Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (11): 1801-1808   https://doi.org/10.1007/s11705-023-2325-9
  本期目录
Enhancing the aromatic selectivity of cyclohexane aromatization by CO2 coupling
Xiangxiang Ren1,2, Zhong-Pan Hu1, Jingfeng Han1(), Yingxu Wei1, Zhongmin Liu1,2,3()
1. National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
2. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3. State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
 全文: PDF(2464 KB)   HTML
Abstract

Improving the aromatic selectivity in the alkane aromatization process is of great importance for its practical utilization but challenge to make because the high H/C ratio of alkanes would lead to a serious hydrogen transfer process and a large amount of light alkanes. Herein, CO2 is introduced into the cyclohexane conversion process on the HZSM-5 zeolite, which can improve the aromatic selectivity. By optimizing the reaction conditions, an improved aromatic (benzene, toluene, xylene, and C9+) selectivity of 48.2% can be obtained at the conditions of 2.7 MPa (CO2), 450 °C, and 1.7 h−1, which is better than that without CO2 (aromatic selectivity = 43.2%). In situ transmission Fourier transform infrared spectroscopy spectra illustrate that many oxygenated chemical intermediates (e.g., carboxylic acid, anhydride, unsaturated aldehydes/ketones or ketene) would be formed during the cyclohexane conversion process in the presence of CO2. 13C isotope labeling experimental results demonstrate that CO2 can enter into the aromatics through the formation of oxygenated chemical intermediates and thereby improve the aromatic selectivity. This study may open a green, economic, and promising way to improve the aromatic selectivity for alkane aromatization process.

Key wordsaromatics    carbon dioxide    aromatization    coupling reaction    ZSM-5 zeolite
收稿日期: 2023-02-10      出版日期: 2023-10-25
Corresponding Author(s): Jingfeng Han,Zhongmin Liu   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(11): 1801-1808.
Xiangxiang Ren, Zhong-Pan Hu, Jingfeng Han, Yingxu Wei, Zhongmin Liu. Enhancing the aromatic selectivity of cyclohexane aromatization by CO2 coupling. Front. Chem. Sci. Eng., 2023, 17(11): 1801-1808.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-023-2325-9
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I11/1801
Fig.1  
Fig.2  
Fig.3  
1 R A F Tomás, J C M Bordado, J F P Gomes. p-Xylene oxidation to terephthalic acid: a literature review oriented toward process optimization and development. Chemical Reviews, 2013, 113(10): 7421–7469
https://doi.org/10.1021/cr300298j
2 G Q Zhang, T Bai, T F Chen, W T Fan, X Zhang. Conversion of methanol to light aromatics on Zn-modified nano-HZSM-5 zeolite catalysts. Industrial & Engineering Chemistry Research, 2014, 53(39): 14932–14940
https://doi.org/10.1021/ie5021156
3 Z Chen, Y Ni, Y Zhi, F Wen, Z Zhou, Y Wei, W Zhu, Z Liu. Coupling of methanol and carbon monoxide over H-ZSM-5 to form aromatics. Angewandte Chemie International Edition, 2018, 57(38): 12549–12553
https://doi.org/10.1002/anie.201807814
4 L Ye, Q Song, B T W Lo, J Zheng, D Kong, C A Murray, C C Tang, S C E Tsang. Decarboxylation of lactones over Zn/ZSM-5: elucidation of the structure of the active site and molecular interactions. Angewandte Chemie International Edition, 2017, 56(36): 10711–10716
https://doi.org/10.1002/anie.201704347
5 T R Carlson, T P Vispute, G W Huber. Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds. ChemSusChem, 2008, 1(5): 397–400
https://doi.org/10.1002/cssc.200800018
6 S Z A Gilani, L Lu, M T Arslan, B Ali, Q Wang, F Wei. Two-way desorption coupling to enhance the conversion of syngas into aromatics by MnO/H-ZSM-5. Catalysis Science & Technology, 2020, 10(10): 3366–3375
https://doi.org/10.1039/D0CY00275E
7 M A Nawaz, M Li, M Saif, G Song, Z Wang, D Liu. Harnessing the synergistic interplay of Fischer–Tropsch synthesis (Fe–Co) bimetallic oxides in Na-FeMnCo/HZSM-5 composite catalyst for syngas conversion to aromatic hydrocarbons. ChemCatChem, 2021, 13(8): 1966–1980
https://doi.org/10.1002/cctc.202100024
8 Y Zhang, S Wu, X Xu, H Jiang. Ethane aromatization and evolution of carbon deposits over nanosized and microsized Zn/ZSM-5 catalysts. Catalysis Science & Technology, 2020, 10(3): 835–843
https://doi.org/10.1039/C9CY01903K
9 J Yuan, S Zhou, T Peng, G Wang, X M Ou. Petroleum substitution, greenhouse gas emissions reduction and environmental benefits from the development of natural gas vehicles in china. Petroleum Science, 2018, 15(3): 644–656
https://doi.org/10.1007/s12182-018-0237-y
10 H J Bernstein. Bond energies in hydrocarbons. Transactions of the Faraday Society, 1962, 58: 2285–2306
https://doi.org/10.1039/tf9625802285
11 Z P Hu, G Qin, J Han, W Zhang, N Wang, Y Zheng, Q Jiang, T Ji, Z Y Yuan, J Xiao, Y Wei, Z Liu. Atomic insight into the local structure and microenvironment of isolated Co-motifs in MFI zeolite frameworks for propane dehydrogenation. Journal of the American Chemical Society, 2022, 144(27): 12127–12137
https://doi.org/10.1021/jacs.2c02636
12 Z P Hu, D Yang, Z Wang, Z Y Yuan. State-of-the-art catalysts for direct dehydrogenation of propane to propylene. Chinese Journal of Catalysis, 2019, 40(9): 1233–1254
https://doi.org/10.1016/S1872-2067(19)63360-7
13 V d O. Faro Júnior A C Rodrigues. On catalyst activation and reaction mechanisms in propane aromatization on Ga/HZSM5 catalysts. Applied Catalysis A: General, 2012, 435–436: 68–77
14 D Liu, L Cao, G Zhang, L Zhao, J Gao, C Xu. Catalytic conversion of light alkanes to aromatics by metal-containing HZSM-5 zeolite catalysts—a review. Fuel Processing Technology, 2021, 216: 106770
https://doi.org/10.1016/j.fuproc.2021.106770
15 N Rane, M Kersbulck, R A van Santen, E J M Hensen. Cracking of n-heptane over Brønsted acid sites and lewis acid Ga sites in ZSM-5 zeolite. Microporous and Mesoporous Materials, 2008, 110(2): 279–291
https://doi.org/10.1016/j.micromeso.2007.06.014
16 K M Dooley, C Chang, G L Price. Effects of pretreatments on state of gallium and aromatization activity of gallium/ZSM-5 catalysts. Applied Catalysis A: General, 1992, 84(1): 17–30
https://doi.org/10.1016/0926-860X(92)80336-B
17 C Yu, H Xu, Q Ge, W Li. Properties of the metallic phase of zinc-doped platinum catalysts for propane dehydrogenation. Journal of Molecular Catalysis A: Chemical, 2007, 266(1): 80–87
https://doi.org/10.1016/j.molcata.2006.10.025
18 Y Zhang, Y Zhou, M Tang, X Liu, Y Duan. Effect of la calcination temperature on catalytic performance of PtSnNaLa/ZSM-5 catalyst for propane dehydrogenation. Chemical Engineering Journal, 2012, 181–182: 530–537
https://doi.org/10.1016/j.cej.2011.11.055
19 C Wei, Q Yu, J Li, Z Liu. Coupling conversion of n-hexane and CO over an HZSM-5 zeolite: tuning the H/C balance and achieving high aromatic selectivity. ACS Catalysis, 2020, 10(7): 4171–4180
https://doi.org/10.1021/acscatal.9b05619
20 C Wei, J Li, K Yang, Q Yu, S Zeng, Z Liu. Aromatization mechanism of coupling reaction of light alkanes with CO over acidic zeolites: cyclopentenones as key intermediates. Chem Catalysis, 2021, 1(6): 1273–1290
https://doi.org/10.1016/j.checat.2021.09.004
21 X Niu, X Nie, C Yang, J G Chen. CO2-assisted propane aromatization over phosphorus-modified Ga/ZSM-5 catalysts. Catalysis Science & Technology, 2020, 10(6): 1881–1888
https://doi.org/10.1039/C9CY02589H
22 E Gomez, X Nie, J H Lee, Z Xie, J G Chen. Tandem reactions of CO2 reduction and ethane aromatization. Journal of the American Chemical Society, 2019, 141(44): 17771–17782
https://doi.org/10.1021/jacs.9b08538
23 R Buzzoni, S Bordiga, G Ricchiardi, C Lamberti, A Zecchina, G Bellussi. Interaction of pyridine with acidic (H-ZSM5, H-β, H-MORD zeolites) and superacidic (H-Nafion membrane) systems: an IR investigation. Langmuir, 1996, 12(4): 930–940
https://doi.org/10.1021/la950571i
24 P Li, G Liu, H Wu, Y Liu, J G Jiang, P Wu. Postsynthesis and selective oxidation properties of nanosized Sn-beta zeolite. Journal of Physical Chemistry C, 2011, 115(9): 3663–3670
https://doi.org/10.1021/jp1076966
25 J Zhou, G Lu, S Wu. A new approach for the synthesis of α-methylene-γ-butyrolactones from α-bromomethyl acrylic acids (or esters). Synthetic Communications, 1992, 22(4): 481–487
https://doi.org/10.1080/00397919208019246
26 X Gao, C Leng, G Zeng, D Fu, Y Zhang, Y Liu. Ozone initiated heterogeneous oxidation of unsaturated carboxylic acids by ATR-FTIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 214: 177–183
https://doi.org/10.1016/j.saa.2019.02.025
27 X Gu, C Q Yang. FTIR spectroscopy study of the formation of cyclic anhydride intermediates of polycarboxylic acids catalyzed by sodium hypophosphite. Textile Research Journal, 2000, 70(1): 64–70
https://doi.org/10.1177/004051750007000110
28 B G Frederick, M R Ashton, N V Richardson, T S Jones. Orientation and bonding of benzoic acid, phthalic anhydride and pyromellitic dianhydride on Cu(110). Surface Science, 1993, 292(1): 33–46
https://doi.org/10.1016/0039-6028(93)90388-Z
29 C Lievens, D Mourant, M He, R Gunawan, X Li, C Z Li. An FT-IR spectroscopic study of carbonyl functionalities in bio-oils. Fuel, 2011, 90(11): 3417–3423
https://doi.org/10.1016/j.fuel.2011.06.001
30 M Margoshes, V A Fassel. The infrared spectra of aromatic compounds: I. The out-of-plane C–H bending vibrations in the region 625–900 cm−1. Spectrochimica Acta, 1955, 7(1): 14–24
https://doi.org/10.1016/0371-1951(55)80085-9
31 T Noguchi, M Sugiura. Analysis of flash-induced FTIR difference spectra of the S-state cycle in the photosynthetic water-oxidizing complex by uniform 15N and 13C isotope labeling. Biochemistry, 2003, 42(20): 6035–6042
https://doi.org/10.1021/bi0341612
32 W Hage, A Hallbrucker, E Mayer. Metastable intermediates from glassy solutions. Part 3. FTIR spectra of α-carbonic acid and its 2H and 13C isotopic forms, isolated from methanolic solution. Journal of the Chemical Society, Faraday Transactions, 1996, 92(17): 3183–3195
https://doi.org/10.1039/FT9969203183
33 J J Goodall, V K Booth, A E Ashcroft, C W Wharton. Hydrogen-bonding in 2-aminobenzoyl-α-chymotrypsin formed by acylation of the enzyme with isatoic anhydride: IR and mass spectroscopic studies. ChemBioChem, 2002, 3(1): 68–75
https://doi.org/10.1002/1439-7633(20020104)3:1<68::AID-CBIC68>3.0.CO;2-D
34 T Zeko, S F Hannigan, T Jacisin, M J Guberman Pfeffer, E R Falcone, M J Guildford, C Szabo, K E Cole, J Placido, E Daly, M A Kubasik. FT-IR spectroscopy and density functional theory calculations of 13C isotopologues of the helical peptide Z-Aib6-OtBu. Journal of Physical Chemistry B, 2014, 118(1): 58–68
https://doi.org/10.1021/jp408818g
35 N Sivasankar, H Frei. Direct observation of kinetically competent surface intermediates upon ethylene hydroformylation over Rh/Al2O3 under reaction conditions by time-resolved fourier transform infrared spectroscopy. Journal of Physical Chemistry C, 2011, 115(15): 7545–7553
https://doi.org/10.1021/jp112391n
36 P C Painter, J L Koenig. Liquid phase vibrational spectra of 13C-isotopes of benzene. Spectrochimica Acta Part A: Molecular Spectroscopy, 1977, 33(11): 1003–1018
https://doi.org/10.1016/0584-8539(77)80102-5
37 J Clarkson, W Ewen Smith. A DFT analysis of the vibrational spectra of nitrobenzene. Journal of Molecular Structure, 2003, 655(3): 413–422
https://doi.org/10.1016/S0022-2860(03)00316-8
38 W J Le Noble, K R Brower, C Brower, S Chang. Pressure effects on the rates of aromatization of hexamethyl (dewar benzene) and dewar benzene. Volume as a factor in crowded molecules. Journal of the American Chemical Society, 1982, 104(11): 3150–3152
https://doi.org/10.1021/ja00375a035
39 E A Lombardo, W K Hall. The mechanism of isobutane cracking over amorphous and crystalline aluminosilicates. Journal of Catalysis, 1988, 112(2): 565–578
https://doi.org/10.1016/0021-9517(88)90171-6
40 H You. Influence of aromatization reaction conditions in the presence of HZSM-5 catalyst. Petroleum Science and Technology, 2006, 24(6): 707–716
https://doi.org/10.1081/LFT-200041192
41 G Krishnamurthy, A Bhan, W N Delgass. Identity and chemical function of gallium species inferred from microkinetic modeling studies of propane aromatization over Ga/HZSM-5 catalysts. Journal of Catalysis, 2010, 271(2): 370–385
https://doi.org/10.1016/j.jcat.2010.02.026
42 Z Ma, X Hou, B Chen, L Zhao, E Yuan, T Cui. Analysis of n-hexane, 1-hexene, cyclohexane and cyclohexene catalytic cracking over HZSM-5 zeolites: effects of molecular structure. Reaction Chemistry & Engineering, 2022, 7(8): 1762–1778
https://doi.org/10.1039/D1RE00532D
43 W Chen, G Li, X Yi, S J Day, K A Tarach, Z Liu, S B Liu, Tsang S C Edman, Marek K Góra, A Zheng. Molecular understanding of the catalytic consequence of ketene intermediates under confinement. Journal of the American Chemical Society, 2021, 143(37): 15440–15452
https://doi.org/10.1021/jacs.1c08036
44 F Jiao, X Pan, K Gong, Y Chen, G Li, X Bao. Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate. Angewandte Chemie International Edition, 2018, 57(17): 4692–4696
https://doi.org/10.1002/anie.201801397
45 F Jiao, J Li, X Pan, J Xiao, H Li, H Ma, M Wei, Y Pan, Z Zhou, M Li, S Miao, J Li, Y Zhu, D Xiao, T He, J Yang, F Qi, Q Fu, X Bao. Selective conversion of syngas to light olefins. Science, 2016, 351(6277): 1065–1068
https://doi.org/10.1126/science.aaf1835
[1] FCE-23005-OF-RX_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed