1. National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China 2. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 3. State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Improving the aromatic selectivity in the alkane aromatization process is of great importance for its practical utilization but challenge to make because the high H/C ratio of alkanes would lead to a serious hydrogen transfer process and a large amount of light alkanes. Herein, CO2 is introduced into the cyclohexane conversion process on the HZSM-5 zeolite, which can improve the aromatic selectivity. By optimizing the reaction conditions, an improved aromatic (benzene, toluene, xylene, and C9+) selectivity of 48.2% can be obtained at the conditions of 2.7 MPa (CO2), 450 °C, and 1.7 h−1, which is better than that without CO2 (aromatic selectivity = 43.2%). In situ transmission Fourier transform infrared spectroscopy spectra illustrate that many oxygenated chemical intermediates (e.g., carboxylic acid, anhydride, unsaturated aldehydes/ketones or ketene) would be formed during the cyclohexane conversion process in the presence of CO2. 13C isotope labeling experimental results demonstrate that CO2 can enter into the aromatics through the formation of oxygenated chemical intermediates and thereby improve the aromatic selectivity. This study may open a green, economic, and promising way to improve the aromatic selectivity for alkane aromatization process.
R A F Tomás, J C M Bordado, J F P Gomes. p-Xylene oxidation to terephthalic acid: a literature review oriented toward process optimization and development. Chemical Reviews, 2013, 113(10): 7421–7469 https://doi.org/10.1021/cr300298j
2
G Q Zhang, T Bai, T F Chen, W T Fan, X Zhang. Conversion of methanol to light aromatics on Zn-modified nano-HZSM-5 zeolite catalysts. Industrial & Engineering Chemistry Research, 2014, 53(39): 14932–14940 https://doi.org/10.1021/ie5021156
3
Z Chen, Y Ni, Y Zhi, F Wen, Z Zhou, Y Wei, W Zhu, Z Liu. Coupling of methanol and carbon monoxide over H-ZSM-5 to form aromatics. Angewandte Chemie International Edition, 2018, 57(38): 12549–12553 https://doi.org/10.1002/anie.201807814
4
L Ye, Q Song, B T W Lo, J Zheng, D Kong, C A Murray, C C Tang, S C E Tsang. Decarboxylation of lactones over Zn/ZSM-5: elucidation of the structure of the active site and molecular interactions. Angewandte Chemie International Edition, 2017, 56(36): 10711–10716 https://doi.org/10.1002/anie.201704347
5
T R Carlson, T P Vispute, G W Huber. Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds. ChemSusChem, 2008, 1(5): 397–400 https://doi.org/10.1002/cssc.200800018
6
S Z A Gilani, L Lu, M T Arslan, B Ali, Q Wang, F Wei. Two-way desorption coupling to enhance the conversion of syngas into aromatics by MnO/H-ZSM-5. Catalysis Science & Technology, 2020, 10(10): 3366–3375 https://doi.org/10.1039/D0CY00275E
7
M A Nawaz, M Li, M Saif, G Song, Z Wang, D Liu. Harnessing the synergistic interplay of Fischer–Tropsch synthesis (Fe–Co) bimetallic oxides in Na-FeMnCo/HZSM-5 composite catalyst for syngas conversion to aromatic hydrocarbons. ChemCatChem, 2021, 13(8): 1966–1980 https://doi.org/10.1002/cctc.202100024
8
Y Zhang, S Wu, X Xu, H Jiang. Ethane aromatization and evolution of carbon deposits over nanosized and microsized Zn/ZSM-5 catalysts. Catalysis Science & Technology, 2020, 10(3): 835–843 https://doi.org/10.1039/C9CY01903K
9
J Yuan, S Zhou, T Peng, G Wang, X M Ou. Petroleum substitution, greenhouse gas emissions reduction and environmental benefits from the development of natural gas vehicles in china. Petroleum Science, 2018, 15(3): 644–656 https://doi.org/10.1007/s12182-018-0237-y
Z P Hu, G Qin, J Han, W Zhang, N Wang, Y Zheng, Q Jiang, T Ji, Z Y Yuan, J Xiao, Y Wei, Z Liu. Atomic insight into the local structure and microenvironment of isolated Co-motifs in MFI zeolite frameworks for propane dehydrogenation. Journal of the American Chemical Society, 2022, 144(27): 12127–12137 https://doi.org/10.1021/jacs.2c02636
12
Z P Hu, D Yang, Z Wang, Z Y Yuan. State-of-the-art catalysts for direct dehydrogenation of propane to propylene. Chinese Journal of Catalysis, 2019, 40(9): 1233–1254 https://doi.org/10.1016/S1872-2067(19)63360-7
13
V d O. Faro Júnior A C Rodrigues. On catalyst activation and reaction mechanisms in propane aromatization on Ga/HZSM5 catalysts. Applied Catalysis A: General, 2012, 435–436: 68–77
14
D Liu, L Cao, G Zhang, L Zhao, J Gao, C Xu. Catalytic conversion of light alkanes to aromatics by metal-containing HZSM-5 zeolite catalysts—a review. Fuel Processing Technology, 2021, 216: 106770 https://doi.org/10.1016/j.fuproc.2021.106770
15
N Rane, M Kersbulck, R A van Santen, E J M Hensen. Cracking of n-heptane over Brønsted acid sites and lewis acid Ga sites in ZSM-5 zeolite. Microporous and Mesoporous Materials, 2008, 110(2): 279–291 https://doi.org/10.1016/j.micromeso.2007.06.014
16
K M Dooley, C Chang, G L Price. Effects of pretreatments on state of gallium and aromatization activity of gallium/ZSM-5 catalysts. Applied Catalysis A: General, 1992, 84(1): 17–30 https://doi.org/10.1016/0926-860X(92)80336-B
17
C Yu, H Xu, Q Ge, W Li. Properties of the metallic phase of zinc-doped platinum catalysts for propane dehydrogenation. Journal of Molecular Catalysis A: Chemical, 2007, 266(1): 80–87 https://doi.org/10.1016/j.molcata.2006.10.025
18
Y Zhang, Y Zhou, M Tang, X Liu, Y Duan. Effect of la calcination temperature on catalytic performance of PtSnNaLa/ZSM-5 catalyst for propane dehydrogenation. Chemical Engineering Journal, 2012, 181–182: 530–537 https://doi.org/10.1016/j.cej.2011.11.055
19
C Wei, Q Yu, J Li, Z Liu. Coupling conversion of n-hexane and CO over an HZSM-5 zeolite: tuning the H/C balance and achieving high aromatic selectivity. ACS Catalysis, 2020, 10(7): 4171–4180 https://doi.org/10.1021/acscatal.9b05619
20
C Wei, J Li, K Yang, Q Yu, S Zeng, Z Liu. Aromatization mechanism of coupling reaction of light alkanes with CO over acidic zeolites: cyclopentenones as key intermediates. Chem Catalysis, 2021, 1(6): 1273–1290 https://doi.org/10.1016/j.checat.2021.09.004
21
X Niu, X Nie, C Yang, J G Chen. CO2-assisted propane aromatization over phosphorus-modified Ga/ZSM-5 catalysts. Catalysis Science & Technology, 2020, 10(6): 1881–1888 https://doi.org/10.1039/C9CY02589H
22
E Gomez, X Nie, J H Lee, Z Xie, J G Chen. Tandem reactions of CO2 reduction and ethane aromatization. Journal of the American Chemical Society, 2019, 141(44): 17771–17782 https://doi.org/10.1021/jacs.9b08538
23
R Buzzoni, S Bordiga, G Ricchiardi, C Lamberti, A Zecchina, G Bellussi. Interaction of pyridine with acidic (H-ZSM5, H-β, H-MORD zeolites) and superacidic (H-Nafion membrane) systems: an IR investigation. Langmuir, 1996, 12(4): 930–940 https://doi.org/10.1021/la950571i
24
P Li, G Liu, H Wu, Y Liu, J G Jiang, P Wu. Postsynthesis and selective oxidation properties of nanosized Sn-beta zeolite. Journal of Physical Chemistry C, 2011, 115(9): 3663–3670 https://doi.org/10.1021/jp1076966
25
J Zhou, G Lu, S Wu. A new approach for the synthesis of α-methylene-γ-butyrolactones from α-bromomethyl acrylic acids (or esters). Synthetic Communications, 1992, 22(4): 481–487 https://doi.org/10.1080/00397919208019246
26
X Gao, C Leng, G Zeng, D Fu, Y Zhang, Y Liu. Ozone initiated heterogeneous oxidation of unsaturated carboxylic acids by ATR-FTIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 214: 177–183 https://doi.org/10.1016/j.saa.2019.02.025
27
X Gu, C Q Yang. FTIR spectroscopy study of the formation of cyclic anhydride intermediates of polycarboxylic acids catalyzed by sodium hypophosphite. Textile Research Journal, 2000, 70(1): 64–70 https://doi.org/10.1177/004051750007000110
28
B G Frederick, M R Ashton, N V Richardson, T S Jones. Orientation and bonding of benzoic acid, phthalic anhydride and pyromellitic dianhydride on Cu(110). Surface Science, 1993, 292(1): 33–46 https://doi.org/10.1016/0039-6028(93)90388-Z
29
C Lievens, D Mourant, M He, R Gunawan, X Li, C Z Li. An FT-IR spectroscopic study of carbonyl functionalities in bio-oils. Fuel, 2011, 90(11): 3417–3423 https://doi.org/10.1016/j.fuel.2011.06.001
30
M Margoshes, V A Fassel. The infrared spectra of aromatic compounds: I. The out-of-plane C–H bending vibrations in the region 625–900 cm−1. Spectrochimica Acta, 1955, 7(1): 14–24 https://doi.org/10.1016/0371-1951(55)80085-9
31
T Noguchi, M Sugiura. Analysis of flash-induced FTIR difference spectra of the S-state cycle in the photosynthetic water-oxidizing complex by uniform 15N and 13C isotope labeling. Biochemistry, 2003, 42(20): 6035–6042 https://doi.org/10.1021/bi0341612
32
W Hage, A Hallbrucker, E Mayer. Metastable intermediates from glassy solutions. Part 3. FTIR spectra of α-carbonic acid and its 2H and 13C isotopic forms, isolated from methanolic solution. Journal of the Chemical Society, Faraday Transactions, 1996, 92(17): 3183–3195 https://doi.org/10.1039/FT9969203183
33
J J Goodall, V K Booth, A E Ashcroft, C W Wharton. Hydrogen-bonding in 2-aminobenzoyl-α-chymotrypsin formed by acylation of the enzyme with isatoic anhydride: IR and mass spectroscopic studies. ChemBioChem, 2002, 3(1): 68–75 https://doi.org/10.1002/1439-7633(20020104)3:1<68::AID-CBIC68>3.0.CO;2-D
34
T Zeko, S F Hannigan, T Jacisin, M J Guberman Pfeffer, E R Falcone, M J Guildford, C Szabo, K E Cole, J Placido, E Daly, M A Kubasik. FT-IR spectroscopy and density functional theory calculations of 13C isotopologues of the helical peptide Z-Aib6-OtBu. Journal of Physical Chemistry B, 2014, 118(1): 58–68 https://doi.org/10.1021/jp408818g
35
N Sivasankar, H Frei. Direct observation of kinetically competent surface intermediates upon ethylene hydroformylation over Rh/Al2O3 under reaction conditions by time-resolved fourier transform infrared spectroscopy. Journal of Physical Chemistry C, 2011, 115(15): 7545–7553 https://doi.org/10.1021/jp112391n
36
P C Painter, J L Koenig. Liquid phase vibrational spectra of 13C-isotopes of benzene. Spectrochimica Acta Part A: Molecular Spectroscopy, 1977, 33(11): 1003–1018 https://doi.org/10.1016/0584-8539(77)80102-5
37
J Clarkson, W Ewen Smith. A DFT analysis of the vibrational spectra of nitrobenzene. Journal of Molecular Structure, 2003, 655(3): 413–422 https://doi.org/10.1016/S0022-2860(03)00316-8
38
W J Le Noble, K R Brower, C Brower, S Chang. Pressure effects on the rates of aromatization of hexamethyl (dewar benzene) and dewar benzene. Volume as a factor in crowded molecules. Journal of the American Chemical Society, 1982, 104(11): 3150–3152 https://doi.org/10.1021/ja00375a035
39
E A Lombardo, W K Hall. The mechanism of isobutane cracking over amorphous and crystalline aluminosilicates. Journal of Catalysis, 1988, 112(2): 565–578 https://doi.org/10.1016/0021-9517(88)90171-6
40
H You. Influence of aromatization reaction conditions in the presence of HZSM-5 catalyst. Petroleum Science and Technology, 2006, 24(6): 707–716 https://doi.org/10.1081/LFT-200041192
41
G Krishnamurthy, A Bhan, W N Delgass. Identity and chemical function of gallium species inferred from microkinetic modeling studies of propane aromatization over Ga/HZSM-5 catalysts. Journal of Catalysis, 2010, 271(2): 370–385 https://doi.org/10.1016/j.jcat.2010.02.026
42
Z Ma, X Hou, B Chen, L Zhao, E Yuan, T Cui. Analysis of n-hexane, 1-hexene, cyclohexane and cyclohexene catalytic cracking over HZSM-5 zeolites: effects of molecular structure. Reaction Chemistry & Engineering, 2022, 7(8): 1762–1778 https://doi.org/10.1039/D1RE00532D
43
W Chen, G Li, X Yi, S J Day, K A Tarach, Z Liu, S B Liu, Tsang S C Edman, Marek K Góra, A Zheng. Molecular understanding of the catalytic consequence of ketene intermediates under confinement. Journal of the American Chemical Society, 2021, 143(37): 15440–15452 https://doi.org/10.1021/jacs.1c08036
44
F Jiao, X Pan, K Gong, Y Chen, G Li, X Bao. Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate. Angewandte Chemie International Edition, 2018, 57(17): 4692–4696 https://doi.org/10.1002/anie.201801397
45
F Jiao, J Li, X Pan, J Xiao, H Li, H Ma, M Wei, Y Pan, Z Zhou, M Li, S Miao, J Li, Y Zhu, D Xiao, T He, J Yang, F Qi, Q Fu, X Bao. Selective conversion of syngas to light olefins. Science, 2016, 351(6277): 1065–1068 https://doi.org/10.1126/science.aaf1835