Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (10): 1460-1469   https://doi.org/10.1007/s11705-023-2335-7
  本期目录
Dual cross-linked MXene/cellulose nanofiber/nickel alginate film with improved mechanical properties and electromagnetic interference shielding performance
Pengcheng Deng, Shiyi Feng, Canhui Lu, Zehang Zhou()
State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
 全文: PDF(6420 KB)   HTML
Abstract

Electromagnetic interference pollution has raised urgent demand for the development of electromagnetic interference shielding materials. Transition metal carbides (MXenes) with excellent conductivity have shown great potential in electromagnetic interference (EMI) shielding materials, while the poor mechanical strength, flexibility, and structural stability greatly limit their further applications. Here, cellulose nanofibers and sodium alginate are incorporated with MXene nanosheets as flexible matrices to construct strong and flexible mussel-like layered MXene/Cellulose nanofiber/Sodium Alginate composite films, and nickel ions are further introduced to induce metal coordination crosslinking of alginate units. Benefited from the dual-crosslinked network structure of hydrogen bonding and metal coordination, the tensile strength, Young’s modulus, and toughness of the MXene/cellulose nanofiber/nickel alginate composite film are significantly increased. After subsequent reduction by ascorbic acid, excess nickel ions are reduced to nickel nanoparticles and uniformly dispersed within the highly conductive composite film, which further improved its hysteresis loss effect toward the incident electromagnetic waves. Consequently, the MXene/cellulose nanofiber/nickel alginate-Ni composite film presents a considerably enhanced electromagnetic interference shielding effectiveness (47.17 dB) at a very low thickness of 29 μm. This study proposes a feasible dual-crosslinking and subsequent reduction strategy to synergistically enhance the mechanical properties and electromagnetic interference shielding performance of MXene-based composite materials.

Key wordsTi3C2Tx MXene    double crosslinking    mechanical properties    EMI shielding performance
收稿日期: 2023-03-20      出版日期: 2023-10-07
Corresponding Author(s): Zehang Zhou   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(10): 1460-1469.
Pengcheng Deng, Shiyi Feng, Canhui Lu, Zehang Zhou. Dual cross-linked MXene/cellulose nanofiber/nickel alginate film with improved mechanical properties and electromagnetic interference shielding performance. Front. Chem. Sci. Eng., 2023, 17(10): 1460-1469.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-023-2335-7
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I10/1460
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
1 P Song, Z Ma, H Qiu, Y Ru, J Gu. High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Letters, 2022, 14(1): 51
https://doi.org/10.1007/s40820-022-00798-5
2 D Jiang, V Murugadoss, Y Wang, J Lin, T Ding, Z Wang, Q Shao, C Wang, H Liu, N Lu, R Wei, A Subramania, Z Guo. Electromagnetic interference shielding polymers and nanocomposites—a review. Polymer Reviews (Philadelphia, Pa.), 2019, 59(2): 280–337
https://doi.org/10.1080/15583724.2018.1546737
3 L Zhang, Y Chen, Q Liu, W Deng, Y Yue, F Meng. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding. Journal of Materials Science and Technology, 2022, 111: 57–65
https://doi.org/10.1016/j.jmst.2021.08.090
4 J Dong, S Luo, S Ning, G Yang, D Pan, Y Ji, Y Feng, F Su, C Liu. MXene-coated wrinkled fabrics for stretchable and multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. ACS Applied Materials & Interfaces, 2021, 13(50): 60478–60488
https://doi.org/10.1021/acsami.1c19890
5 Z Zhou, Q Song, B Huang, S Feng, C Lu. Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano, 2021, 15(7): 12405–12417
https://doi.org/10.1021/acsnano.1c04526
6 Y Zhang, J Kong, J Gu. New generation electromagnetic materials: harvesting instead of dissipation solo. Science Bulletin, 2022, 67(14): 1413–1415
https://doi.org/10.1016/j.scib.2022.06.017
7 J Li, J Chen, H Wang, X Xiao. All-MXene cotton-based supercapacitor-powered human body thermal management system. ChemElectroChem, 2021, 8(4): 648–655
https://doi.org/10.1002/celc.202001536
8 B Anasori, M R Lukatskaya, Y Gogotsi. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews. Materials, 2017, 2(2): 16098
https://doi.org/10.1038/natrevmats.2016.98
9 Y Z Zhang, J K El-Demellawi, Q Jiang, G Ge, H Liang, K Lee, X Dong, H N Alshareef. MXene hydrogels: fundamentals and applications. Chemical Society Reviews, 2020, 49(20): 7229–7251
https://doi.org/10.1039/D0CS00022A
10 Y Zhang, M Gong, P Wan. MXene hydrogel for wearable electronics. Matter, 2021, 4(8): 2655–2658
https://doi.org/10.1016/j.matt.2021.06.041
11 L Sun, J Sun, S Zhai, T Dong, H Yang, Y Tan, X Fang, C Liu, W Q Deng, H Wu. Homologous MXene-derived electrodes for potassium-ion full batteries. Advanced Energy Materials, 2022, 12(23): 2200113
https://doi.org/10.1002/aenm.202200113
12 W Kong, J Deng, L Li. Recent advances in noble metal MXene-based catalysts for electrocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(28): 14674–14691
https://doi.org/10.1039/D2TA00613H
13 Z Wang, Z Zhou, S Wang, X Yao, X Han, W Cao, J Pu. An anti-freezing and strong wood-derived hydrogel for high-performance electronic skin and wearable sensing. Composites. Part B, Engineering, 2022, 239: 109954
https://doi.org/10.1016/j.compositesb.2022.109954
14 M Shi, M Shen, X Guo, X Jin, Y Cao, Y Yang, W Wang, J Wang. Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano, 2021, 15(7): 11396–11405
https://doi.org/10.1021/acsnano.1c00903
15 F Shahzad, M Alhabeb, C B Hatter, B Anasori, S Man Hong, C M Koo, Y Gogotsi. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353(6304): 1137–1140
https://doi.org/10.1126/science.aag2421
16 Y Liu, N Wu, S Zheng, Y Yang, B Li, W Liu, J Liu, Z Zeng. From MXene trash to ultraflexible composites for multifunctional electromagnetic interference shielding. ACS Applied Materials & Interfaces, 2022, 14(44): 50120–50128
https://doi.org/10.1021/acsami.2c13849
17 Y Zhang, Y Yan, H Qiu, Z Ma, K Ruan, J Gu. A mini-review of MXene porous films: preparation, mechanism and application. Journal of Materials Science and Technology, 2022, 103: 42–49
https://doi.org/10.1016/j.jmst.2021.08.001
18 Y Zhang, Z Ma, K Ruan, J Gu. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Research, 2022, 15(6): 5601–5609
https://doi.org/10.1007/s12274-022-4358-7
19 G S Lee, T Yun, H Kim, I H Kim, J Choi, S H Lee, H J Lee, H S Hwang, J G Kim, D Kim, H M Lee, C M Koo, S O Kim. Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability. ACS Nano, 2020, 14(9): 11722–11732
https://doi.org/10.1021/acsnano.0c04411
20 Z Liu, Y Zhang, H B Zhang, Y Dai, J Liu, X Li, Z Z Yu. Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2020, 8(5): 1673–1678
https://doi.org/10.1039/C9TC06304H
21 Y Zhang, K Ruan, K Zhou, J Gu. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Advanced Materials, 2023, 35(16): 2211642
https://doi.org/10.1002/adma.202211642
22 C Z Qi, X Wu, J Liu, X J Luo, H B Zhang, Z Z Yu. Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and Joule heating. Journal of Materials Science and Technology, 2023, 135: 213–220
https://doi.org/10.1016/j.jmst.2022.06.046
23 C Jiao, Z Deng, P Min, J Lai, Q Gou, R Gao, Z Z Yu, H B Zhang. Photothermal healable, stretchable, and conductive MXene composite films for efficient electromagnetic interference shielding. Carbon, 2022, 198: 179–187
https://doi.org/10.1016/j.carbon.2022.07.017
24 Y G ZhangL Z HuangQ YuanM G Ma. Flexible, ultrathin, and multifunctional polypyrrole/cellulose nanofiber composite films with outstanding photothermal effect, excellent mechanical and electrochemical properties. Frontiers of Chemical Science and Engineering, 2022, online, https://doi.org/10.1007/s11705-022-2251-2
25 N Wu, Z Zeng, N Kummer, D Han, R Zenobi, G Nyström. Ultrafine cellulose nanofiber-assisted physical and chemical cross-linking of MXene sheets for electromagnetic interference shielding. Small Methods, 2021, 5(12): 2100889
https://doi.org/10.1002/smtd.202100889
26 W T Cao, F F Chen, Y J Zhu, Y G Zhang, Y Y Jiang, M G Ma, F Chen. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano, 2018, 12(5): 4583–4593
https://doi.org/10.1021/acsnano.8b00997
27 S Feng, Z Zhan, Y Yi, Z Zhou, C Lu. Facile fabrication of MXene/cellulose fiber composite film with homogeneous and aligned structure via wet co-milling for enhancing electromagnetic interference shielding performance. Composites. Part A, Applied Science and Manufacturing, 2022, 157: 106907
https://doi.org/10.1016/j.compositesa.2022.106907
28 S Chen, N Yue, M Cui, A Penkova, R Huang, W Qi, Z He, R Su. Integrating direct reuse and extraction recovery of TEMPO for production of cellulose nanofibrils. Carbohydrate Polymers, 2022, 294: 119803
https://doi.org/10.1016/j.carbpol.2022.119803
29 L Van Hai, L Zhai, H C Kim, J W Kim, E S Choi, J Kim. Cellulose nanofibers isolated by TEMPO-oxidation and aqueous counter collision methods. Carbohydrate Polymers, 2018, 191: 65–70
https://doi.org/10.1016/j.carbpol.2018.03.008
30 P Sambyal, A Iqbal, J Hong, H Kim, M K Kim, S M Hong, M Han, Y Gogotsi, C M Koo. Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Applied Materials & Interfaces, 2019, 11(41): 38046–38054
https://doi.org/10.1021/acsami.9b12550
31 P Saini, V Choudhary, B P Singh, R B Mathur, S K Dhawan. Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4–18.0 GHz range. Synthetic Metals, 2011, 161(15–16): 1522–1526
https://doi.org/10.1016/j.synthmet.2011.04.033
32 L Q Xu, W J Yang, K G Neoh, E T Kang, G D Fu. Dopamine-induced reduction and functionalization of graphene oxide nanosheets. Macromolecules, 2010, 43(20): 8336–8339
https://doi.org/10.1021/ma101526k
33 S Wan, X Li, Y Wang, Y Chen, X Xie, R Yang, A P Tomsia, L Jiang, Q Cheng. Strong sequentially bridged MXene sheets. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(44): 27154–27161
https://doi.org/10.1073/pnas.2009432117
34 I Besbes, S Alila, S Boufi. Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydrate Polymers, 2011, 84(3): 975–983
https://doi.org/10.1016/j.carbpol.2010.12.052
35 M Ghidiu, M R Lukatskaya, M Q Zhao, Y Gogotsi, M W Barsoum. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516(7529): 78–81
https://doi.org/10.1038/nature13970
36 H Chen, Y Wen, Y Qi, Q Zhao, L Qu, C Li. Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength. Advanced Functional Materials, 2020, 30(5): 1906996
https://doi.org/10.1002/adfm.201906996
37 H P Ren, Y H Song, Q Q Hao, Z W Liu, W Wang, J G Chen, J Jiang, Z T Liu, Z Hao, J Lu. Highly active and stable Ni–SiO2 prepared by a complex-decomposition method for pressurized carbon dioxide reforming of methane. Industrial & Engineering Chemistry Research, 2014, 53(49): 19077–19086
https://doi.org/10.1021/ie502837d
38 J Ashok, S Kawi. Nickel-iron alloy supported over iron-alumina catalysts for steam reforming of biomass tar model compound. ACS Catalysis, 2014, 4(1): 289–301
https://doi.org/10.1021/cs400621p
39 S Luo, T Xiang, J Dong, F Su, Y Ji, C Liu, Y Feng. A double crosslinking MXene/cellulose nanofiber layered film for improving mechanical properties and stable electromagnetic interference shielding performance. Journal of Materials Science and Technology, 2022, 129: 127–134
https://doi.org/10.1016/j.jmst.2022.04.044
40 Y Xue, X Xia, B Yu, X Luo, N Cai, S Long, F Yu. A green and facile method for the preparation of a pH-responsive alginate nanogel for subcellular delivery of doxorubicin. RSC Advances, 2015, 5(90): 73416–73423
https://doi.org/10.1039/C5RA13313K
41 M Han, Y Gogotsi. Perspectives for electromagnetic radiation protection with MXenes. Carbon, 2023, 204: 17–25
https://doi.org/10.1016/j.carbon.2022.12.036
42 K Qian, H Wu, J Fang, Y Yang, M Miao, S Cao, L Shi, X Feng. Yarn-ball-shaped CNF/MWCNT microspheres intercalating Ti3C2Tx MXene for electromagnetic interference shielding films. Carbohydrate Polymers, 2021, 254: 117325
https://doi.org/10.1016/j.carbpol.2020.117325
43 J Zhou, S Thaiboonrod, J Fang, S Cao, M Miao, X Feng. In-situ growth of polypyrrole on aramid nanofibers for electromagnetic interference shielding films with high stability. Nano Research, 2022, 15(9): 8536–8545
https://doi.org/10.1007/s12274-022-4628-4
44 Q Song, B Chen, Z Zhou, C Lu. Flexible, stretchable and magnetic Fe3O4@Ti3C2Tx/elastomer with supramolecular interfacial crosslinking for enhancing mechanical and electromagnetic interference shielding performance. Science China Materials, 2021, 64(6): 1437–1448
https://doi.org/10.1007/s40843-020-1539-2
45 Z Zhan, Q Song, Z Zhou, C Lu. Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2019, 7(32): 9820–9829
https://doi.org/10.1039/C9TC03309B
46 B Zhou, Z Zhang, Y Li, G Han, Y Feng, B Wang, D Zhang, J Ma, C Liu. Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and Mxene layers. ACS Applied Materials & Interfaces, 2020, 12(4): 4895–4905
https://doi.org/10.1021/acsami.9b19768
47 H Xu, X Yin, X Li, M Li, S Liang, L Zhang, L Cheng. Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Applied Materials & Interfaces, 2019, 11(10): 10198–10207
https://doi.org/10.1021/acsami.8b21671
48 H Zhang, X Sun, Z Heng, Y Chen, H Zou, M Liang. Robust and flexible cellulose nanofiber/multiwalled carbon nanotube film for high-performance electromagnetic interference shielding. Industrial & Engineering Chemistry Research, 2018, 57(50): 17152–17160
https://doi.org/10.1021/acs.iecr.8b04573
49 Y Li, Y Chen, Y Liu, C Zhang, H Qi. Holocellulose nanofibrils assisted exfoliation to prepare MXene-based composite film with excellent electromagnetic interference shielding performance. Carbohydrate Polymers, 2021, 274: 118652
https://doi.org/10.1016/j.carbpol.2021.118652
[1] FCE-23015-OF-DP_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed