B: Environmental, 2018, 225: 496–503
https://doi.org/10.1016/j.apcatb.2017.11.077
82 H Liu, S Wu, N Tian, F Yan, C You, Y Yang. Carbon foams: 3D porous carbon materials holding immense potential. Journal of Materials Chemistry A, 2020, 8(45): 23699–23723
https://doi.org/10.1039/D0TA08749A
83 W Zhang, A I Minett, M Gao, J Zhao, J M Razal, G G Wallace, T Romeo, J Chen. Integrated high-efficiency Pt/carbon nanotube arrays for PEM fuel cells. Advanced Energy Materials, 2011, 1(4): 671–677
https://doi.org/10.1002/aenm.201100092
84 H Chen, T Liu, J Ren, H He, Y Cao, N Wang, Z Guo. Synergistic carbon nanotube aerogel-Pt nanocomposites toward enhanced energy conversion in dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4(9): 3238–3244
https://doi.org/10.1039/C5TA10185A
85 J Ye, M Zhou, Y Le, B Cheng, J Yu. Three-dimensional carbon foam supported MnO2/Pt for rapid capture and catalytic oxidation of formaldehyde at room temperature. Applied Catalysis B: Environmental, 2020, 267: 118689
https://doi.org/10.1016/j.apcatb.2020.118689
86 M Atwa, X Li, Z Wang, S Dull, S Xu, X Tong, R Tang, H Nishihara, F Prinz, V Birss. Scalable nanoporous carbon films allow line-of-sight 3D atomic layer deposition of Pt: towards a new generation catalyst layer for PEM fuel cells. Materials Horizons, 2021, 8(9): 2451–2462
https://doi.org/10.1039/D1MH00268F
87 S Cherevko, N Kulyk, K J Mayrhofer. Durability of platinum-based fuel cell electrocatalysts: dissolution of bulk and nanoscale platinum. Nano Energy, 2016, 29: 275–298
https://doi.org/10.1016/j.nanoen.2016.03.005
88 L Perini, C Durante, M Favaro, V Perazzolo, S Agnoli, O Schneider, G Granozzi, A Gennaro. Metal-support interaction in platinum and palladium nanoparticles loaded on nitrogen-doped mesoporous carbon for oxygen reduction reaction. ACS Applied Materials & Interfaces, 2015, 7(2): 1170–1179
https://doi.org/10.1021/am506916y
89 Q Lai, J Zheng, Z Tang, D Bi, J Zhao, Y Liang. Optimal configuration of N-doped carbon defects in 2D turbostratic carbon nanomesh for advanced oxygen reduction electrocatalysis. Angewandte Chemie International Edition, 2020, 59(29): 11999–12006
https://doi.org/10.1002/anie.202000936
90 X Ning, Y Li, J Ming, Q Wang, H Wang, Y Cao, F Peng, Y Yang, H Yu. Electronic synergism of pyridinic- and graphitic-nitrogen on N-doped carbons for the oxygen reduction reaction. Chemical Science, 2019, 10(6): 1589–1596
https://doi.org/10.1039/C8SC04596H
91 J Li, X Y Yang. Membrane catalysts eliminate trace pollutants. Chem, 2022, 8(6): 1551–1553
https://doi.org/10.1016/j.chempr.2022.05.007
92 X Ning, H Yu, F Peng, H Wang. Pt nanoparticles interacting with graphitic nitrogen of N-doped carbon nanotubes: effect of electronic properties on activity for aerobic oxidation of glycerol and electro-oxidation of CO. Journal of Catalysis, 2015, 325: 136–144
https://doi.org/10.1016/j.jcat.2015.02.010
93 Y X Xiao, J Ying, J B Chen, Y Dong, X Yang, G Tian, J Wu, C Janiak, K I Ozoemena, X Y Yang. Confined ultrafine Pt in porous carbon fibers and their N-enhanced heavy d–π effect. Chemistry of Materials, 2022, 34(8): 3705–3714
https://doi.org/10.1021/acs.chemmater.1c04400
94 D A Bulushev, M Zacharska, A S Lisitsyn, O Y Podyacheva, F S Hage, Q M Ramasse, U Bangert, L G Bulusheva. Single atoms of Pt-group metals stabilized by N-doped carbon nanofibers for efficient hydrogen production from formic acid. ACS Catalysis, 2016, 6(6): 3442–3451
https://doi.org/10.1021/acscatal.6b00476
95 H Luo, Y Liu, S D Dimitrov, L Steier, S Guo, X Li, J Feng, F Xie, Y Fang, A Sapelkin, X Wang, M M Titirici. Pt single-atoms supported on nitrogen-doped carbon dots for highly efficient photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2020, 8(29): 14690–14696
https://doi.org/10.1039/D0TA04431H
96 H Schmies, E Hornberger, B Anke, T Jurzinsky, H N Nong, F Dionigi, S Kühl, J Drnec, M Lerch, C Cremers, P Strasser. Impact of carbon support functionalization on the electrochemical stability of Pt fuel cell catalysts. Chemistry of Materials, 2018, 30(20): 7287–7295
https://doi.org/10.1021/acs.chemmater.8b03612
97 E Hornberger, T Merzdorf, H Schmies, J Hübner, M Klingenhof, U Gernert, M Kroschel, B Anke, M Lerch, J Schmidt, A Thomas, R Chattot, I Martens, J Drnec, P Strasser. Impact of carbon N-doping and pyridinic-N content on the fuel cell performance and durability of carbon-supported Pt nanoparticle catalysts. ACS Applied Materials & Interfaces, 2022, 14(16): 18420–18430
https://doi.org/10.1021/acsami.2c00762
98 J Duan, S Chen, M Jaroniec, S Z Qiao. Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catalysis, 2015, 5(9): 5207–5234
https://doi.org/10.1021/acscatal.5b00991
99 S V Sawant, A W Patwardhan, J B Joshi, K Dasgupta. Boron doped carbon nanotubes: synthesis, characterization and emerging applications—a review. Chemical Engineering Journal, 2022, 427: 131616
https://doi.org/10.1016/j.cej.2021.131616
100 Y Kang, Y Tang, L Zhu, B Jiang, X Xu, O Guselnikova, H Li, T Asahi, Y Yamauchi. Porous nanoarchitectures of nonprecious metal borides: from controlled synthesis to heterogeneous catalyst applications. ACS Catalysis, 2022, 12(23): 14773–14793
https://doi.org/10.1021/acscatal.2c03480
101 M Hu, Z Yao, L Li, Y H Tsou, L Kuang, X Xu, W Zhang, X Wang. Boron-doped graphene nanosheet-supported Pt: a highly active and selective catalyst for low temperature H2-SCR. Nanoscale, 2018, 10(21): 10203–10212
https://doi.org/10.1039/C8NR01807C
102 R Yao, J Gu, H He, T Yu. Improved electrocatalytic activity and durability of Pt nanoparticles supported on boron-doped carbon black. Catalysts, 2020, 10(8): 862
https://doi.org/10.3390/catal10080862
103 S Samad, K S Loh, W Y Wong, T K Lee, J Sunarso, S T Chong, W R W Daud. Carbon and non-carbon support materials for platinum-based catalysts in fuel cells. International Journal of Hydrogen Energy, 2018, 43(16): 7823–7854
https://doi.org/10.1016/j.ijhydene.2018.02.154
104 K Kwon, S A Jin, C Pak, H Chang, S H Joo, H I Lee, J H Kim, J M Kim. Enhancement of electrochemical stability and catalytic activity of Pt nanoparticles via strong metal-support interaction with sulfur-containing ordered mesoporous carbon. Catalysis Today, 2011, 164(1): 186–189
https://doi.org/10.1016/j.cattod.2010.10.030
105 Y Guo, T Park, J W Yi, J Henzie, J Kim, Z Wang, B Jiang, Y Bando, Y Sugahara, J Tang, Y Yamauchi. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Advanced Materials, 2019, 31(17): 1807134
https://doi.org/10.1002/adma.201807134
106 D Higgins, M A Hoque, M H Seo, R Wang, F Hassan, J Y Choi, M Y A Pritzker, J Zhang, Z Chen. Development and simulation of sulfur-doped graphene supported platinum with exemplary stability and activity towards oxygen reduction. Advanced Functional Materials, 2014, 24(27): 4325–4336
https://doi.org/10.1002/adfm.201400161
107 M A Hoque, F M Hassan, D Higgins, J Y Choi, M Pritzker, S Knights, S Ye, Z Chen. Multigrain platinum nanowires consisting of oriented nanoparticles anchored on sulfur-doped graphene as a highly active and durable oxygen reduction electrocatalyst. Advanced Materials, 2015, 27(7): 1229–1234
https://doi.org/10.1002/adma.201404426
108 M A Hoque, F M Hassan, M H Seo, J Y Choi, M Pritzker, S Knights, S Ye, Z Chen. Optimization of sulfur-doped graphene as an emerging platinum nanowires support for oxygen reduction reaction. Nano Energy, 2016, 19: 27–38
https://doi.org/10.1016/j.nanoen.2015.11.004
109 M A Hoque, F M Hassan, A M Jauhar, G Jiang, M Pritzker, J Y Choi, S Knights, S Ye, Z Chen. Web-like 3D architecture of Pt nanowires and sulfur-doped carbon nanotube with superior electrocatalytic performance. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 93–98
https://doi.org/10.1021/acssuschemeng.7b03580
110 C Xu, M A Hoque, G Chiu, T Sung, Z Chen. Stabilization of platinum-nickel alloy nanoparticles with a sulfur-doped graphene support in polymer electrolyte membrane fuel cells. RSC Advances, 2016, 6(113): 112226–112231
https://doi.org/10.1039/C6RA19924K
111 J J Fan, Y J Fan, R X Wang, S Xiang, H G Tang, S G Sun. A novel strategy for the synthesis of sulfur-doped carbon nanotubes as a highly efficient Pt catalyst support toward the methanol oxidation reaction. Journal of Materials Chemistry A, 2017, 5(36): 19467–19475
https://doi.org/10.1039/C7TA05102F
112 W Kiciński, M Szala, M Bystrzejewski. Sulfur-doped porous carbons: synthesis and applications. Carbon, 2014, 68: 1–32
https://doi.org/10.1016/j.carbon.2013.11.004
113 Y Kang, Y Guo, J Zhao, B Jiang, J Guo, Y Tang, H Li, V Malgras, M A Amin, H Nara, Y Sugahara, Y Yamauchi, T Asahi. Soft template-based synthesis of mesoporous phosphorus-and boron-codoped NiFe-based alloys for efficient oxygen evolution reaction. Small, 2022, 18(31): 2203411
https://doi.org/10.1002/smll.202203411
114 Z Li, J Lin, B Li, C Yu, H Wang, Q Li. Construction of heteroatom-doped and three-dimensional graphene materials for the applications in supercapacitors: a review. Journal of Energy Storage, 2021, 44: 103437
https://doi.org/10.1016/j.est.2021.103437
115 J Liang, Y Jiao, M Jaroniec, S Z Qiao. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angewandte Chemie International Edition, 2012, 51(46): 11496–11500
https://doi.org/10.1002/anie.201206720
116 D Y Shin, K W Sung, H J Ahn. Synergistic effect of heteroatom-doped activated carbon for ultrafast charge storage kinetics. Applied Surface Science, 2019, 478: 499–504
https://doi.org/10.1016/j.apsusc.2019.01.186
117 Y Chang, F Hong, J Liu, M Xie, Q Zhang, C He, H Niu, J Liu. Nitrogen/sulfur dual-doped mesoporous carbon with controllable morphology as a catalyst support for the methanol oxidation reaction. Carbon, 2015, 87: 424–433
https://doi.org/10.1016/j.carbon.2015.02.063
118 J Zhu, G He, Z Tian, L Liang, P K Shen. Facile synthesis of boron and nitrogen-dual-doped graphene sheets anchored platinum nanoparticles for oxygen reduction reaction. Electrochimica Acta, 2016, 194: 276–282
https://doi.org/10.1016/j.electacta.2016.01.222
119 R Paul, F Du, L Dai, Y Ding, Z L Wang, F Wei, A Roy. 3D heteroatom-doped carbon nanomaterials as multifunctional metal-free catalysts for integrated energy devices. Advanced Materials, 2019, 31(13): 1805598
https://doi.org/10.1002/adma.201805598
120 Z Yang, J Tian, Z Yin, C Cui, W Qian, F Wei. Carbon nanotube-and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon, 2019, 141: 467–480
https://doi.org/10.1016/j.carbon.2018.10.010
121 S S Fan, L Shen, Y Dong, G Tian, S M Wu, G G Chang, C Janiak, P Wei, J S Wu, X Y Yang. sp3-like defect structure of hetero graphene-carbon nanotubes for promoting carrier transfer and stability. Journal of Energy Chemistry, 2021, 57: 189–197
https://doi.org/10.1016/j.jechem.2020.09.020
122 S G Ji, H C Kwon, T H Kim, U Sim, C H Choi. Does the encapsulation strategy of Pt nanoparticles with carbon layers really ensure both highly active and durable electrocatalysis in fuel cells?. ACS Catalysis, 2022, 12(12): 7317–7325
https://doi.org/10.1021/acscatal.2c01618
123 X Tong, J Zhang, G Zhang, Q Wei, R Chenitz, J P Claverie, S Sun. Ultrathin carbon-coated Pt/carbon nanotubes: a highly durable electrocatalyst for oxygen reduction. Chemistry of Materials, 2017, 29(21): 9579–9587
https://doi.org/10.1021/acs.chemmater.7b04221
124 M Karuppannan, Y Kim, S Gok, E Lee, J Y Hwang, J H Jang, Y H Cho, T Lim, Y E Sung, O J Kwon. A highly durable carbon-nanofiber-supported Pt–C core-shell cathode catalyst for ultra-low Pt loading proton exchange membrane fuel cells: facile carbon encapsulation. Energy & Environmental Science, 2019, 12(9): 2820–2829
https://doi.org/10.1039/C9EE01000A
125 H Xiao, S Xue, J Zhang, M Zhao, J Ma, S Chen, Z Zheng, J Jia, H Wu. Facile electrolytic synthesis of Pt and carbon quantum dots coloaded multiwall carbon nanotube as highly efficient electrocatalyst for hydrogen evolution and ethanol oxidation. Chemical Engineering Journal, 2021, 408: 127271
https://doi.org/10.1016/j.cej.2020.127271
126 Q Dang, Y Sun, X Wang, W Zhu, Y Chen, F Liao, H Huang, M Shao. Carbon dots-Pt modified polyaniline nanosheet grown on carbon cloth as stable and high-efficient electrocatalyst for hydrogen evolution in pH-universal electrolyte. Applied Catalysis B: Environmental, 2019, 257: 117905
https://doi.org/10.1016/j.apcatb.2019.117905
127 H Xiao, J Zhang, M Zhao, J Ma, Y Li, T Hu, Z Zheng, J Jia, H Wu. Electric field-assisted synthesis of Pt, carbon quantum dots-coloaded graphene hybrid for hydrogen evolution reaction. Journal of Power Sources, 2020, 451: 227770
https://doi.org/10.1016/j.jpowsour.2020.227770
128 M Yan, Q Jiang, T Zhang, J Wang, L Yang, Z Lu, H He, Y Fu, X Wang, H Huang. Three-dimensional low-defect carbon nanotube/nitrogen-doped graphene hybrid aerogel-supported Pt nanoparticles as efficient electrocatalysts toward the methanol oxidation reaction. Journal of Materials Chemistry A, 2018, 6(37): 18165–18172
https://doi.org/10.1039/C8TA05124K
129 Y Sun, M Li, X Qu, S Zheng, P J Alvarez, H Fu. Efficient reduction of selenite to elemental selenium by liquid-phase catalytic hydrogenation using a highly stable multiwalled carbon nanotube-supported Pt catalyst coated by N-doped carbon. ACS Applied Materials & Interfaces, 2021, 13(25): 29541–29550
https://doi.org/10.1021/acsami.1c05101
130 S Sharma, B G Pollet. Support materials for PEMFC and DMFC electrocatalysts—a review. Journal of Power Sources, 2012, 208: 96–119
https://doi.org/10.1016/j.jpowsour.2012.02.011
131 G Hu, Y Xiao, J Ying. Nano-SiO2 and silane coupling agent co-decorated graphene oxides with enhanced anti-corrosion performance of epoxy composite coatings. International Journal of Molecular Sciences, 2021, 22(20): 11087
https://doi.org/10.3390/ijms222011087
132 J Chen, J Ying, Y Xiao, Y Dong, K I Ozoemena, S Lenaerts, X Yang. Stoichiometry design in hierarchical CoNiFe phosphide for highly efficient water oxidation. Science China Materials, 2022, 65(10): 1–9
https://doi.org/10.1007/s40843-021-1809-5
133 K Park, T Ohnishi, M Goto, M So, S Takenaka, Y Tsuge, G Inoue. Improvement of cell performance in catalyst layers with silica-coated Pt/carbon catalysts for polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 2020, 45(3): 1867–1877
https://doi.org/10.1016/j.ijhydene.2019.11.097
134 J Islam, S K Kim, K H Kim, E Lee, G G Park. Enhanced durability of Pt/C catalyst by coating carbon black with silica for oxygen reduction reaction. International Journal of Hydrogen Energy, 2021, 46(1): 1133–1143
https://doi.org/10.1016/j.ijhydene.2020.09.194
135 E C Barbosa, L S Parreira, I C de Freitas, L R Aveiro, D C de Oliveira, M C dos Santos, P H C Camargo. Pt-decorated TiO2 materials supported on carbon: increasing activities and stabilities toward the ORR by tuning the Pt loading. ACS Applied Energy Materials, 2019, 2(8): 5759–5768
https://doi.org/10.1021/acsaem.9b00879
136 W J Lee, S Bera, H Woo, H G Kim, J H Baek, W Hong, J Y Park, S J Oh, S H Kwon. In situ engineering of a metal oxide protective layer into Pt/carbon fuel-cell catalysts by atomic layer deposition. Chemistry of Materials, 2022, 34(13): 5949–5959
https://doi.org/10.1021/acs.chemmater.2c00928
137 D C de Oliveira, W O Silva, M Chatenet, F H B Lima. NiOx-Pt/C nanocomposites: highly active electrocatalysts for the electrochemical oxidation of hydrazine. Applied Catalysis B: Environmental, 2017, 201: 22–28
https://doi.org/10.1016/j.apcatb.2016.08.007
138 B Gu, T Sun, Y Wang, Y Long, J Fu, G Fan. Maximizing hydrogen production by AB hydrolysis with Pt@cobalt oxide/N, O-rich carbon and alkaline ultrasonic irradiation. Inorganic Chemistry Frontiers, 2022, 9(10): 2204–2212
https://doi.org/10.1039/D1QI01629F
139 Z Song, B Wang, N Cheng, L Yang, D Banham, R Li, S Ye, X Sun. Atomic layer deposited tantalum oxide to anchor Pt/C for a highly stable catalyst in PEMFCs. Journal of Materials Chemistry A, 2017, 5(20): 9760–9767
https://doi.org/10.1039/C7TA01926B
140 Z Ma, S Li, L Wu, L Song, G Jiang, Z Liang, D Su, Y Zhu, R R Adzic, J X Wang, Z Chen. NbOx nano-nail with a Pt head embedded in carbon as a highly active and durable oxygen reduction catalyst. Nano Energy, 2020, 69: 104455
https://doi.org/10.1016/j.nanoen.2020.104455
141 D He, C Zeng, C Xu, N Cheng, H Li, S Mu, M Pan. Polyaniline-functionalized carbon nanotube supported platinum catalysts. Langmuir, 2011, 27(9): 5582–5588
https://doi.org/10.1021/la2003589
142 L Wei, Y J Fan, J H Ma, L H Tao, R X Wang, J P Zhong, H Wang. Highly dispersed Pt nanoparticles supported on manganese oxide-poly(3,4-ethylenedioxythiophene)-carbon nanotubes composite for enhanced methanol electrooxidation. Journal of Power Sources, 2013, 238: 157–164
https://doi.org/10.1016/j.jpowsour.2013.03.051
143 R X Wang, J J Fan, Y J Fan, J P Zhong, L Wang, S G Sun, X C Shen. Platinum nanoparticles on porphyrin functionalized graphene nanosheets as a superior catalyst for methanol electrooxidation. Nanoscale, 2014, 6(24): 14999–15007
https://doi.org/10.1039/C4NR04140B
144 R X Wang, Y J Fan, L Wang, L N Wu, S N Sun, S G Sun. Pt nanocatalysts on a polyindole-functionalized carbon nanotube composite with high performance for methanol electrooxidation. Journal of Power Sources, 2015, 287: 341–348
https://doi.org/10.1016/j.jpowsour.2015.03.181
145 C Eßbach, I Senkovska, T Unmüssig, A Fischer, S Kaskel. Selective alcohol electrooxidation by ZIF-8 functionalized Pt/carbon catalyst. ACS Applied Materials & Interfaces, 2019, 11(23): 20915–20922
https://doi.org/10.1021/acsami.9b06122
146 J Choi, Y J Lee, D Park, H Jeong, S Shin, H Yun, J Lim, J Han, E J Kim, S S Jeon, Y Jung, H Lee, B J Kim. Highly durable fuel cell catalysts using crosslinkable block copolymer-based carbon supports with ultralow Pt loadings. Energy & Environmental Science, 2020, 13(12): 4921–4929
https://doi.org/10.1039/D0EE01095B
147 Y X Xiao, J Ying, G Tian, Y Tao, H Wei, S Y Fan, Z H Sun, W J Zou, J Hu, G G Chang, W Li, X Y Yang, C Janiak. Highly dispersed PtPd on graphitic nanofibers and its heavy d–π effect. Applied Catalysis B: Environmental, 2019, 259: 118080
https://doi.org/10.1016/j.apcatb.2019.118080
148 Y Dong, J Li, X Y Yang. Cu catalysts detour hydrogen evolution reaction. Matter, 2022, 5(8): 2537–2540
https://doi.org/10.1016/j.matt.2022.06.057
149 G Bai, C Liu, Z Gao, B Lu, X Tong, X Guo, N Yang. Atomic carbon layers supported Pt nanoparticles for minimized CO poisoning and maximized methanol oxidation. Small, 2019, 15(38): 1902951
https://doi.org/10.1002/smll.201902951
150 Y Dong, J B Chen, J Ying, Y X Xiao, G Tian, M D Symes, X Y Yang. Efficient water dissociation on confined ultrafine Pt via pyridinic N-enhanced heavy d−π interaction. Chemistry of Materials, 2022, 34(18): 8271–8279
https://doi.org/10.1021/acs.chemmater.2c01738
151 H Fan, M Cheng, L Wang, Y Song, Y Cui, R Wang. Extraordinary electrocatalytic performance for formic acid oxidation by the synergistic effect of Pt and Au on carbon black. Nano Energy, 2018, 48: 1–9
https://doi.org/10.1016/j.nanoen.2018.03.018
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed