Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (11): 1623-1648   https://doi.org/10.1007/s11705-023-2328-6
  本期目录
Insights into carbon-based materials for catalytic dehydrogenation of low-carbon alkanes and ethylbenzene
Sijia Xing1, Sixiang Zhai1, Lei Chen1, Huabin Yang1,2, Zhong-Yong Yuan1,2()
1. School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
2. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
 全文: PDF(5401 KB)   HTML
Abstract

Direct dehydrogenation with high selectivity and oxidative dehydrogenation with low thermal limit has been regarded as promising methods to solve the increasing demands of light olefins and styrene. Metal-based catalysts have shown remarkable performance for these reactions, such as Pt, CrOx, Co, ZrOx, Zn and V. Compared with metal-based catalysts, carbon materials with stable structure, rich pore texture and large surface area, are ideal platforms as the catalysts and the supports for dehydrogenation reactions. In this review, carbon materials applied in direct dehydrogenation and oxidative dehydrogenation reactions including ordered mesoporous carbon, carbon nanodiamond, carbon nanotubes, graphene and activated carbon, are summarized. A general introduction to the dehydrogenation mechanism and active sites of carbon catalysts is briefly presented to provide a deep understanding of the carbon-based materials used in dehydrogenation reactions. The unique structure of each carbon material is presented, and the diversified synthesis methods of carbon catalysts are clarified. The approaches for promoting the catalytic activity of carbon catalysts are elaborated with respect to preparation method optimization, suitable structure design and heteroatom doping. The regeneration mechanism of carbon-based catalysts is discussed for providing guidance on catalytic performance enhancement. In addition, carbon materials as the support of metal-based catalysts contribute to exploiting the excellent catalytic performance of catalysts due to superior structural characteristics. In the end, the challenges in current research and strategies for future improvements are proposed.

Key wordscarbon materials    dehydrogenation    active sites    mechanism    catalytic performance    support
收稿日期: 2023-02-18      出版日期: 2023-10-25
Corresponding Author(s): Zhong-Yong Yuan   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(11): 1623-1648.
Sijia Xing, Sixiang Zhai, Lei Chen, Huabin Yang, Zhong-Yong Yuan. Insights into carbon-based materials for catalytic dehydrogenation of low-carbon alkanes and ethylbenzene. Front. Chem. Sci. Eng., 2023, 17(11): 1623-1648.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-023-2328-6
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I11/1623
MechanismReaction technologiesReaction temperature/°CMeritsImperfections
DHOleflexCatofinSTARLindeFBD-4500–7001) High alkene selectivity2) Simple reaction process1) Highly endothermic limitation2) Generate some side reactions
ODH350–6001) Low reaction temperature2) Little carbon deposition1) Unsatisfied alkene selectivity2) Inevitable deep oxidation
Tab.1  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Carbon materialCatalystMethodSBET /(m2·g–1)Flow rate /(mL·min–1)Feed compositionReaction temperature /°CReactant/target productConversiona) /%Steady-state rateb)/(mmol·g–1·h–1)Selectivityc)/%Catalyst lifed)/hRef.
OMCOMC-1DH62440C3H8/N2 = 1:19600Propane/propylene69.3–44.562.2–85.1100[68]
OMC-2DH61040C3H8/N2 = 1:19600Propane/propylene65.7–39.370.6–88.6100[68]
MC-2-600DH60440C3H8/N2 = 1:19600Propane/propylene35.7–28.185.6–89.410[69]
HOMCDH67540C3H8/N2 = 1:19600Propane/propylene20.1–10.366.1–78.550[70]
COMCDH75840C3H8/N2 = 1:19600Propane/propylene22.6–12.189.0–95.150[70]
MCDH59840C3H8/N2 = 1:19600Propane/propylene19.6–9.7887.1–92.650[71]
MCODH31040C3H8/N2 = 1:19600Propane/propylene32.9–21.266.3–86.650[71]
CN-15-2.0ODH67220C3H8/O2/N2 = 1:1:8450Propane/propylene22.9841.7\[72]
SKODH120550C8H10/O2/He = 1:1:124350EB/ST34.0–14.196.1–96.06[73]
SK-NODH141550C8H10/O2/He = 1:1:124350EB/ST38.7–19.296.3–96.66[73]
PMCDH67920C3H8/N2 = 1:19600Propane/propylene37.189.224[75]
BMCDH69020C3H8/N2 = 1:19600Propane/propylene33.987.224[75]
NMCDH90820C3H8/N2 = 1:19600Propane/propylene18.684.624[75]
MCDH73620C3H8/N2 = 1:20600Propane/propylene30.987.624[75]
CNTsCNT-RODH18410C8H10/O2 = 1:5400EB/ST458612[78]
MWCNTDH15010C2H6/Ar = 1:1700Ethane/ethylene20–1883–9075[60]
so-MWCNTsDH13420C3H8/N2 = 1:19600Propane/propylene11.2–5.892.1–87.94[60]
5B-oCNTsODH26215C3H8/O2/N2 = 1:1:48400Propane/propylene3070200[84]
PZS@OCNT-800ODH30615C3H8/O2/He = 1:0.5:48520Propane/propylene14.36320[89]
NDND/FLGDH13430C8H10/He = 1:35600EB/ST19.2395[96]
HD-ND/GDH10C8H10/He = 1:37550EB/ST36.5–34.2~97.5–9760[97]
FLG-GO@NDsDH30430C3H8/N2 = 1:35550EB/ST35.198.650[98]
ND-CNT-SDS/SiCDH10C8H10/He = 1:36550EB/ST6.2599.520[101]
ND-1100DH35015C3H8/N2 = 1:49550Propane/propylene10.6908[55]
ND@NMC-700DH30530C8H10/Ar = 1:35700EB/ST37.75.899.620[106]
N,O-ND/CNT-dDH30310C8H10/Ar = 1:35550EB/ST5.298.7\[107]
ND/CNT-SiC-ms-HNDH10C8H10/Ar = 1:35550EB/ST5.4998.420[108]
ND/CN-ms-oDH70210C8H10/Ar = 1:35550EB/ST7.06~10020[109]
F-NDODH27510C8H10/O2/N2 = 1:3:400EB/ST70.8–~50~90500[110]
GraphenerGODH9010C2H6/Ar = 1:1700Ethane/ethylene~139075[78]
RGODH48C2H6/Ar = 1:2450Ethane/ethylene16.595%450[114]
ACBDAC-700DH107820C3H8/N2 = 1:19600Propane/propylene54.2–29.785.8–91.450[130]
MC-700DH849.220C3H8/Ar = 1:19600Propane/propylene36–2870–758[131]
CMSC-3-700DH140020C3H8/N2 = 1:19600Propane/propylene24.793.510[132]
CSACDH119020C4H10/N2 = 1:19625Isobutane/isobutene71–34~7672[57]
SCW-650ODH143830C4H10/O2/N2 = 1:0.5:6375Isobutane/isobutene~9~935[133]
HC-N-BODH99340C3H8/CO2/Ar = 1:2:37350Propane/propylene9–7.8~935[137]
OthersCNFsODH61.510C8H10/O2 = 1:5400EB/ST30–2580–75168[138]
B0.1CNODH181C2H6/O2/N2 = 1:0.5:23.5450Ethane/ethylene8557[140]
ND/CNF-FLGDH20930C8H10/He = 1:35600EB/ST54–53.587–85.920[141]
CF/CNFDH25930C8H10/He = 1:35550EB/ST21.99725[142]
PDA HNSsODH641.612.23C8H10/O2/He = 1:0.5:98.5700EB/ST61.69016[143]
SiC@CDH410.310C8H10/He = 1:35550EB/ST11.5896.8615[144]
C-2ODH131850C8H10/O2/He = 1:1:124300EB/ST29.1–18.491.5–91.26[145]
Tab.2  
Metal-based catalystsCatalystMethodSBET/(m2·g–1)Flow rate/(mL·min–1)Feed compositionReaction temperature/°CReactant/target productConversiona) /%Selectivityb)/%Catalyst lifec)/hRef.
Single metal-basedCoN@OCNTDH15C3H8/He = 1:41570Propane/propylene15–12.5957.5[158]
NS-ZIF-900DH33515.5C3H8/He = 1:41550Propane/propylene34–158013[159]
V-g-C3N4DH48.615C3H8/N2 = 1:4600Propane/propylene25–568.63[160]
Pt/CVDH24018C4H10/H2 = 1:1.25530Butane/butene33–2878–822[161]
GrGNFpODH98130C3H8/CO2 = 1:2600Propane/propylene5237.9[162]
Polymetal-based30CeVO4/ACODH102630C3H8/CO2/He = 1:1:1550Propane/propylene15.3–10.142–494[27]
Pt-Sn/S-CODHC3H8/H2/Ar = 1:1:8550Propane/propylene~40~858[165]
Tab.3  
1 J Sheng, B Yan, W D Lu, B Qiu, X Q Gao, D Wang, A H Lu. Oxidative dehydrogenation of light alkanes to olefins on metal-free catalysts. Chemical Society Reviews, 2021, 50(2): 1438–1468
https://doi.org/10.1039/D0CS01174F
2 J J Sattler, J Ruiz-Martinez, E Santillan-Jimenez, B M Weckhuysen. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chemical Reviews, 2014, 114(20): 10613–10653
https://doi.org/10.1021/cr5002436
3 J W Zhong, J F Han, Y X Wei, P Tian, X W Guo, C S Song, Z M Liu. Recent advances of the nano-hierarchical SAPO-34 in the methanol-to-olefin (MTO) reaction and other applications. Catalysis Science & Technology, 2017, 7(21): 4905–4923
https://doi.org/10.1039/C7CY01466J
4 I Yarulina, Wispelaere K De, S Bailleul, J Goetze, M Radersma, E Abou-Hamad, I Vollmer, M Goesten, B Mezari, E J M Hensen, J S Martínez-Espín, M Morten, S Mitchell, J Perez-Ramirez, U Olsbye, B M Weckhuysen, Speybroeck V Van, F Kapteijn, J Gascon. Publisher correction: structure-performance descriptors and the role of Lewis acidity in the methanol-to-propylene process. Nature Chemistry, 2018, 10(8): 897
https://doi.org/10.1038/s41557-018-0118-4
5 P Munnik, P E de Jongh, K P de Jong. Control and impact of the nanoscale distribution of supported cobalt particles used in Fischer-Tropsch catalysis. Journal of the American Chemical Society, 2014, 136(20): 7333–7340
https://doi.org/10.1021/ja500436y
6 C J Weststrate, J van de Loosdrecht, J W Niemantsverdriet. Spectroscopic insights into cobalt-catalyzed Fischer–Tropsch synthesis: a review of the carbon monoxide interaction with single crystalline surfaces of cobalt. Journal of Catalysis, 2016, 342: 1–16
https://doi.org/10.1016/j.jcat.2016.07.010
7 C Chen, Z P Hu, J T Ren, S Zhang, Z Wang, Z Y Yuan. ZnO supported on high-silica HZSM-5 as efficient catalysts for direct dehydrogenation of propane to propylene. Molecular Catalysis, 2019, 476: 110508
https://doi.org/10.1016/j.mcat.2019.110508
8 C Chen, M L Sun, Z P Hu, J T Ren, S M Zhang, Z Y Yuan. New insight into the enhanced catalytic performance of ZnPt/HZSM-5 catalysts for direct dehydrogenation of propane to propylene. Catalysis Science & Technology, 2019, 9(8): 1979–1988
https://doi.org/10.1039/C9CY00237E
9 Z P Hu, Y Wang, D Yang, Z Y Yuan. CrOx supported on high-silica HZSM-5 for propane dehydrogenation. Journal of Energy Chemistry, 2020, 47: 225–233
https://doi.org/10.1016/j.jechem.2019.12.010
10 Y S Wang, Z P Hu, W W Tian, L J Gao, Z Wang, Z Y Yuan. Framework-confined Sn in Si-beta stabilizing ultra-small Pt nanoclusters as direct propane dehydrogenation catalysts with high selectivity and stability. Catalysis Science & Technology, 2019, 9(24): 6993–7002
https://doi.org/10.1039/C9CY01907C
11 Y Wang, Y Suo, X Lv, Z Wang, Z Y Yuan. Enhanced performances of bimetallic Ga-Pt nanoclusters confined within silicalite-1 zeolite in propane dehydrogenation. Journal of Colloid and Interface Science, 2021, 593: 304–314
https://doi.org/10.1016/j.jcis.2021.02.129
12 Y Wang, Y Suo, J T Ren, Z Wang, Z Y Yuan. Spatially isolated cobalt oxide sites derived from MOFs for direct propane dehydrogenation. Journal of Colloid and Interface Science, 2021, 594: 113–121
https://doi.org/10.1016/j.jcis.2021.03.023
13 F Guo, P Yang, Z Pan, X N Cao, Z Xie, X Wang. Carbon-doped BN nanosheets for the oxidative dehydrogenation of ethylbenzene. Angewandte Chemie International Edition, 2017, 56(28): 8231–8235
https://doi.org/10.1002/anie.201703789
14 R Yao, J E Herrera, L H Chen, Y H C Chin. Generalized mechanistic framework for ethane dehydrogenation and oxidative dehydrogenation on molybdenum oxide catalysts. ACS Catalysis, 2020, 10(12): 6952–6968
https://doi.org/10.1021/acscatal.0c01073
15 L Ye, X Duan, K Xie. Electrochemical oxidative dehydrogenation of ethane to ethylene in a solid oxide electrolyzer. Angewandte Chemie International Edition, 2021, 60(40): 21746–21750
https://doi.org/10.1002/anie.202109355
16 V Bikbaeva, O Perez, N Nesterenko, V Valtchev. Ethane oxidative dehydrogenation with CO2 on thiogallates. Inorganic Chemistry Frontiers, 2022, 9(20): 5181–5187
https://doi.org/10.1039/D2QI01630C
17 N J LiBretto, C Yang, Y Ren, G Zhang, J T Miller. Identification of surface structures in Pt3Cr intermetallic nanocatalysts. Chemistry of Materials, 2019, 31(5): 1597–1609
https://doi.org/10.1021/acs.chemmater.8b04774
18 Y Zhang, Y Zhou, L Huang, S Zhou, X Sheng, Q Wang, C Zhang. Structure and catalytic properties of the Zn-modified ZSM-5 supported platinum catalyst for propane dehydrogenation. Chemical Engineering Journal, 2015, 270: 352–361
https://doi.org/10.1016/j.cej.2015.01.008
19 X Li, P Wang, H Wang, C Li. Effects of the state of Co species in Co/Al2O3 catalysts on the catalytic performance of propane dehydrogenation. Applied Surface Science, 2018, 441: 688–693
https://doi.org/10.1016/j.apsusc.2018.02.024
20 M W Schreiber, C P Plaisance, M Baumgartl, K Reuter, A Jentys, R Bermejo-Deval, J A Lercher. Lewis-bronsted acid pairs in Ga/H-ZSM-5 to catalyze dehydrogenation of light alkanes. Journal of the American Chemical Society, 2018, 140(14): 4849–4859
https://doi.org/10.1021/jacs.7b12901
21 S L Han, T Otroshchenko, D Zhao, H Lund, N Rockstroh, T H Vuong, J Rabeah, U Rodemerck, D Linke, M L Gao, G Jiang, E V Kondratenko. The effect of ZrO2 crystallinity in CrZrOx/SiO2 on non-oxidative propane dehydrogenation. Applied Catalysis A: General, 2020, 590: 117350
https://doi.org/10.1016/j.apcata.2019.117350
22 N Jeon, J Oh, A Tayal, B Jeong, O Seo, S Kim, I Chung, Y Yun. Effects of heat-treatment atmosphere and temperature on cobalt species in Co/Al2O3 catalyst for propane dehydrogenation. Journal of Catalysis, 2021, 404: 1007–1016
https://doi.org/10.1016/j.jcat.2021.10.035
23 Y Yuan, R F Lobo, B Xu. Ga2O22+ stabilized by paired framework Al atoms in MFI: a highly reactive site in nonoxidative propane dehydrogenation. ACS Catalysis, 2022, 12(3): 1775–1783
https://doi.org/10.1021/acscatal.1c05724
24 Z P Hu, G Qin, J Han, W Zhang, N Wang, Y Zheng, Q Jiang, T Ji, Z Y Yuan, J Xiao, Y Wei, Z Liu. Atomic insight into the local structure and microenvironment of isolated Co-motifs in MFI zeolite frameworks for propane dehydrogenation. Journal of the American Chemical Society, 2022, 144(27): 12127–12137
https://doi.org/10.1021/jacs.2c02636
25 S Najari, S Saeidi, P Concepcion, D D Dionysiou, S K Bhargava, A F Lee, K Wilson. Oxidative dehydrogenation of ethane: catalytic and mechanistic aspects and future trends. Chemical Society Reviews, 2021, 50(7): 4564–4605
https://doi.org/10.1039/D0CS01518K
26 M A Atanga, F Rezaei, A Jawad, M Fitch, A A Rownaghi. Oxidative dehydrogenation of propane to propylene with carbon dioxide. Applied Catalysis B: Environmental, 2018, 220: 429–445
https://doi.org/10.1016/j.apcatb.2017.08.052
27 P Djinović, J Zavašnik, J Teržan, I Jerman. Role of CO2 during oxidative dehydrogenation of propane over bulk and activated-carbon supported cerium and vanadium based catalysts. Catalysis Letters, 2021, 151(10): 2816–2832
https://doi.org/10.1007/s10562-020-03519-y
28 Y Gambo, S Adamu, A A Abdulrasheed, R A Lucky, M S Ba-Shammakh, M M Hossain. Catalyst design and tuning for oxidative dehydrogenation of propane—a review. Applied Catalysis A: General, 2021, 609: 117914
https://doi.org/10.1016/j.apcata.2020.117914
29 D S Su, S Perathoner, G Centi. Nanocarbons for the development of advanced catalysts. Chemical Reviews, 2013, 113(8): 5782–5816
https://doi.org/10.1021/cr300367d
30 X Li, J Yu, S Wageh, A A Al-Ghamdi, J Xie. Graphene in photocatalysis: a review. Small, 2016, 12(48): 6640–6696
https://doi.org/10.1002/smll.201600382
31 C Hu, L Dai. Doping of carbon materials for metal-free electrocatalysis. Advanced Materials, 2019, 31(7): 1804672
https://doi.org/10.1002/adma.201804672
32 C Li, G Wang. Dehydrogenation of light alkanes to mono-olefins. Chemical Society Reviews, 2021, 50(7): 4359–4381
https://doi.org/10.1039/D0CS00983K
33 R Watanabe, M Tsujioka, C Fukuhara. Performance of non-stoichiometric perovskite catalyst (AxCrO3-δ, A: La, Pr, Nd) for dehydrogenation of propane under steam condition. Catalysis Letters, 2016, 146(12): 2458–2467
https://doi.org/10.1007/s10562-016-1876-5
34 Y Dai, X Gao, Q Wang, X Wan, C Zhou, Y Yang. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane. Chemical Society Reviews, 2021, 50(9): 5590–5630
https://doi.org/10.1039/D0CS01260B
35 O O James, S Mandal, N Alele, B Chowdhury, S Maity. Lower alkanes dehydrogenation: strategies and reaction routes to corresponding alkenes. Fuel Processing Technology, 2016, 149: 239–255
https://doi.org/10.1016/j.fuproc.2016.04.016
36 D Iranshahi, P Salimi, Z Pourmand, S Saeidi, J J Klemeš. Utilising a radial flow, spherical packed-bed reactor for auto thermal steam reforming of methane to achieve a high capacity of H2 production. Chemical Engineering and Processing, 2017, 120: 258–267
https://doi.org/10.1016/j.cep.2017.07.020
37 T T Nguyen, M Aouine, J M M Millet. Optimizing the efficiency of MoVTeNbO catalysts for ethane oxidative dehydrogenation to ethylene. Catalysis Communications, 2012, 21: 22–26
https://doi.org/10.1016/j.catcom.2012.01.026
38 S T Rahman, J R Choi, J H Lee, S J Park. The role of CO2 as a mild oxidant in oxidation and dehydrogenation over catalysts: a review. Catalysts, 2020, 10(9): 1075
https://doi.org/10.3390/catal10091075
39 D Chen, A Holmen, Z Sui, X Zhou. Carbon mediated catalysis: a review on oxidative dehydrogenation. Chinese Journal of Catalysis, 2014, 35(6): 824–841
https://doi.org/10.1016/S1872-2067(14)60120-0
40 W Qi, D Su. Metal-free carbon catalysts for oxidative dehydrogenation reactions. ACS Catalysis, 2014, 4(9): 3212–3218
https://doi.org/10.1021/cs500723v
41 Z Zhao, G Ge, W Li, X Guo, G Wang. Modulating the microstructure and surface chemistry of carbocatalysts for oxidative and direct dehydrogenation: a review. Chinese Journal of Catalysis, 2016, 37(5): 644–670
https://doi.org/10.1016/S1872-2067(15)61065-8
42 X Sun, P Han, B Li, S Mao, T Liu, S Ali, Z Lian, D Su. Oxidative dehydrogenation reaction of short alkanes on nanostructured carbon catalysts: a computational account. Chemical Communications (Cambridge), 2018, 54(8): 864–875
https://doi.org/10.1039/C7CC06941C
43 T J Zhao, W Z Sun, X Y Gu, M Rønning, D Chen, Y C Dai, W K Yuan, A Holmen. Rational design of the carbon nanofiber catalysts for oxidative dehydrogenation of ethylbenzene. Applied Catalysis A, General, 2007, 323: 135–146
https://doi.org/10.1016/j.apcata.2007.02.008
44 J Zhang, X Liu, R Blume, A Zhang, R Schlögl, D S Su. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane. Science, 2008, 322(5898): 73–77
https://doi.org/10.1126/science.1161916
45 J J Delgado, X W Chen, B Frank, D S Su, R Schlögl. Activation processes of highly ordered carbon nanofibers in the oxidative dehydrogenation of ethylbenzene. Catalysis Today, 2012, 186(1): 93–98
https://doi.org/10.1016/j.cattod.2011.10.023
46 P Niebrzydowska, R Janus, P Kuśtrowski, S Jarczewski, A Wach, A M Silvestre-Albero, F Rodríguez-Reinoso. A simplified route to the synthesis of CMK-3 replica based on precipitation polycondensation of furfuryl alcohol in SBA-15 pore system. Carbon, 2013, 64: 252–261
https://doi.org/10.1016/j.carbon.2013.07.060
47 Z P Hu, D D Yang, Z Wang, Z Y Yuan. State-of-the-art catalysts for direct dehydrogenation of propane to propylene. Chinese Journal of Catalysis, 2019, 40(9): 1233–1254
https://doi.org/10.1016/S1872-2067(19)63360-7
48 R Huang, H Y Liu, B S Zhang, X Y Sun, C H Liang, D S Su, B N Zong, J F Rong. Phosphate-modified carbon nanotubes in the oxidative dehydrogenation of isopentanes. ChemSusChem, 2014, 7(12): 3476–3482
https://doi.org/10.1002/cssc.201402457
49 R Rao, M Yang, Q Ling, C Li, Q Zhang, H Yang, A Zhang. A novel route of enhancing oxidative catalytic activity: hydroxylation of MWCNTs induced by sectional defects. Catalysis Science & Technology, 2014, 4(3): 665–671
https://doi.org/10.1039/C3CY00582H
50 I Pelech, O S G P Soares, M F R Pereira, J L Figueiredo. Oxidative dehydrogenation of isobutane on carbon xerogel catalysts. Catalysis Today, 2015, 249: 176–183
https://doi.org/10.1016/j.cattod.2014.10.007
51 W Qi, W Liu, B Zhang, X Gu, X Guo, D Su. Oxidative dehydrierung an nanokohlenstoff: identifizierung und quantifizierung aktiver zentren durch chemische titration. Angewandte Chemie, 2013, 125(52): 14474–14478
https://doi.org/10.1002/ange.201306825
52 W Qi, W Liu, X Guo, R Schlögl, D Su. Oxidative dehydrogenation on nanocarbon: intrinsic catalytic activity and structure-function relationships. Angewandte Chemie International Edition, 2015, 54(46): 13682–13685
https://doi.org/10.1002/anie.201505818
53 B Li, D Su. The nucleophilicity of the oxygen functional groups on carbon materials: a DFT analysis. Chemistry, 2014, 20(26): 7890–7894
https://doi.org/10.1002/chem.201400347
54 S Mao, B Li, D Su. The first principles studies on the reaction pathway of the oxidative dehydrogenation of ethane on the undoped and doped carbon catalyst. Journal of Materials Chemistry A, 2014, 2(15): 5287–5294
https://doi.org/10.1039/c3ta14837h
55 R Wang, X Sun, B Zhang, X Sun, D Su. Hybrid nanocarbon as a catalyst for direct dehydrogenation of propane: formation of an active and selective core–shell sp2/sp3 nanocomposite structure. Chemistry, 2014, 20(21): 6324–6331
https://doi.org/10.1002/chem.201400018
56 V Schwartz, W Fu, Y T Tsai, H M III Meyer, A J Rondinone, J Chen, Z Wu, S H Overbury, C Liang. Oxygen-functionalized few-layer graphene sheets as active catalysts for oxidative dehydrogenation reactions. ChemSusChem, 2013, 6(5): 840–846
https://doi.org/10.1002/cssc.201200756
57 Y Li, Z Zhang, J Wang, C Ma, H Yang, Z Hao. Direct dehydrogenation of isobutane to isobutene over carbon catalysts. Chinese Journal of Catalysis, 2015, 36(8): 1214–1222
https://doi.org/10.1016/S1872-2067(15)60914-7
58 X Guo, W Qi, W Liu, P Yan, F Li, C Liang, D Su. Oxidative dehydrogenation on nanocarbon: revealing the catalytic mechanism using model catalysts. ACS Catalysis, 2017, 7(2): 1424–1427
https://doi.org/10.1021/acscatal.6b02936
59 J Zhang, D S Su, R Blume, R Schlögl, R Wang, X Yang, A Gajović. Surface chemistry and catalytic reactivity of a nanodiamond in the steam-free dehydrogenation of ethylbenzene. Angewandte Chemie International Edition, 2010, 49(46): 8640–8644
https://doi.org/10.1002/anie.201002869
60 Z P Hu, C Chen, J T Ren, Z Y Yuan. Direct dehydrogenation of propane to propylene on surface-oxidized multiwall carbon nanotubes. Applied Catalysis A: General, 2018, 559: 85–93
https://doi.org/10.1016/j.apcata.2018.04.017
61 R Rao, Q Ling, H Dong, X Dong, N Li, A Zhang. Effect of surface modification on multi-walled carbon nanotubes for catalytic oxidative dehydrogenation using CO2 as oxidant. Chemical Engineering Journal, 2016, 301: 115–122
https://doi.org/10.1016/j.cej.2016.04.109
62 W Shi, Y Peng, S A III Steiner, J Li, D L Plata. Carbon dioxide promotes dehydrogenation in the equimolar C2H2-CO2 reaction to synthesize carbon nanotubes. Small, 2018, 14(11): 1703482
https://doi.org/10.1002/smll.201703482
63 L R Parent, E Bakalis, M Proetto, Y Li, C Park, F Zerbetto, N C Gianneschi. Tackling the challenges of dynamic experiments using liquid-cell transmission electron microscopy. Accounts of Chemical Research, 2018, 51(1): 3–11
https://doi.org/10.1021/acs.accounts.7b00331
64 Y Zheng, X Huang, J Chen, K Wu, J Wang, X Zhang. A review of conductive carbon materials for 3D printing: materials, technologies, properties, and applications. Materials, 2021, 14(14): 3911
https://doi.org/10.3390/ma14143911
65 O A Knyazheva, O N Baklanova, A V Lavrenov. Catalytic dehydrogenation on carbon. Solid Fuel Chemistry, 2020, 54(6): 345–353
https://doi.org/10.3103/S0361521920060051
66 T Y Ma, L Liu, Z Y Yuan. Direct synthesis of ordered mesoporous carbons. Chemical Society Reviews, 2013, 42(9): 3977–4003
https://doi.org/10.1039/C2CS35301F
67 L Liu, Y P Zhu, M Su, Z Y Yuan. Metal-free carbonaceous materials as promising heterogeneous catalysts. ChemCatChem, 2015, 7(18): 2765–2787
https://doi.org/10.1002/cctc.201500350
68 L Liu, Q F Deng, B Agula, X Zhao, T Z Ren, Z Y Yuan. Ordered mesoporous carbon catalyst for dehydrogenation of propane to propylene. Chemical Communications, 2011, 47(29): 8334–8336
https://doi.org/10.1039/c1cc12806j
69 Z P Hu, J T Ren, D Yang, Z Wang, Z Y Yuan. Mesoporous carbons as metal-free catalysts for propane dehydrogenation: effect of the pore structure and surface property. Chinese Journal of Catalysis, 2019, 40(9): 1385–1394
https://doi.org/10.1016/S1872-2067(19)63334-6
70 L Liu, Q F Deng, B Agula, T Z Ren, Y P Liu, B Zhaorigetu, Z Y Yuan. Synthesis of ordered mesoporous carbon materials and their catalytic performance in dehydrogenation of propane to propylene. Catalysis Today, 2012, 186(1): 35–41
https://doi.org/10.1016/j.cattod.2011.08.022
71 L Liu, Q F Deng, Y P Liu, T Z Ren, Z Y Yuan. HNO3-activated mesoporous carbon catalyst for direct dehydrogenation of propane to propylene. Catalysis Communications, 2011, 16(1): 81–85
https://doi.org/10.1016/j.catcom.2011.09.005
72 W Zhang, G Zhao, T Muschin, A Bao. Nitrogen‐doped mesoporous carbon materials for oxidative dehydrogenation of propane. Surface and Interface Analysis, 2020, 53(1): 100–107
https://doi.org/10.1002/sia.6883
73 I Szewczyk, A Rokicińska, M Michalik, J Chen, A Jaworski, R Aleksis, A J Pell, N Hedin, A Slabon, P Kuśtrowski. Electrochemical denitrification and oxidative dehydrogenation of ethylbenzene over N-doped mesoporous carbon: atomic level understanding of catalytic activity by 15N NMR. Chemistry of Materials, 2020, 32(17): 7263–7273
https://doi.org/10.1021/acs.chemmater.0c01666
74 L Li, W Zhu, Y Liu, L Shi, H Liu, Y Ni, S Liu, H Zhou, Z Liu. Phosphorous-modified ordered mesoporous carbon for catalytic dehydrogenation of propane to propylene. RSC Advances, 2015, 5(69): 56304–56310
https://doi.org/10.1039/C5RA06619K
75 Y SongG LiuZ Y. Yuan N-, P-, and B-doped mesoporous carbons for direct dehydrogenation of propane. RSC Advances, 2016, 6(97): 94636–94642
76 V Schwartz, H Xie, H M III Meyer, S H Overbury, C Liang. Oxidative dehydrogenation of isobutane on phosphorous-modified graphitic mesoporous carbon. Carbon, 2011, 49(2): 659–668
https://doi.org/10.1016/j.carbon.2010.10.015
77 C Yin, J He, S Liu. Carbon nanotubes derived from industrial resin for the oxidative dehydrogenation of ethylbenzene. ChemistrySelect, 2020, 5(22): 6674–6677
https://doi.org/10.1002/slct.202001540
78 I Bychko, A Abakumov, A Nikolenko, O V Selyshchev, D R T Zahn, V O Khavrus, J Tang, P Strizhak. Ethane direct dehydrogenation over carbon nanotubes and reduced graphene oxide. Chemistry Select, 2021, 6(34): 8981–8984
https://doi.org/10.1002/slct.202102493
79 J Li, P Yu, J Xie, J Liu, Z Wang, C Wu, J Rong, H Liu, D Su. Improving the alkene selectivity of nanocarbon-catalyzed oxidative dehydrogenation of n-butane by refinement of oxygen species. ACS Catalysis, 2017, 7(10): 7305–7311
https://doi.org/10.1021/acscatal.7b02282
80 H Yuan, Z Sun, H Liu, B Zhang, C Chen, H Wang, Z Yang, J Zhang, F Wei, D S Su. Immobilizing carbon nanotubes on SiC foam as a monolith catalyst for oxidative dehydrogenation reactions. ChemCatChem, 2013, 5(7): 1713–1717
https://doi.org/10.1002/cctc.201200758
81 Y Zhang, J Wang, J Rong, J Diao, J Zhang, C Shi, H Liu, D Su. A facile and efficient method to fabricate highly selective nanocarbon catalysts for oxidative dehydrogenation. ChemSusChem, 2017, 10(2): 353–358
https://doi.org/10.1002/cssc.201601299
82 Y Zhang, R Huang, Z Feng, H Liu, C Shi, J Rong, B Zong, D Su. Phosphate modified carbon nanotubes for oxidative dehydrogenation of n-butane. Journal of Energy Chemistry, 2016, 25(3): 349–353
https://doi.org/10.1016/j.jechem.2016.02.010
83 B Frank, J Zhang, R Blume, R Schlogl, D S Su. Heteroatoms increase the selectivity in oxidative dehydrogenation reactions on nanocarbons. Angewandte Chemie International Edition, 2009, 48(37): 6913–6917
https://doi.org/10.1002/anie.200901826
84 W Liu, C Wang, F Herold, B J M Etzold, D Su, W Qi. Oxidative dehydrogenation on nanocarbon: effect of heteroatom doping. Applied Catalysis B: Environmental, 2019, 258: 117982
https://doi.org/10.1016/j.apcatb.2019.117982
85 Z Zhao, Y Dai, G Ge, X Guo, G Wang. Increased active sites and their accessibility of a N-doped carbon nanotube carbocatalyst with remarkably enhanced catalytic performance in direct dehydrogenation of ethylbenzene. RSC Advances, 2015, 5(65): 53095–53099
https://doi.org/10.1039/C5RA08754F
86 Z Zhao, Y Dai, G Ge, G Wang. Explosive decomposition of a melamine-cyanuric acid supramolecular assembly for fabricating defect-rich nitrogen-doped carbon nanotubes with significantly promoted catalysis. Chemistry, 2015, 21(22): 8004–8009
https://doi.org/10.1002/chem.201500316
87 Q Wang, H Wang, Y Zhang, G Wen, H Liu, D Su. Syntheses and catalytic applications of the high-N-content, the cup-stacking and the macroscopic nitrogen doped carbon nanotubes. Journal of Materials Science and Technology, 2017, 33(8): 843–849
https://doi.org/10.1016/j.jmst.2017.01.011
88 T Cao, X Dai, W Liu, Y Fu, W Qi. Carbon nanotubes modified by multi-heteroatoms polymer for oxidative dehydrogenation of propane: improvement of propene selectivity and oxidation resistance. Carbon, 2022, 189: 199–209
https://doi.org/10.1016/j.carbon.2021.12.069
89 J Li, P Yu, J Xie, Y Zhang, H Liu, D Su, J Rong. Grignard reagent reduced nanocarbon material in oxidative dehydrogenation of n-butane. Journal of Catalysis, 2018, 360: 51–56
https://doi.org/10.1016/j.jcat.2018.01.021
90 G Hong, S Diao, A L Antaris, H Dai. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chemical Reviews, 2015, 115(19): 10816–10906
https://doi.org/10.1021/acs.chemrev.5b00008
91 S Kumar, M Nehra, D Kedia, N Dilbaghi, K Tankeshwar, K H Kim. Nanodiamonds: emerging face of future nanotechnology. Carbon, 2019, 143: 678–699
https://doi.org/10.1016/j.carbon.2018.11.060
92 A V Shvidchenko, E D Eidelman, A Y Vul, N M Kuznetsov, D Y Stolyarova, S I Belousov, S N Chvalun. Colloids of detonation nanodiamond particles for advanced applications. Advances in Colloid and Interface Science, 2019, 268: 64–81
https://doi.org/10.1016/j.cis.2019.03.008
93 Q Zhou, G Ge, Z Guo, Y Liu, Z Zhao. Poly(imidazolium-methylene)-assisted grinding strategy to prepare nanocarbon-embedded network monoliths for carbocatalysis. ACS Catalysis, 2020, 10(24): 14604–14614
https://doi.org/10.1021/acscatal.0c03797
94 V N Mochalin, O Shenderova, D Ho, Y Gogotsi. The properties and applications of nanodiamonds. Nature Nanotechnology, 2011, 7(1): 11–23
https://doi.org/10.1038/nnano.2011.209
95 C S Wood, M M Stevens. Improving the image of nanoparticles. Nature, 2016, 539(7630): 505–506
https://doi.org/10.1038/nature20478
96 H Ba, S Podila, Y Liu, X Mu, J M Nhut, V Papaefthimiou, S Zafeiratos, P Granger, C Pham-Huu. Nanodiamond decorated few-layer graphene composite as an efficient metal-free dehydrogenation catalyst for styrene production. Catalysis Today, 2015, 249: 167–175
https://doi.org/10.1016/j.cattod.2014.10.029
97 J Diao, H Liu, Z Feng, Y Zhang, T Chen, C Miao, W Yang, D S Su. Highly dispersed nanodiamonds supported on few-layer graphene as robust metal-free catalysts for ethylbenzene dehydrogenation reaction. Catalysis Science & Technology, 2015, 5(11): 4950–4953
https://doi.org/10.1039/C5CY01213A
98 T T Thanh, H Ba, L Truong-Phuoc, J M Nhut, O Ersen, D Begin, I Janowska, D L Nguyen, P Granger, C Pham-Huu. A few-layer graphene-graphene oxide composite containing nanodiamonds as metal-free catalysts. Journal of Materials Chemistry A, 2014, 2(29): 11349–11357
https://doi.org/10.1039/C4TA01307G
99 L Roldán, A M Benito, E García-Bordejé. Self-assembled graphene aerogel and nanodiamond hybrids as high performance catalysts in oxidative propane dehydrogenation. Journal of Materials Chemistry A, 2015, 3(48): 24379–24388
https://doi.org/10.1039/C5TA07404E
100 H Ba, Y Liu, X Mu, W H Doh, J M Nhut, P Granger, C Pham-Huu. Macroscopic nanodiamonds/β-SiC composite as metal-free catalysts for steam-free dehydrogenation of ethylbenzene to styrene. Applied Catalysis A: General, 2015, 499: 217–226
https://doi.org/10.1016/j.apcata.2015.04.022
101 G GeX WeiH GuoZ Zhao. Assembly‐in‐foam approach to construct nanodiamond/carbon nanotube hybrid monolithic carbocatalysts for direct dehydrogenation of ethylbenzene to styrene. European Journal of Inorganic Chemistry, 2022, 2022(26).
102 C Chen, Z P Hu, S M Zhang, Z Y Yuan. Advance in the catalysts of direct dehydrogenation of propane to propylene. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(3): 639–652
103 X Liu, B Frank, W Zhang, T P Cotter, R Schlogl, D S Su. Carbon-catalyzed oxidative dehydrogenation of n-butane: selective site formation during sp3-to-sp2 lattice rearrangement. Angewandte Chemie International Edition, 2011, 50(14): 3318–3322
https://doi.org/10.1002/anie.201006717
104 X Sun, Y Ding, B Zhang, R Huang, D Chen, D S Su. Insight into the enhanced selectivity of phosphate-modified annealed nanodiamond for oxidative dehydrogenation reactions. ACS Catalysis, 2015, 5(4): 2436–2444
https://doi.org/10.1021/acscatal.5b00042
105 X Sun, Y Ding, B Zhang, R Huang, D S Su. New insights into the oxidative dehydrogenation of propane on borate-modified nanodiamond. Chemical Communications, 2015, 51(44): 9145–9148
https://doi.org/10.1039/C5CC00588D
106 Y Liu, H Ba, J Luo, K H Wu, J M Nhut, D S Su, C Pham-Huu. Structure-performance relationship of nanodiamonds@nitrogen-doped mesoporous carbon in the direct dehydrogenation of ethylbenzene. Catalysis Today, 2018, 301: 38–47
https://doi.org/10.1016/j.cattod.2017.05.010
107 Q Zhou, X Guo, C Song, Z Zhao. Defect-enriched N,O-codoped nanodiamond/carbon nanotube catalysts for styrene production via dehydrogenation of ethylbenzene. ACS Applied Nano Materials, 2019, 2(4): 2152–2159
https://doi.org/10.1021/acsanm.9b00124
108 G Ge, X Wei, H Guo, Z Zhao. An efficient nanodiamond-based monolithic foam catalyst prepared by a facile thermal impregnation strategy for direct dehydrogenation of ethylbenzene to styrene. Chinese Chemical Letters, 2023, 34(5): 107808
https://doi.org/10.1016/j.cclet.2022.107808
109 G Ge, X Guo, C Song, Z Zhao. A mutually isolated nanodiamond/porous carbon nitride nanosheet hybrid with enriched active sites for promoted catalysis in styrene production. Catalysis Science & Technology, 2020, 10(4): 1048–1055
https://doi.org/10.1039/C9CY02217A
110 Z Luo, Q Wan, Z Yu, S Lin, Z Xie, X Wang. Photo-fluorination of nanodiamonds catalyzing oxidative dehydrogenation reaction of ethylbenzene. Nature Communications, 2021, 12(1): 6542
https://doi.org/10.1038/s41467-021-26891-8
111 W Zhao, D W He, Y S Wang, X Du, H Xin. Synthesis and electrochemical properties of three-dimensional graphene/polyaniline composites for supercapacitor electrode materials. Chinese Physics B, 2015, 24(4): 047204
https://doi.org/10.1088/1674-1056/24/4/047204
112 Y Gao, D Ma, C Wang, J Guan, X Bao. Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chemical Communications, 2011, 47(8): 2432–2434
https://doi.org/10.1039/C0CC04420B
113 Y Gao, G Hu, J Zhong, Z Shi, Y Zhu, D S Su, J Wang, X Bao, D Ma. Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation. Angewandte Chemie International Edition, 2013, 52(7): 2109–2113
https://doi.org/10.1002/anie.201207918
114 D D Eslek-Koyuncu. Microwave-assisted non-oxidative ethane dehydrogenation over different carbon materials. Diamond and Related Materials, 2020, 110: 108130
https://doi.org/10.1016/j.diamond.2020.108130
115 S Tang, Z Cao. Site-dependent catalytic activity of graphene oxides towards oxidative dehydrogenation of propane. Physical Chemistry Chemical Physics, 2012, 14(48): 16558–16565
https://doi.org/10.1039/c2cp41343d
116 G K Dathar, Y T Tsai, K Gierszal, Y Xu, C Liang, A J Rondinone, S H Overbury, V Schwartz. Identifying active functionalities on few-layered graphene catalysts for oxidative dehydrogenation of isobutane. ChemSusChem, 2014, 7(2): 483–491
https://doi.org/10.1002/cssc.201301006
117 A Brooks, S J Jenkins, S Wrabetz, J McGregor, M Sacchi. The dehydrogenation of butane on metal-free graphene. Journal of Colloid and Interface Science, 2022, 619: 377–387
https://doi.org/10.1016/j.jcis.2022.03.128
118 C Chen, M L Sun, Z P Hu, Y P Liu, S M Zhang, Z Y Yuan. Nature of active phase of VOx catalysts supported on SiBeta for direct dehydrogenation of propane to propylene. Chinese Journal of Catalysis, 2020, 41(2): 276–285
https://doi.org/10.1016/S1872-2067(19)63444-3
119 Z Heidarinejad, M H Dehghani, M Heidari, G Javedan, I Ali, M Sillanpää. Methods for preparation and activation of activated carbon: a review. Environmental Chemistry Letters, 2020, 18(2): 393–415
https://doi.org/10.1007/s10311-019-00955-0
120 W Ao, J Fu, X Mao, Q Kang, C Ran, Y Liu, H Zhang, Z Gao, J Li, G Liu, J Dai. Microwave assisted preparation of activated carbon from biomass: a review. Renewable & Sustainable Energy Reviews, 2018, 92: 958–979
https://doi.org/10.1016/j.rser.2018.04.051
121 K MacDermid-Watts, R Pradhan, A Dutta. Catalytic hydrothermal carbonization treatment of biomass for enhanced activated carbon: a review. Waste and Biomass Valorization, 2020, 12(5): 2171–2186
https://doi.org/10.1007/s12649-020-01134-x
122 R Pietrzak, T J Bandosz. Activated carbons modified with sewage sludge derived phase and their application in the process of NO2 removal. Carbon, 2007, 45(13): 2537–2546
https://doi.org/10.1016/j.carbon.2007.08.030
123 N Karatepe, İ Orbak, R Yavuz, A Özyuğuran. Sulfur dioxide adsorption by activated carbons having different textural and chemical properties. Fuel, 2008, 87(15–16): 3207–3215
https://doi.org/10.1016/j.fuel.2008.06.002
124 H L Mudoga, H Yucel, N S Kincal. Decolorization of sugar syrups using commercial and sugar beet pulp based activated carbons. Bioresource Technology, 2008, 99(9): 3528–3533
https://doi.org/10.1016/j.biortech.2007.07.058
125 J Cui, L Zhang. Metallurgical recovery of metals from electronic waste: a review. Journal of Hazardous Materials, 2008, 158(2–3): 228–256
https://doi.org/10.1016/j.jhazmat.2008.02.001
126 B Tsyntsarski, I Stoycheva, T Tsoncheva, I Genova, M Dimitrov, B Petrova, D Paneva, Z Cherkezova-Zheleva, T Budinova, H Kolev, A Gomis-Berenguer, C O Ania, I Mitov, N Petrov. Activated carbons from waste biomass and low rank coals as catalyst supports for hydrogen production by methanol decomposition. Fuel Processing Technology, 2015, 137: 139–147
https://doi.org/10.1016/j.fuproc.2015.04.016
127 I Matos, M Bernardo, I Fonseca. Porous carbon: a versatile material for catalysis. Catalysis Today, 2017, 285: 194–203
https://doi.org/10.1016/j.cattod.2017.01.039
128 S Ma, H Li, G Zhang, T Iqbal, K Li, Q Lu. Catalytic fast pyrolysis of walnut shell for alkylphenols production with nitrogen-doped activated carbon catalyst. Frontiers of Environmental Science & Engineering, 2020, 15(2): 25
https://doi.org/10.1007/s11783-020-1317-y
129 K Ö Köse, M K Aydınol. Development of activated carbon/bimetallic transition metal phosphide composite materials for electrochemical capacitors and oxygen evolution reaction catalysis. International Journal of Energy Research, 2022, 46(15): 22078–22088
https://doi.org/10.1002/er.8710
130 Z P Hu, L F Zhang, Z Wang, Z Y Yuan. Bean dregs-derived hierarchical porous carbons as metal-free catalysts for efficient dehydrogenation of propane to propylene. Journal of Chemical Technology and Biotechnology, 2018, 93(12): 3410–3417
https://doi.org/10.1002/jctb.5698
131 Z Cheng, Y Wang, D Jin, J Liu, W Wang, Y Gu, W Ni, Z Feng, M Wu. Petroleum pitch-derived porous carbon as a metal-free catalyst for direct propane dehydrogenation to propylene. Catalysis Today, 2023, 410: 164–174
https://doi.org/10.1016/j.cattod.2022.06.022
132 Z P Hu, H Zhao, C Chen, Z Y Yuan. Castanea mollissima shell-derived porous carbons as metal-free catalysts for highly efficient dehydrogenation of propane to propylene. Catalysis Today, 2018, 316: 214–222
https://doi.org/10.1016/j.cattod.2018.01.010
133 N Martin-Sanchez, O S G P Soares, M F R Pereira, M J Sanchez-Montero, J L Figueiredo, F Salvador. Oxidative dehydrogenation of isobutane catalyzed by an activated carbon fiber cloth exposed to supercritical fluids. Applied Catalysis A: General, 2015, 502: 71–77
https://doi.org/10.1016/j.apcata.2015.05.037
134 S Büchele, G Zichittella, S Kanatakis, S Mitchell, Ramírez J Pérez. Impact of heteroatom speciation on the activity and stability of carbon-based catalysts for propane dehydrogenation. ChemCatChem, 2021, 13(11): 2599–2608
https://doi.org/10.1002/cctc.202100208
135 Jesús Díaz Velásquez J de, L M C Suárez, J L Figueiredo. Oxidative dehydrogenation of isobutane over activated carbon catalysts. Applied Catalysis A: General, 2006, 311: 51–57
https://doi.org/10.1016/j.apcata.2006.06.001
136 Y Zhang, J Diao, J Rong, J Zhang, J Xie, F Huang, Z Jia, H Liu, D S Su. An efficient metal-free catalyst for oxidative dehydrogenation reaction: activated carbon decorated with few-layer graphene. ChemSusChem, 2018, 11(3): 536–541
https://doi.org/10.1002/cssc.201702178
137 Q Ling, R Wu, Z H Wang, H W Liang, Z Lei, Z G Zhao, Q P Ke, X C Liu, P Cui. Promotion role of B doping in N,B co-doped humic acids-based porous carbon for enhancing catalytic performance of oxidative dehydrogenation of propane using CO2. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135(4): 1785–1802
https://doi.org/10.1007/s11144-022-02251-5
138 J Delgado, D Su, G Rebmann, N Keller, A Gajovic, R Schlogl. Immobilized carbon nanofibers as industrial catalyst for ODH reactions. Journal of Catalysis, 2006, 244(1): 126–129
https://doi.org/10.1016/j.jcat.2006.08.007
139 O Klepel, S Utgenannt, C Vormelchert, M König, A Meißner, F Hansen, J H Bölte, T Sieber, R Heinemann, M Bron, A Rokicińska, S Jarczewski, P Kuśtrowski. Redox catalysts based on amorphous porous carbons. Microporous and Mesoporous Materials, 2021, 323: 111257
https://doi.org/10.1016/j.micromeso.2021.111257
140 X Cao, X Wu, Y Liu, H Geng, S Yu, S Liu. Boron and nitrogen co-doped porous carbon nanospheres for oxidative dehydrogenation of ethane to ethylene. Carbon, 2022, 197: 120–128
https://doi.org/10.1016/j.carbon.2022.06.028
141 H Ba, L Truong Phuoc, Y Liu, C Duong Viet, J M Nhut, L Nguyen Dinh, P Granger, C Pham Huu. Hierarchical carbon nanofibers/graphene composite containing nanodiamonds for direct dehydrogenation of ethylbenzene. Carbon, 2016, 96: 1060–1069
https://doi.org/10.1016/j.carbon.2015.10.044
142 Y Liu, J Luo, C Helleu, M Behr, H Ba, T Romero, A Hébraud, G Schlatter, O Ersen, D S Su, C Pham-Huu. Hierarchical porous carbon fibers/carbon nanofibers monolith from electrospinning/CVD processes as a high effective surface area support platform. Journal of Materials Chemistry A, 2017, 5(5): 2151–2162
https://doi.org/10.1039/C6TA09414G
143 X Dai, F Li, X Zhang, T Cao, X Lu, W Qi. Oxidative dehydrogenation on nanocarbon: polydopamine hollow nanospheres as novel highly efficient catalysts. FlatChem, 2021, 25: 100220
https://doi.org/10.1016/j.flatc.2020.100220
144 J Wang, L Wang, J Diao, X Xie, G Lin, Q Jia, H Liu, G Sui. Fabrication of three dimensional SiC@C hybrid for efficient direct dehydrogenation of ethylbenzene to styrene. Journal of Materials Science and Technology, 2022, 103: 209–214
https://doi.org/10.1016/j.jmst.2021.06.044
145 P Janus, R Janus, B Dudek, M Drozdek, A Silvestre-Albero, F Rodríguez-Reinoso, P Kuśtrowski. On mechanism of formation of SBA-15/furfuryl alcohol-derived mesoporous carbon replicas and its relationship with catalytic activity in oxidative dehydrogenation of ethylbenzene. Microporous and Mesoporous Materials, 2020, 299: 110118
https://doi.org/10.1016/j.micromeso.2020.110118
146 B Frank, M Morassutto, R Schomäcker, R Schlögl, D S Su. Oxidative dehydrogenation of ethane over multiwalled carbon nanotubes. ChemCatChem, 2010, 2(6): 644–648
https://doi.org/10.1002/cctc.201000035
147 Z Wang, B Yang, Y Wang, Y Zhao, X M Cao, P Hu. Identifying the trend of reactivity for sp2 materials: an electron delocalization model from first principles calculations. Physical Chemistry Chemical Physics, 2013, 15(24): 9498–9502
https://doi.org/10.1039/c3cp51375k
148 H N Pham, J J Sattler, B M Weckhuysen, A K Datye. Role of Sn in the regeneration of Pt/γ-Al2O3 light alkane dehydrogenation catalysts. ACS Catalysis, 2016, 6(4): 2257–2264
https://doi.org/10.1021/acscatal.5b02917
149 L Liu, M Lopez Haro, C W Lopes, S Rojas Buzo, P Concepcion, R Manzorro, L Simonelli, A Sattler, P Serna, J J Calvino, A Corma. Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites. Nature Catalysis, 2020, 3(8): 628–638
https://doi.org/10.1038/s41929-020-0472-7
150 Y Zhu, X Kong, J Yin, R You, B Zhang, H Zheng, X Wen, Y Zhu, Y W Li. Covalent-bonding to irreducible SiO2 leads to high-loading and atomically dispersed metal catalysts. Journal of Catalysis, 2017, 353: 315–324
https://doi.org/10.1016/j.jcat.2017.07.030
151 L M Ombaka, P Ndungu, V O Nyamori. Usage of carbon nanotubes as platinum and nickel catalyst support in dehydrogenation reactions. Catalysis Today, 2013, 217: 65–75
https://doi.org/10.1016/j.cattod.2013.05.014
152 X Chen, M Peng, D Xiao, H Liu, D Ma. Fully exposed metal clusters: fabrication and application in alkane dehydrogenation. ACS Catalysis, 2022, 12(20): 12720–12743
https://doi.org/10.1021/acscatal.2c04008
153 P Yin, X Luo, Y Ma, S Q Chu, S Chen, X Zheng, J Lu, X J Wu, H W Liang. Sulfur stabilizing metal nanoclusters on carbon at high temperatures. Nature Communications, 2021, 12(1): 3135
https://doi.org/10.1038/s41467-021-23426-z
154 F Huang, Y Deng, Y Chen, X Cai, M Peng, Z Jia, J Xie, D Xiao, X Wen, N Wang, Z Jiang, H Liu, D Ma. Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene. Nature Communications, 2019, 10(1): 4431
https://doi.org/10.1038/s41467-019-12460-7
155 X H Yu, J L Yi, R L Zhang, F Y Wang, L Liu. Hollow carbon spheres and their noble metal-free hybrids in catalysis. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1380–1407
https://doi.org/10.1007/s11705-021-2097-z
156 H Liu, J Wang, Z Feng, Y Lin, L Zhang, D Su. Facile synthesis of Au nanoparticles embedded in an ultrathin hollow graphene nanoshell with robust catalytic performance. Small, 2015, 10(38): 5059–5064
https://doi.org/10.1002/smll.201500635
157 B Agula, M Sun, S Liang, Y Bao, M Jia, F Xu, Z Y Yuan. Oxidative dehydrogenation of propane over nanostructured mesoporous VOx/CexZr1-xO2 catalysts. Advanced Materials Science and Technology, 2022, 4(2): 049385
https://doi.org/10.37155/2717-526X-0402-5
158 T Cao, X Dai, F Li, W Liu, Y Bai, Y Fu, W Qi. Efficient non-precious metal catalyst for propane dehydrogenation: atomically dispersed cobalt-nitrogen compounds on carbon nanotubes. ChemCatChem, 2021, 13(13): 3067–3073
https://doi.org/10.1002/cctc.202100410
159 T Cao, X Dai, Y Fu, W Qi. Coordination polymer-derived non-precious metal catalyst for propane dehydrogenation: highly dispersed zinc anchored on N-doped carbon. Applied Surface Science, 2023, 607: 155055
https://doi.org/10.1016/j.apsusc.2022.155055
160 H Wang, S Chai, P Li, Y Yang, X Wang. Non-oxidative Propane dehydrogenation over vanadium doped graphitic carbon nitride catalysts. Catalysis Letters, 2023, 153(4): 1120–1129
https://doi.org/10.1007/s10562-022-04018-y
161 A Ballarini, S Bocanegra, J Mendez, S de Miguel, P Zgolicz. Application of novel catalysts supported on carbonaceous materials in the direct non-oxidative dehydrogenation of n-butane to olefins. Inorganic Chemistry Communications, 2022, 142: 109638
https://doi.org/10.1016/j.inoche.2022.109638
162 S A Chernyak, A L Kustov, D N Stolbov, M A Tedeeva, O Y Isaikina, K I Maslakov, N V Usol’tseva, S V Savilov. Chromium catalysts supported on carbon nanotubes and graphene nanoflakes for CO2-assisted oxidative dehydrogenation of propane. Applied Surface Science, 2022, 578: 152099
https://doi.org/10.1016/j.apsusc.2021.152099
163 N Kong, X Fan, F Liu, L Wang, H Lin, Y Li, S T Lee. Single vanadium atoms anchored on graphitic carbon nitride as a high-performance catalyst for non-oxidative propane dehydrogenation. ACS Nano, 2020, 14(5): 5772–5779
https://doi.org/10.1021/acsnano.0c00659
164 X Y Sun, J H Xue, Y Ren, X Y Li, L J Zhou, B Li, Z Zhao. Catalytic property and stability of subnanometer Pt cluster on carbon nanotube in direct propane dehydrogenation. Chinese Journal of Chemistry, 2021, 39(3): 661–665
https://doi.org/10.1002/cjoc.202000415
165 R Obunai, K Tamura, I Ogino, S R Mukai, W Ueda. Mo-V-O nanocrystals synthesized in the confined space of a mesoporous carbon. Applied Catalysis A: General, 2021, 624: 118294
https://doi.org/10.1016/j.apcata.2021.118294
166 S L Xu, S C Shen, Z Y Wei, S Zhao, L J Zuo, M X Chen, L Wang, Y W Ding, P Chen, S Q Chu, Y Lin, K Qian, H W Liang. A library of carbon-supported ultrasmall bimetallic nanoparticles. Nano Research, 2020, 13(10): 2735–2740
https://doi.org/10.1007/s12274-020-2920-8
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed