Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (11): 1698-1706   https://doi.org/10.1007/s11705-023-2334-8
  本期目录
NiFeRuOx nanosheets on Ni foam as an electrocatalyst for efficient overall alkaline seawater splitting
Yu Liu1, Lin Chen1, Yong Wang1, Yuan Dong1, Liang Zhou1, Susana I. Córdoba de Torresi2, Kenneth I. Ozoemena1,3, Xiao-Yu Yang1,3()
1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & International School of Materials Science and Engineering & School of Materials Science and Engineering & Shenzhen Research Institute & Laoshan Laboratory, Wuhan University of Technology, Wuhan 430070, China
2. Instituto de Química, Universidade de São Paulo, 05508-080 São Paulo, Brazil
3. Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
 全文: PDF(5847 KB)   HTML
Abstract

The electrocatalyst NiFeRuOx/NF, comprised of NiFeRuOx nanosheets grown on Ni foam, was synthesized using a hydrothermal process followed by thermal annealing. NiFeRuOx/NF displays high electrocatalytic activity and stability for overall alkaline seawater splitting: 98 mV@ 10 mA∙cm−2 in hydrogen evolution reaction, 318 mV@ 50 mA∙cm−2 in oxygen evolution reaction, and a cell voltage of 1.53 V@ 10 mA∙cm−2, as well as 20 h of durability. A solar-driven system containing such a bifunctional NiFeRuOx/NF has an almost 100% Faradaic efficiency. The NiFeRuOx coating around Ni foam is an anti-corrosion layer and also a critical factor for enhancement of bifunctional performances.

Key wordsNiFeRuOx nanosheets    Ni foam    electrocatalysis    overall seawater splitting    solar-driven system
收稿日期: 2023-03-13      出版日期: 2023-10-25
Corresponding Author(s): Xiao-Yu Yang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(11): 1698-1706.
Yu Liu, Lin Chen, Yong Wang, Yuan Dong, Liang Zhou, Susana I. Córdoba de Torresi, Kenneth I. Ozoemena, Xiao-Yu Yang. NiFeRuOx nanosheets on Ni foam as an electrocatalyst for efficient overall alkaline seawater splitting. Front. Chem. Sci. Eng., 2023, 17(11): 1698-1706.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-023-2334-8
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I11/1698
Fig.1  
Fig.2  
Fig.3  
Fig.4  
1 S Dresp, F Dionigi, M Klingenhof, P Strasser. Direct electrolytic splitting of seawater: opportunities and challenges. ACS Energy Letters, 2019, 4(4): 933–942
https://doi.org/10.1021/acsenergylett.9b00220
2 Y Kuang, M J Kenney, Y T Meng, W H Hung, Y J Liu, J E Huang, R Prasanna, P S Li, Y P Li, L Wang, M C Lin, M D McGehee, X Sun, H Dai. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14): 6624–6629
https://doi.org/10.1073/pnas.1900556116
3 X H Wu, S Zhou, Z Y Wang, J S Liu, W Pei, P J Yang, J J Zhao, J S Qiu. Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater. Advanced Energy Materials, 2019, 9(34): 1901333
https://doi.org/10.1002/aenm.201901333
4 T Hisatomi, K Domen. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nature Catalysis, 2019, 2(5): 387–399
https://doi.org/10.1038/s41929-019-0242-6
5 C X Xiang, A Z Weber, S Ardo, A Berger, Y K Chen, R Coridan, K T Fountaine, S Haussener, S Hu, R Liu, N S Lewis, M A Modestino, M M Shaner, M R Singh, J C Stevens, K Sun, K Walczak. Modeling, simulation, and implementation of solar-driven water-splitting devices. Angewandte Chemie International Edition, 2016, 55(42): 12974–12988
https://doi.org/10.1002/anie.201510463
6 F S Li, R Xu, C M Nie, X J Wu, P L Zhang, L L Duan, L C Sun. Dye-sensitized LaFeO3 photocathode for solar-driven H2 generation. Chemical Communications, 2019, 55(86): 12940–12943
https://doi.org/10.1039/C9CC06781G
7 X Long, J K Li, S Xiao, K Y Yan, Z L Wang, H N Chen, S H Yang. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angewandte Chemie International Edition, 2014, 53(29): 7584–7588
https://doi.org/10.1002/anie.201402822
8 W J Zhou, X J Wu, X H Cao, X Huang, C L Tan, J Tian, H Liu, J Y Wang, H Zhang. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy & Environmental Science, 2013, 6(10): 2921–2924
https://doi.org/10.1039/c3ee41572d
9 J Jiang, J P Liu, W W Zhou, J H Zhu, X T Huang, X Y Qi, H Zhang, T Yu. CNT/Ni hybrid nanostructured arrays: synthesis and application as high-performance electrode materials for pseudocapacitors. Energy & Environmental Science, 2011, 4(12): 5000–5007
https://doi.org/10.1039/c1ee02293h
10 S H Hsu, J W Miao, L P Zhang, J J Gao, H M Wang, H B Tao, S F Hung, A Vasileff, S Z Qiao, B Liu. An earth-abundant catalyst-based seawater photoelectrolysis system with 17.9% solar-to-hydrogen efficiency. Advanced Materials, 2018, 30(18): 1707261
https://doi.org/10.1002/adma.201707261
11 L Yu, Q Zhu, S W Song, B McElhenny, D Z Wang, C Z Wu, Z J Qin, J M Bao, Y Yu, S Chen, Z Ren. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nature Communications, 2019, 10(1): 5106
https://doi.org/10.1038/s41467-019-13092-7
12 Y X Xiao, J Ying, G Tian, X Yang, Y X Zhang, J B Chen, Y Wang, M D Symes, K I Ozoemena, J S Wu, X Y Yang. Hierarchically fractal PtPdCu sponges and their directed mass- and electron-transfer effects. Nano Letters, 2021, 21(18): 7870–7878
https://doi.org/10.1021/acs.nanolett.1c02268
13 H Y Wang, C C Weng, J T Ren, Z Y Yuan. An overview and recent advances in electrocatalysts for direct seawater splitting. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1408–1426
https://doi.org/10.1007/s11705-021-2102-6
14 R G Hu, F Y Liu, H Q Qiu, H Miao, Q Wang, H C Zhang, F Wang, J L Yuan. High-property anode catalyst compositing Co-based perovskite and NiFe-layered double hydroxide for alkaline seawater splitting. Processes, 2022, 10(4): 668
https://doi.org/10.3390/pr10040668
15 S S Jiang, Y Liu, H Qiu, C Su, Z P Shao. High selectivity electrocatalysts for oxygen evolution reaction and anti-chlorine corrosion strategies in seawater splitting. Catalysts, 2022, 12(3): 261
https://doi.org/10.3390/catal12030261
16 Y C Li, X Y Wu, J P Wang, H X Wei, S Y Zhang, S L Zhu, Z Y Li, S L Wu, H Jiang, Y Q Liang. Sandwich structured Ni3S2-MoS2-Ni3S2@Ni foam electrode as a stable bifunctional electrocatalyst for highly sustained overall seawater splitting. Electrochimica Acta, 2021, 390: 138833
https://doi.org/10.1016/j.electacta.2021.138833
17 F Fang, Y Wang, L W Shen, G Tian, D Cahen, Y X Xiao, J B Chen, S M Wu, L He, K I Ozoemena, M D Symes, X Y Yang. Interfacial carbon makes nano-particulate RuO2 an efficient, stable, pH-universal catalyst for splitting of seawater. Small, 2022, 18(42): 2203778
https://doi.org/10.1002/smll.202203778
18 S Higgins. Regarding ruthenium. Nature Chemistry, 2010, 2(12): 1100
https://doi.org/10.1038/nchem.917
19 J Yu, Q J He, G M Yang, W Zhou, Z P Shao, M Ni. Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catalysis, 2019, 9(11): 9973–10011
https://doi.org/10.1021/acscatal.9b02457
20 M P Jia, L Shen, G Tian, S I C de Torresi, M D Symes, X Y Yang. Superior electrocatalysis delivered by a directional electron transfer cascade in hierarchical CoNi/Ru@C. Chemistry, an Asian Journal, 2022, 17(17): e202200449
https://doi.org/10.1002/asia.202200449
21 G B Chen, T Wang, J Zhang, P Liu, H J Sun, X D Zhuang, M W Chen, X L Feng. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Advanced Materials, 2018, 30(10): 1706279
https://doi.org/10.1002/adma.201706279
22 X Y Zhang, Z Z Wu, D Z Wang. Oxygen-incorporated defect-rich MoP for highly efficient hydrogen production in both acidic and alkaline media. Electrochimica Acta, 2018, 281: 540–548
https://doi.org/10.1016/j.electacta.2018.05.176
23 J F Xie, J J Zhang, S Li, F Grote, X D Zhang, H Zhang, R X Wang, Y Lei, B C Pan, Y Xie. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. Journal of the American Chemical Society, 2013, 135(47): 17881–17888
https://doi.org/10.1021/ja408329q
24 M M Han, G Yan. Prussian blue analogue-derived porous bimetallic oxides Fe3O4-NiO/NF as urea oxidation electrocatalysis. Chemical Papers, 2020, 74(12): 4473–4480
https://doi.org/10.1007/s11696-020-01260-9
25 Y X Zhu, M Y Jiang, M Liu, L K Wu, G Y Hou, Y P Tang. An Fe-V@NiO heterostructure electrocatalyst towards the oxygen evolution reaction. Nanoscale, 2020, 12(6): 3803–3811
https://doi.org/10.1039/C9NR08749D
26 X D Yan, L H Tian, K X Li, S Atkins, H F Zhao, J Murowchick, L Liu, X B Chen. FeNi3/NiFeOx nanohybrids as highly efficient bifunctional electrocatalysts for overall water splitting. Advanced Materials Interfaces, 2016, 3(22): 1600368
https://doi.org/10.1002/admi.201600368
27 A N Mansour. Characterization of NiO by XPS. Surface Science Spectra, 1994, 3(3): 231–238
https://doi.org/10.1116/1.1247751
28 C W Liang, P C Zou, A Nairan, Y Q Zhang, J X Liu, K W Liu, S Y Hu, F Y Kang, H J Fan, C Yang. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy & Environmental Science, 2020, 13(1): 86–95
https://doi.org/10.1039/C9EE02388G
29 X Y Lu, C A Zhao. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nature Communications, 2015, 6(1): 6616
https://doi.org/10.1038/ncomms7616
30 K Y Zhu, X F Zhu, W S Yang. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angewandte Chemie International Edition, 2019, 58(5): 1252–1265
https://doi.org/10.1002/anie.201802923
31 X Y Gao, J Chen, X Z Sun, B F Wu, B Li, Z C Ning, J Li, N Wang. Ru/RuO2 nanoparticle composites with N-doped reduced graphene oxide as electrocatalysts for hydrogen and oxygen evolution. ACS Applied Nano Materials, 2020, 3(12): 12269–12277
https://doi.org/10.1021/acsanm.0c02739
32 L W Shen, Y Wang, J B Chen, G Tian, K Y Xiong, C Janiak, D Cahen, X Y Yang. A RuCoBO nanocomposite for highly efficient and stable electrocatalytic seawater splitting. Nano Letters, 2023, 23(3): 1052–1060
https://doi.org/10.1021/acs.nanolett.2c04668
33 Z F Wang, Q Q Shen, J B Xue, R F Guan, Q Li, X G Liu, H S Jia, Y C Wu. 3D hierarchically porous NiO/NF electrode for the removal of chromium(VI) from wastewater by electrocoagulation. Chemical Engineering Journal, 2020, 402: 126151
https://doi.org/10.1016/j.cej.2020.126151
34 G F Dong, M Fang, J S Zhang, R J Wei, L Shu, X G Liang, S P Yip, F Y Wang, L H Guan, Z J Zheng, J C Ho. In situ formation of highly active Ni-Fe based oxygen-evolving electrocatalysts via simple reactive dip-coating. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(22): 11009–11015
https://doi.org/10.1039/C7TA01134B
35 X Y Tian, P C Zhao, W C Sheng. Hydrogen evolution and oxidation: mechanistic studies and material advances. Advanced Materials, 2019, 31(31): 1808066
https://doi.org/10.1002/adma.201808066
36 Y Liu, H Z Yu, Y Wang, G Tian, L Zhou, S I C de Torresi, K I Ozoemena, X Y Yang. Hierarchically fractal Co with highly exposed active facets and directed electron-transfer effect. Chemical Communications, 2022, 58(49): 6882–6885
https://doi.org/10.1039/D2CC02141B
37 Y Q Yang, K Zhang, H L Lin, X Li, H C Chan, L C Yang, Q S Gao. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catalysis, 2017, 7(4): 2357–2366
https://doi.org/10.1021/acscatal.6b03192
38 J T Ren, L Chen, H Y Wang, W W Tian, X Zhang, T Y Ma, Z Zhou, Z Y Yuan. Inducing electronic asymmetricity on Ru clusters to boost key reaction steps in basic hydrogen evolution. Applied Catalysis B: Environmental, 2023, 327: 122466
https://doi.org/10.1016/j.apcatb.2023.122466
39 R Subbaraman, D Tripkovic, D Strmcnik, K C Chang, M Uchimura, A P Paulikas, V Stamenkovic, N M Markovic. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science, 2011, 334(6060): 1256–1260
https://doi.org/10.1126/science.1211934
40 J T Ren, L Wang, L Chen, X L Song, Q H Kong, H Y Wang, Z Y Yuan. Interface metal oxides regulating electronic state around nickel species for efficient alkaline hydrogen electrocatalysis. Small, 2023, 19(5): 2206196
https://doi.org/10.1002/smll.202206196
41 D Cao, H X Xu, D J Cheng. Construction of defect-rich RhCu nanotubes with highly active Rh3Cu1 alloy phase for overall water splitting in all pH values. Advanced Energy Materials, 2020, 10(9): 1903038
https://doi.org/10.1002/aenm.201903038
42 N Tian, Z Y Zhou, S G Sun, Y Ding, Z L Wang. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316(5825): 732–735
https://doi.org/10.1126/science.1140484
43 J T Ren, G G Yuan, C C Weng, L Chen, Z Y Yuan. Uniquely integrated Fe-doped Ni(OH)2 nanosheets for highly efficient oxygen and hydrogen evolution reactions. Nanoscale, 2018, 10(22): 10620–10628
https://doi.org/10.1039/C8NR01655K
44 J T Ren, Y L Yao, Z Y Yuan. Fabrication strategies of porous precious-metal-free bifunctional electrocatalysts for overall water splitting: recent advances. Green Energy & Environment, 2021, 6(5): 620–643
https://doi.org/10.1016/j.gee.2020.11.023
45 J Y Li, M Yan, X M Zhou, Z Q Huang, Z M Xia, C R Chang, Y Y Ma, Y Q Qu. Mechanistic insights on ternary Ni2‒xCoxP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting. Advanced Functional Materials, 2016, 26(37): 6785–6796
https://doi.org/10.1002/adfm.201601420
46 R Samanta, P Panda, R Mishra, S Barman. IrO2-modified RuO2 nanowires/nitrogen-doped carbon composite for effective overall water splitting in all pH. Energy & Fuels, 2022, 36(2): 1015–1026
https://doi.org/10.1021/acs.energyfuels.1c04082
47 Y M Shi, B Zhang. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 2016, 45(6): 1529–1541
https://doi.org/10.1039/C5CS00434A
48 S C Huang, Y Y Meng, S M He, A Goswami, Q L Wu, J H Li, S F Tong, T Asefa, M M Wu. N-, O-, and S-tridoped carbon-encapsulated Co9S8 nanomaterials: efficient bifunctional electrocatalysts for overall water splitting. Advanced Functional Materials, 2017, 27(17): 1606585
https://doi.org/10.1002/adfm.201606585
49 J T Ren, Y S Wang, L Chen, L J Gao, W W Tian, Z Y Yuan. Binary FeNi phosphides dispersed on N,P-doped carbon nanosheets for highly efficient overall water splitting and rechargeable Zn-air batteries. Chemical Engineering Journal, 2020, 389: 124408
https://doi.org/10.1016/j.cej.2020.124408
50 L Trotochaud, S L Young, J K Ranney, S W Boettcher. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. Journal of the American Chemical Society, 2014, 136(18): 6744–6753
https://doi.org/10.1021/ja502379c
[1] FCE-23014-OF-LY_suppl_1 Download
[2] FCE-23014-OF-LY_suppl_2 Video  
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed