Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (10): 1372-1388   https://doi.org/10.1007/s11705-023-2302-3
  本期目录
Construction of interfacial dynamic bonds for high performance lignin/polymer biocomposites
Jianbin Mo1, Haixu Wang1, Mengzhen Yan1, Jianhua Huang1, Rui Li1, Danting Sun1, Junjie Lei1, Xueqing Qiu3, Weifeng Liu1,2()
1. Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
2. State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
3. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
 全文: PDF(8323 KB)   HTML
Abstract

Lignin is the largest natural aromatic biopolymer, but usually treated as industrial biomass waste. The development of lignin/polymer biocomposites can promote the high value utilization of lignin and the greening of polymers. However, the weak interfacial interaction between industrial lignin and polymer induces poor compatibility and serious agglomeration in polymer owing to the strong intermolecular force of lignin. As such, it is extremely difficult to prepare high performance lignin/polymer biocomposites. Recently, we proposed the strategy of in situ construction of interfacial dynamic bonds in lignin/polymer composites. By taking advantage of the abundant oxygen-containing polar groups of lignin, we inserted dynamic bonding connection such as hydrogen bonds and coordination bonds into the interphase between lignin and the polymer matrix to improve the interfacial interactions. Meanwhile, the natural amphiphilic structure characteristics of lignin were utilized to construct the hierarchical nanophase separation structure in lignin/polymer composites. The persistent problems of poor dispersity and interfacial compatibility of lignin in the polymer matrix were effectively solved. The lignin-modified polymer composites achieved simultaneously enhanced strength and toughness. This concise review systematically summarized the recent research progress of our group toward building high-performance lignin/polymer biocomposites through the design of interfacial dynamic bonds (hydrogen bonds, coordination bonds, and dynamic covalent bonds) between lignin and different polymer systems (polar plastics, rubber, polyurethane, hydrogels, and other polymers). Finally, the future development direction, main challenges, and potential solutions of lignin application in polymers were presented.

Key wordslignin    polymer    interfacial dynamic bonds
收稿日期: 2022-10-23      出版日期: 2023-10-07
Corresponding Author(s): Weifeng Liu   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(10): 1372-1388.
Jianbin Mo, Haixu Wang, Mengzhen Yan, Jianhua Huang, Rui Li, Danting Sun, Junjie Lei, Xueqing Qiu, Weifeng Liu. Construction of interfacial dynamic bonds for high performance lignin/polymer biocomposites. Front. Chem. Sci. Eng., 2023, 17(10): 1372-1388.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-023-2302-3
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I10/1372
StrategyAdvantageDisadvantage
Solid-state shear pulverizationImproved lignin dispersibility, simple process flowLimited strength enhancement, lignin content ≤ 10 wt %
Chemical modificationImproved compatibilityTime and cost consuming, limited mechanical properties enhancement
Adding compatibilizersImproved compatibilityLimited mechanical properties enhancement, lignin content usually ≤ 10 wt %
In situ construction of interfacial dynamic bondsSignificantly improved dispersibility and compatibility, outstanding enhancement in mechanical properties, simple process flowHigh requirements for lignin purity
Tab.1  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 R Rinaldi, R Jastrzebski, M T Clough, J Ralph, M Kennema, P C A Bruijnincx, B M Weckhuysen. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angewandte Chemie International Edition, 2016, 55(29): 8164–8215
https://doi.org/10.1002/anie.201510351
2 J Chen, X L Fan, L D Zhang, X J Chen, S L Sun, R C Sun. Research progress in lignin-based slow/controlled release fertilizer. ChemSusChem, 2020, 13(17): 4356–4366
https://doi.org/10.1002/cssc.202000455
3 T D Jiang. Lignin, 2nd ed. Beijing: Chemical Industry Press, 1988, 2–3 (in Chinese)
4 V K Thakur, M K Thakur, P Raghavan, M R Kessler. Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustainable Chemistry & Engineering, 2014, 2(5): 1072–1092
https://doi.org/10.1021/sc500087z
5 J A Ivar do Sul, M F Costa. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chemical Reviews, 2016, 116(4): 2275–2306
https://doi.org/10.1021/acs.chemrev.5b00345
6 J P da Costa, P S M Santos, A C Duarte, T Rocha-Santos. (Nano)plastics in the environment—sources, fates and effects. Journal of Hazardous Materials, 2018, 344: 179–199
7 J A I do Sul, M F Costa. The present and future of microplastic pollution in the marine environment. Environmental Pollution, 2014, 185: 352–364
https://doi.org/10.1016/j.envpol.2013.10.036
8 J F Wang, D H Zhang, F X Chu. Wood-derived functional polymeric materials. Advanced Materials, 2021, 33(28): 2001135
https://doi.org/10.1002/adma.202001135
9 M R Ridho, E A Agustiany, M Rahmi Dn, E W Madyaratri, M Ghozali, W K Restu, F Falah, M A Rahandi Lubis, F A Syamani, Y Nurhamiyah, S Hidayati, A Sohail, P Karungamye, D S Nawawi, A H Iswanto, N Othman, N A Mohamad Aini, M H Hussin, K Sahakaro, N Hayeemasae, M Q Ali, W Fatriasari. Lignin as green filler in polymer composites: development methods, characteristics, and potential applications. Advances in Materials Science and Engineering, 2022, 2022: 1363481
https://doi.org/10.1155/2022/1363481
10 M H Hussin, J N Appaturi, N E Poh, N H A Latif, N Brosse, D I Ziegler, H Vahabi, F A Syamani, W Fatriasari, N N Solihat, M H Hussin, J N Appaturi, N E Poh, N H A Latif, N Brosse, I Ziegler-Devin, H Vahabi, F A Syamani, W Fatriasari, N N Solihat, A Karimah, A H Iswanto, S H Sekeri, M N M Ibrahim. A recent advancement on preparation, characterization and application of nanolignin. International Journal of Biological Macromolecules, 2022, 200: 303–326
https://doi.org/10.1016/j.ijbiomac.2022.01.007
11 I Spiridon, K Leluk, A M Resmerita, R N Darie. Evaluation of PLA-lignin bioplastics properties before and after accelerated weathering. Composites Part B: Engineering, 2015, 69: 342–349
https://doi.org/10.1016/j.compositesb.2014.10.006
12 M N Collins, M Nechifor, F Tanasa, M Zanoaga, A McLoughlin, M A Strozyk, M Culebras, C A Teaca. Valorization of lignin in polymer and composite systems for advanced engineering applications—a review. International Journal of Biological Macromolecules, 2019, 131: 828–849
https://doi.org/10.1016/j.ijbiomac.2019.03.069
13 D Kai, M J Tan, P L Chee, Y K Chua, Y L Yap, X J Loh. Towards lignin-based functional materials in a sustainable world. Green Chemistry, 2016, 18(5): 1175–1200
https://doi.org/10.1039/C5GC02616D
14 A K Iyer, M J Torkelson. Sustainable green hybrids of polyolefins and lignin yield major improvements in mechanical properties when prepared via solid-state shear pulverization. ACS Sustainable Chemistry & Engineering, 2015, 3(5): 959–968
https://doi.org/10.1021/acssuschemeng.5b00099
15 P Buono, A Duval, P Verge, L Averous, Y Habibi. New insights on the chemical modification of lignin: acetylation versus silylation. ACS Sustainable Chemistry & Engineering, 2016, 4(10): 5212–5222
https://doi.org/10.1021/acssuschemeng.6b00903
16 E A Agustiany, M Rasyidur Ridho, D Rahmi. N M, Madyaratri E W, Falah F, Lubis M A R, Solihat N N, Syamani F A, Karungamye P, Sohail A, Nawawi D S, Prianto A H, Iswanto A H, Ghozali M, Restu W K, Juliana I, Antov P, Kristak L, Fatriasari W, Fudholi A. Recent developments in lignin modification and its application in lignin-based green composites: a review. Polymer Composites, 2022, 43(8): 4848–4865
https://doi.org/10.1002/pc.26824
17 X Zhou, T Z He, Y H Jiang, S C Chang, Y Yu, X C Fang, Y Zhang. A novel network-structured compatibilizer for improving the interfacial behavior of PBS/lignin. ACS Sustainable Chemistry & Engineering, 2021, 9(25): 8592–8602
https://doi.org/10.1021/acssuschemeng.1c01962
18 L Dehne, C Vila, B Saake, K U Schwarz. Esterification of Kraft lignin as a method to improve structural and mechanical properties of lignin-polyethylene blends. Journal of Applied Polymer Science, 2017, 134(11): 44582
https://doi.org/10.1002/app.44582
19 A Duval, L Avérous. Mild and controlled lignin methylation with trimethyl phosphate: towards a precise control of lignin functionality. Green Chemistry, 2020, 22(5): 1671–1680
https://doi.org/10.1039/C9GC03890F
20 D R de Oliveira, F Avelino, S E Mazzetto, D Lomonaco. Microwave-assisted selective acetylation of Kraft lignin: acetic acid as a sustainable reactant for lignin valorization. International Journal of Biological Macromolecules, 2020, 164: 1536–1544
https://doi.org/10.1016/j.ijbiomac.2020.07.216
21 Q Wu, X Y Zhang, C L Si, M Zhang, C X Li, L Dai. Green and stable lignin-based nanofillers reinforced poly(L-lactide) with supertough and strong performance. International Journal of Biological Macromolecules, 2022, 221: 1041–1052
https://doi.org/10.1016/j.ijbiomac.2022.09.075
22 M A Abdelwahaba, M Misraa, A K Mohanty. Injection molded biocomposites from polypropylene and lignin: effect of compatibilizers on interfacial adhesion and performance. Industrial Crops and Products, 2019, 132: 497–510
https://doi.org/10.1016/j.indcrop.2019.02.026
23 A J Ragauskas, G T Beckham, M J Biddy, R Chandra, F Chen, M F Davis, B H Davison, R A Dixon, P Gilna, M Keller, P Langan, A K Naskar, J N Saddler, T J Tschaplinski, G A Tuskan, C E Wyman. Lignin valorization: improving lignin processing in the biorefinery. Science, 2014, 344(6185): 1246843
https://doi.org/10.1126/science.1246843
24 S M Lee, E Pippel, U Gösele, C Dresbach, Y Qin, C V Chandran, T Bräuniger, G Hause, M Knez. Greatly increased toughness of infiltrated spider silk. Science, 2009, 324(5926): 488–492
https://doi.org/10.1126/science.1168162
25 Y D Yu, Y He, Z Mu, Y Q Zhao, K R Kong, Z M Liu, R K Tang. Biomimetic mineralized organic-inorganic hybrid macrofiber with spider silk-like supertoughness. Advanced Functional Materials, 2020, 30(6): 1908556
https://doi.org/10.1002/adfm.201908556
26 J Y Sun, X H Zhao, W R K Illeperuma, O Chaudhuri, K H Oh, D J Mooney, J J Vlassak, Z Suo. Highly stretchable and tough hydrogels. Nature, 2012, 489(7414): 133–136
https://doi.org/10.1038/nature11409
27 E Ducrot, Y L Chen, M Bulters, R P Sijbesma, C Creton. Toughening elastomers with sacrificial bonds and watching them break. Science, 2014, 344(6180): 186–189
https://doi.org/10.1126/science.1248494
28 E Filippidi, T R Cristiani, C D Eisenbach, J H Waite, J N Israelachvili, B K Ahn, M T Valentine. Toughening elastomers using musselinspired iron-catechol complexes. Science, 2017, 358(6362): 502–505
https://doi.org/10.1126/science.aao0350
29 X Zhang, W F Liu, D J Yang, X Q Qiu. Biomimetic supertough and strong biodegradable polymeric materials with improved thermal properties and excellent UV-blocking performance. Advanced Functional Materials, 2019, 29(4): 1806912
https://doi.org/10.1002/adfm.201806912
30 H X Wang, W F Liu, J H Huang, D J Yang, X Q Qiu. Bioinspired engineering towards tailoring advanced lignin/rubber elastomers. Polymers, 2018, 10(9): 1033
https://doi.org/10.3390/polym10091033
31 E K Fischer, L Paglialonga, E Czech, M Tamminga. Microplastic pollution in lakes and lake shoreline sediments—a case study on Lake Bolsena and Lake Chiusi (central Italy). Environmental Pollution, 2016, 213: 648–657
https://doi.org/10.1016/j.envpol.2016.03.012
32 C Ribeiro, C M Costa, D M Correia, J Nunes-Pereira, J Oliveira, P Martins, R Gonçalves, V F Cardoso, S Lanceros-Méndez. Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nature Protocols, 2018, 13(4): 681–704
https://doi.org/10.1038/nprot.2017.157
33 M Aslam, M A Kalyar, Z A Raza. Polyvinyl alcohol: a review of research status and use of polyvinyl alcohol based nanocomposites. Polymer Engineering and Science, 2018, 58(12): 2119–2132
https://doi.org/10.1002/pen.24855
34 P A Song, Z G Xu, Q P Guo. Bioinspired strategy to reinforce PVA with improved toughness and thermal properties via hydrogen-bond self-assembly. ACS Macro Letters, 2013, 2(10): 1100–1104
https://doi.org/10.1021/mz4005265
35 P Zhou, Y Y Luo, Z Lv, X W Sun, Y Q Tian, X X Zhang. Melt-processed poly(vinyl alcohol)/corn starch/nanocellulose composites with improved mechanical properties. International Journal of Biological Macromolecules, 2021, 183: 1903–1910
https://doi.org/10.1016/j.ijbiomac.2021.06.011
36 M Norgren, H Edlund. Lignin: recent advances and emerging applications. Current Opinion in Colloid & Interface Science, 2014, 19(5): 409–416
https://doi.org/10.1016/j.cocis.2014.08.004
37 X Zhang, W F Liu, D T Sun, J H Huang, X Q Qiu, Z X Li, X X Wu. Very strong, super-tough, antibacterial, and biodegradable polymeric materials with excellent UV-blocking performance. ChemSusChem, 2020, 13(18): 4974–4984
https://doi.org/10.1002/cssc.202001075
38 X Zhang, W F Liu, W Q Liu, X Q Qiu. High performance PVA/lignin nanocomposite films with excellent water vapor barrier and UV-shielding properties. International Journal of Biological Macromolecules, 2020, 142: 551–558
https://doi.org/10.1016/j.ijbiomac.2019.09.129
39 A Duval, M Lawoko. A review on lignin-based polymeric, micro- and nano-structured materials. Reactive & Functional Polymers, 2014, 85: 78–96
https://doi.org/10.1016/j.reactfunctpolym.2014.09.017
40 L Karasek, M Sumita. Characterization of dispersion state of filler and polymer-filler interactions in rubber-carbon black composites. Journal of Materials Science, 1996, 31(2): 281–289
https://doi.org/10.1007/BF01139141
41 Y R Fan, G D Fowler, M Zhao. The past, present and future of carbon black as a rubber reinforcing filler—a review. Journal of Cleaner Production, 2020, 247: 119115
https://doi.org/10.1016/j.jclepro.2019.119115
42 S Praveen, P K Chattopadhyay, P Albert, V G Dalvi, B C Chakraborty, S Chattopadhyay. Synergistic effect of carbon black and nanoclay fillers in styrene butadiene rubber matrix: development of dual structure. Composites Part A: Applied Science and Manufacturing, 2009, 40(3): 309–316
https://doi.org/10.1016/j.compositesa.2008.12.008
43 Y Fu, D T Zhao, P J Yao, W C Wang, L Q Zhang, Y Lvov. Highly aging-resistant elastomers doped with antioxidant-loaded clay nanotubes. ACS Applied Materials & Interfaces, 2015, 7(15): 8156–8165
https://doi.org/10.1021/acsami.5b00993
44 F O Gomes, M R Rocha, A Alves, N Ratola. A review of potentially harmful chemicals in crumb rubber used in synthetic football pitches. Journal of Hazardous Materials, 2021, 409: 124998
https://doi.org/10.1016/j.jhazmat.2020.124998
45 J J Keilen, A Pollak. Lignin for reinforcing rubber. Industrial & Engineering Chemistry, 1947, 39(4): 480–483
https://doi.org/10.1021/ie50448a013
46 N A Mohamad Aini, N Othman, M H Hussin, K Sahakaro, N Hayeemasae. Lignin as alternative reinforcing filler in the rubber industry: a review. Frontiers in Materials, 2020, 6: 329
https://doi.org/10.3389/fmats.2019.00329
47 D Barana, M Orlandi, L Zoia, L Castellani, T Hanel, C Bolck, R Gosselink. Lignin based functional additives for natural rubber. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11843–11852
https://doi.org/10.1021/acssuschemeng.8b02145
48 K Roy, S C Debnath, P Potiyaraj. A review on recent trends and future prospects of lignin based green rubber composites. Journal of Polymers and the Environment, 2020, 28(2): 367–387
https://doi.org/10.1007/s10924-019-01626-5
49 H X Wang, W F Liu, Z K Tu, J H Huang, X Q Qiu. Lignin-reinforced nitrile rubber/poly(vinyl chloride) composites via metal coordination interactions. Industrial & Engineering Chemistry Research, 2019, 58(51): 23114–23123
https://doi.org/10.1021/acs.iecr.9b05198
50 L F Xiao, W F Liu, J H Huang, H M Lou, X Q Qiu. Study on the antioxidant activity of lignin and its application performance in SBS elastomer. Industrial & Engineering Chemistry Research, 2021, 60(1): 790–797
https://doi.org/10.1021/acs.iecr.0c04699
51 J H Huang, W F Liu, X Q Qiu. High performance thermoplastic elastomers with biomass lignin as plastic phase. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 6550–6560
https://doi.org/10.1021/acssuschemeng.8b04936
52 J H Huang, W F Liu, X Q Qiu, Z K Tu, J X Li, H M Lou. Effects of sacrificial coordination bonds on the mechanical performance of lignin-based thermoplastic elastomer composites. International Journal of Biological Macromolecules, 2021, 183: 1450–1458
https://doi.org/10.1016/j.ijbiomac.2021.04.188
53 X X Zhou, B C Guo, L Q Zhang, G H Hu. Progress in bio-inspired sacrificial bonds in artificial polymeric materials. Chemical Society Reviews, 2017, 46(20): 6301–6329
https://doi.org/10.1039/C7CS00276A
54 M Vatankhah-Varnosfaderani, N A Keith, Y D Cong, H Y Liang, M Rosenthal, M Sztucki, C Clair, S Magonov, D A Ivanov, A V Dobrynin, S S Sheiko. Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration. Science, 2018, 35(6383): 1509–1513
https://doi.org/10.1126/science.aar5308
55 Z K Tu, W F Liu, J Wang, X Q Qiu, J H Huang, J X Li, H M Lou. Biomimetic high performance artificial muscle built on sacrificial coordination network and mechanical training process. Nature Communications, 2021, 12(1): 2916
https://doi.org/10.1038/s41467-021-23204-x
56 W F Li, J H Huang, W F Liu, X Q Qiu, H M Lou, L Zheng. Lignin modified PBAT composites with enhanced strength based on interfacial dynamic bonds. Journal of Applied Polymer Science, 2022, 139(27): e52476
https://doi.org/10.1002/app.52476
57 X P Zhao, C X Huang, D M Xiao, P Wang, X F Luo, W B Liu, S X Liu, J Li, S J Li, Z J Chen. Melanin-inspired design: preparing sustainable photothermal materials from lignin for energy generation. ACS Applied Materials & Interfaces, 2021, 13(6): 7600–7607
https://doi.org/10.1021/acsami.0c21256
58 Z T Wang, M L Wang, X X Wang, Z K Hao, S B Han, T Wang, H Y Zhang. Photothermal-based nanomaterials and photothermal-sensing: an overview. Biosensors & Bioelectronics, 2022, 220: 114883
https://doi.org/10.1016/j.bios.2022.114883
59 L L Zhu, M M Gao, C K N Peh, G W Ho. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Materials Horizons, 2018, 5(3): 323–343
https://doi.org/10.1039/C7MH01064H
60 S L Gai, G X Yang, P P Yang, F He, J Lin, D Y Jin, B G Xing. Recent advances in functional nanomaterials for light-triggered cancer therapy. Nano Today, 2018, 19: 146–187
https://doi.org/10.1016/j.nantod.2018.02.010
61 V Amendola, R Pilot, M Frasconi, O M Marago, M A Iati. Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics Condensed Matter, 2017, 29(20): 203002
https://doi.org/10.1088/1361-648X/aa60f3
62 Y Zou, X F Chen, P Yang, G J Liang, Y Yang, Z P Gu, Y W Li. Regulating the absorption spectrum of polydopamine. Science Advances, 2020, 6(36): eabb4696
https://doi.org/10.1126/sciadv.abb4696
63 J W Chen, J L Qi, J He, Y X Yan, F Jiang, Z K Wang, Y Q Zhang. Biobased composites with high lignin content and excellent mechanical properties toward the ingenious photoresponsive actuator. ACS Applied Materials & Interfaces, 2022, 14(10): 12748–12757
https://doi.org/10.1021/acsami.2c02195
64 J X Li, W F Liu, X Q Qiu, X P Zhao, Z J Chen, M Z Yan, Z Q Fang, Z X Li, Z K Tu, J H Huang. Lignin: a sustainable photothermal block for smart elastomers. Green Chemistry, 2022, 24(2): 823–836
https://doi.org/10.1039/D1GC03571A
65 Z K Tu, J Wang, W F Liu, Z J Chen, J H Huang, J X Li, H M Lou, X Q Qiu. A fast-response biomimetic phototropic material built by a coordination-assisted photothermal domino strategy. Materials Horizons, 2022, 9(10): 2613–2625
https://doi.org/10.1039/D2MH00859A
66 J O Akindoyo, M D H Beg, S Ghazali, M R Islam, N Jeyaratnam, A R Yuvaraj. Polyurethane types, synthesis and applications—a review. RCS Advances, 2016, 6(115): 114453–114482
67 K M Zia, H N Bhatti, I Ahmad Bhatti. Methods for polyurethane and polyurethane composites, recycling and recovery: a review. Reactive & Functional Polymers, 2007, 67(8): 675–692
https://doi.org/10.1016/j.reactfunctpolym.2007.05.004
68 M Alinejad, C Henry, S Nikafshar, A Gondaliya, S Bagheri, N S Chen, S K Singh, D B Hodge, M Nejad. Lignin-based polyurethanes: opportunities for bio-based foams, elastomers, coatings and adhesives. Polymers, 2019, 11(7): 1202
https://doi.org/10.3390/polym11071202
69 N V Gama, A Ferreira, A Barros-Timmons. Polyurethane foams: past, present, and future. Materials, 2018, 11(10): 1841
https://doi.org/10.3390/ma11101841
70 N Mahmood, Z S Yuan, J Schmidt, C Xu. Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: a review. Renewable & Sustainable Energy Reviews, 2016, 60: 317–329
https://doi.org/10.1016/j.rser.2016.01.037
71 Y Zhang, J J Liao, X C Fang, F D Bai, K Qiao, L M Wang. Renewable high-performance polyurethane bioplastics derived from lignin-poly(ε-caprolactone). ACS Sustainable Chemistry & Engineering, 2017, 5(5): 4276–4284
https://doi.org/10.1021/acssuschemeng.7b00288
72 W P Zhou, F G Chen, H Zhang, J Wang. Preparation of a polyhydric aminated lignin and its use in the preparation of polyurethane film. Journal of Wood Chemistry and Technology, 2017, 37(5): 323–333
https://doi.org/10.1080/02773813.2017.1299185
73 O S H Santos, M Coelho da Silva, V R Silva, W N Mussel, M I Yoshida. Polyurethane foam impregnated with lignin as a filler for the removal of crude oil from contaminated water. Journal of Hazardous Materials, 2017, 324: 406–413
https://doi.org/10.1016/j.jhazmat.2016.11.004
74 W F Liu, C Fang, S Y Wang, J H Huang, X Q Qiu. High-performance lignin-containing polyurethane elastomers with dynamic covalent polymer networks. Macromolecules, 2019, 52(17): 6474–6484
https://doi.org/10.1021/acs.macromol.9b01413
75 A Cassales, L A Ramos, E Frollini. Synthesis of bio-based polyurethanes from Kraft lignin and castor oil with simultaneous film formation. International Journal of Biological Macromolecules, 2020, 145: 28–41
https://doi.org/10.1016/j.ijbiomac.2019.12.173
76 J H Huang, H X Wang, W F Liu, J H Huang, D J Yang, X Q Qiu, L Zhao, F C Hu, Y X Feng. Solvent-free synthesis of high-performance polyurethane elastomer based on low-molecular-weight alkali lignin. International Journal of Biological Macromolecules, 2023, 225: 1505–1516
https://doi.org/10.1016/j.ijbiomac.2022.11.207
77 H X Wang, J H Huang, W F Liu, J H Huang, D J Yang, X Q Qiu, J R Zhang. Tough and fast light-controlled healable lignin-containing polyurethane elastomers. Macromolecules, 2022, 55(19): 8629–8641
https://doi.org/10.1021/acs.macromol.2c01401
78 S Y Wang, W F Liu, D J Yang, X Q Qiu. Highly resilient lignin-containing polyurethane foam. Industrial & Engineering Chemistry Research, 2019, 58(1): 496–504
https://doi.org/10.1021/acs.iecr.8b05072
79 W F Liu, C Fang, F T Chen, X Q Qiu. Strong, reusable, and self-healing lignin-containing polyurea adhesives. ChemSusChem, 2020, 13(17): 4691–4701
https://doi.org/10.1002/cssc.202001602
80 C Fang, W F Liu, X Q Qiu. Preparation of polyetheramine-grafted lignin and its application in UV-resistant polyurea coatings. Macromolecular Materials and Engineering, 2019, 304(10): 1900257
https://doi.org/10.1002/mame.201900257
81 A Morales, J Labidi, P Gullon. Impact of the lignin type and source on the characteristics of physical lignin hydrogels. Sustainable Materials and Technologies, 2022, 31: e00369
https://doi.org/10.1016/j.susmat.2021.e00369
82 E M Ahmed. Hydrogel: preparation, characterization, and applications: a review. Journal of Advanced Research, 2015, 6(2): 105–121
https://doi.org/10.1016/j.jare.2013.07.006
83 P Thoniyot, M J Tan, A A Karim, D J Young, X J Loh. Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Advanced Science, 2015, 2(1–2): 1400010
https://doi.org/10.1002/advs.201400010
84 X Zhang, W F Liu, J Q Cai, J H Huang, X Q Qiu. Equip the hydrogel with armor: strong and super tough biomass reinforced hydrogels with excellent conductivity and anti-bacterial performance. Journal of Materials Chemistry A, 2019, 7(47): 26917–26926
https://doi.org/10.1039/C9TA10509C
85 J Q Cai, X Zhang, W F Liu, J H Huang, X Q Qiu. Synthesis of highly conductive hydrogel with high strength and super toughness. Polymer, 2020, 202: 122643
https://doi.org/10.1016/j.polymer.2020.122643
86 M Z Yan, J Q Cai, Z Q Fang, H Wang, X Q Qiu, W F Liu. Anisotropic muscle-like conductive composite hydrogel reinforced by lignin and cellulose nanofibrils. ACS Sustainable Chemistry & Engineering, 2022, 10(39): 12993–13003
https://doi.org/10.1021/acssuschemeng.2c02506
87 N Chen, W F Liu, J H Huang, X Q Qiu. Preparation of octopus-like lignin-grafted cationic polyacrylamide flocculant and its application for water flocculation. International Journal of Biological Macromolecules, 2020, 146: 9–17
https://doi.org/10.1016/j.ijbiomac.2019.12.245
88 J Zeng, D Q Zhang, W F Liu, J H Huang, D J Yang, X Q Qiu, S Li. Preparation of carboxymethylated lignin-based multifunctional flocculant and its application for copper-containing wastewater. European Polymer Journal, 2022, 164: 10967
https://doi.org/10.1016/j.eurpolymj.2021.110967
89 H T Yang, B Yu, X D Xu, S Bourbigot, H Wang, P A Song. Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials. Green Chemistry, 2020, 22(7): 2129–2161
https://doi.org/10.1039/D0GC00449A
90 L Dehne, C Vila Babarro, B Saake, K U Schwarz. Influence of lignin source and esterification on properties of lignin-polyethylene blends. Industrial Crops and Products, 2016, 86: 320–328
https://doi.org/10.1016/j.indcrop.2016.04.005
91 P Alexy, B Kosikova, G Podstranska. The effect of blending lignin with polyethylene and polypropylene on physical properties. Polymer, 2000, 41(13): 4901–4908
https://doi.org/10.1016/S0032-3861(99)00714-4
92 J Y Wang, W H Chen, D J Yang, Z Q Fang, W F Liu, T Xiang, X Q Qiu. Monodispersed lignin colloidal spheres with tailorable sizes for bio-photonic materials. Small, 2022, 18(19): 2200671
https://doi.org/10.1002/smll.202200671
93 J J Kaschuk, Y Al Haj, O J Rojas, K Miettunen, T Abitbol, J Vapaavuori. Plant-based structures as an opportunity to engineer optical functions in next-generation light management. Advanced Materials, 2022, 34(6): 2104473
https://doi.org/10.1002/adma.202104473
94 L Dai, Y T Li, F G Kong, K F Liu, C L Si, Y H Ni. Lignin-based nanoparticles stabilized Pickering emulsion for stability improvement and thermal-controlled release of trans-resveratrol. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 13497–13504
https://doi.org/10.1021/acssuschemeng.9b02966
95 M S Alqahtani, A Alqahtani, A Al-Thabit, M Roni, R Syed. Novel lignin nanoparticles for oral drug delivery. Journal of Materials Chemistry B, 2019, 7(28): 4461–4473
https://doi.org/10.1039/C9TB00594C
96 X Han, Z L Lv, F L Ran, L Dai, C Y Li, C L Si. Green and stable piezoresistive pressure sensor based on lignin-silver hybrid nanoparticles/polyvinyl alcohol hydrogel. International Journal of Biological Macromolecules, 2021, 176: 78–86
https://doi.org/10.1016/j.ijbiomac.2021.02.055
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed