Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2023, Vol. 17 Issue (10): 1593-1607   https://doi.org/10.1007/s11705-023-2348-2
  本期目录
Hierarchically porous cellulose nanofibril aerogel decorated with polypyrrole and nickel-cobalt layered double hydroxide for high-performance nonenzymatic glucose sensors
Xuanze Li1, Wenyan Tian1, Caichao Wan1(), Sulai Liu2, Xinyi Liu1, Jiahui Su1, Huayun Chai1, Yiqiang Wu1()
1. College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
2. Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, Changsha 410000, China
 全文: PDF(6891 KB)   HTML
Abstract

With increasing emphasis on green chemistry, biomass-based materials have attracted increased attention regarding the development of highly efficient functional materials. Herein, a new pore-rich cellulose nanofibril aerogel is utilized as a substrate to integrate highly conductive polypyrrole and active nanoflower-like nickel-cobalt layered double hydroxide through in situ chemical polymerization and electrodeposition. This ternary composite can act as an effective self-supported electrode for the electrocatalytic oxidation of glucose. With the synergistic effect of three heterogeneous components, the electrode achieves outstanding glucose sensing performance, including a high sensitivity (851.4 µA·mmol−1·L·cm−2), a short response time (2.2 s), a wide linear range (two stages: 0.001−8.145 and 8.145−35.500 mmol·L−1), strong immunity to interference, outstanding intraelectrode and interelectrode reproducibility, a favorable toxicity resistance (Cl), and a good long-term stability (maintaining 86.0% of the original value after 30 d). These data are superior to those of some traditional glucose sensors using nonbiomass substrates. When determining the blood glucose level of a human serum, this electrode realizes a high recovery rate of 97.07%–98.89%, validating the potential for high-performance blood glucose sensing.

Key wordscellulose nanofibril    aerogel    nickel-cobalt layered double hydroxide    polypyrrole    nonenzymatic glucose sensor
收稿日期: 2023-05-04      出版日期: 2023-10-07
Corresponding Author(s): Caichao Wan,Yiqiang Wu   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2023, 17(10): 1593-1607.
Xuanze Li, Wenyan Tian, Caichao Wan, Sulai Liu, Xinyi Liu, Jiahui Su, Huayun Chai, Yiqiang Wu. Hierarchically porous cellulose nanofibril aerogel decorated with polypyrrole and nickel-cobalt layered double hydroxide for high-performance nonenzymatic glucose sensors. Front. Chem. Sci. Eng., 2023, 17(10): 1593-1607.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-023-2348-2
https://academic.hep.com.cn/fcse/CN/Y2023/V17/I10/1593
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Electrode materialsMaximum sensitivity/(μA·mmol?1·L·cm?2)Maximum linear range/(mmol·L?1)Response time/sRef.
MXene/NiCo-LDH/GCE64.750.002–4.0963[29]
NiFe2O4-NiCo-LDH@rGO111.860.035–4.525[44]
GQDs/CoNiAl-LDH48.7170.01–14.0[45]
CoNi-LDH/GCE242.90.01–2.0[46]
NiCo-LDH/AgNW/GCE71.420.002–6[47]
NiCo-LDH@PPy/GCE292.840.005–8.2[48]
NiCo-LDH/graphene nanoribbons/GCE3440.005–0.80< 5[49]
CoNi-LDH/PPy@CNF aerogel-15851.40.001?8.1452.2This work
8.145?35.500
Tab.1  
Fig.8  
SamplesGlucose concentrations/(mmol·L?1) a)Glucose concentrations/(mmol·L?1) b)Recovery/%
1 7.51 7.3497.74
211.2311.0198.04
315.3315.1698.89
Tab.2  
1 L Gilbert, J Gross, S Lanzi, D Y Quansah, J Puder, A Horsch. How diet, physical activity and psychosocial well-being interact in women with gestational diabetes mellitus: an integrative review. BMC Pregnancy and Childbirth, 2019, 19(1): 1–16
https://doi.org/10.1186/s12884-019-2185-y
2 L C Jr Clark, C Lyons. Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences, 1962, 102(1): 29–45
https://doi.org/10.1111/j.1749-6632.1962.tb13623.x
3 X Li, Q Zhu, S Tong, W Wang, W Song. Self-assembled microstructure of carbon nanotubes for enzymeless glucose sensor. Sensors and Actuators. B, Chemical, 2009, 136(2): 444–450
https://doi.org/10.1016/j.snb.2008.10.051
4 M Wei, Y Qiao, H Zhao, J Liang, T Li, Y Luo, S Lu, X Shi, W Lu, X Sun. Electrochemical non-enzymatic glucose sensors: recent progress and perspectives. Chemical Communications (Cambridge), 2020, 56(93): 14553–14569
https://doi.org/10.1039/D0CC05650B
5 Y Qiao, Q Liu, S Lu, G Chen, S Gao, W Lu, X Sun. High-performance non-enzymatic glucose detection: using a conductive Ni-MOF as an electrocatalyst. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2020, 8(25): 5411–5415
https://doi.org/10.1039/D0TB00131G
6 R Wang, X Liu, Y Zhao, J Qin, H Xu, L Dong, S Gao, L Zhong. Novel electrochemical non-enzymatic glucose sensor based on 3D Au@Pt core-shell nanoparticles decorated graphene oxide/multi-walled carbon nanotubes composite. Microchemical Journal, 2022, 174: 107061
https://doi.org/10.1016/j.microc.2021.107061
7 T C Wan, F Tso, C Mark, S Masato, T Agnès, T Hiroshi. Electrocatalytic activity enhancement of Au NPs-TiO2 electrode via a facile redistribution process towards the non-enzymatic glucose sensors. Sensors and Actuators. B, Chemical, 2020, 319: 128279
https://doi.org/10.1016/j.snb.2020.128279
8 Z X Li, J L Zhang, J Wang, F Luo, B Qiu, L Guo, Z Y Lin. A novel enzyme-responded controlled release electrochemical biosensor for hyaluronidase activity detection. Journal of Analysis and Testing, 2021, 5(1): 69–75
https://doi.org/10.1007/s41664-021-00158-z
9 X Bo, J Bai, L Yang, L Guo. The nanocomposite of Pt-Pd nanoparticles/onion-like mesoporous carbon vesicle for nonenzymatic amperometric sensing of glucose. Sensors and Actuators. B, Chemical, 2011, 157(2): 662–668
https://doi.org/10.1016/j.snb.2011.05.050
10 S Nantaphol, T Watanabe, N Nomura, W Siangproh, O Chailapakul, Y Einaga. Bimetallic Pt-Au nanocatalysts electrochemically deposited on boron-doped diamond electrodes for nonenzymatic glucose detection. Biosensors & Bioelectronics, 2017, 98: 76–82
https://doi.org/10.1016/j.bios.2017.06.034
11 C Ye, L Zhang, L Yue, B Deng, Y Cao, Q Liu, Y Luo, S Lu, B Zheng, X Sun. A NiCo LDH nanosheet array on graphite felt: an efficient 3D electrocatalyst for the oxygen evolution reaction in alkaline media. Inorganic Chemistry Frontiers, 2021, 8(12): 3162–3166
https://doi.org/10.1039/D1QI00428J
12 Y Cao, T Wang, X Li, L Zhang, Y Luo, F Zhang, A M Asiri, J Hu, Q Liu, X Sun. A hierarchical CuO@NiCo layered double hydroxide core-shell nanoarray as an efficient electrocatalyst for the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2021, 8(12): 3049–3054
https://doi.org/10.1039/D1QI00124H
13 X Liu, F He, L Bai, X Cao, C Liu, W Lu. A two-dimensional G-CoP/N, P-co-doped carbon nanowire electrode for the simultaneous determination of hydroquinone and catechol in domestic wastewater. Analytica Chimica Acta, 2022, 1210: 339871
https://doi.org/10.1016/j.aca.2022.339871
14 A Bisht, A Mishra, H Bisht, R M Tripathi. Nanomaterial based biosensors for detection of viruses including SARS-CoV-2: a review. Journal of Analysis and Testing, 2021, 5(4): 327–340
https://doi.org/10.1007/s41664-021-00200-0
15 M Asif, A Aziz, M Azeem, Z Wang, G Ashraf, F Xiao, X Chen, H Liu. A review on electrochemical biosensing platform based on layered double hydroxides for small molecule biomarkers determination. Advances in Colloid and Interface Science, 2018, 262: 21–38
https://doi.org/10.1016/j.cis.2018.11.001
16 Y Wei, Y Hui, X Lu, C Liu, Y Zhang, Y Fan, W Chen. One-pot preparation of NiMn layered double hydroxide-MOF material for highly sensitive electrochemical sensing of glucose. Journal of Electroanalytical Chemistry (Lausanne, Switzerland), 2023, 933: 117276
https://doi.org/10.1016/j.jelechem.2023.117276
17 K M Amin, F Muench, U Kunz, W Ensinger. 3D NiCo-layered double hydroxide@Ni nanotube networks as integrated free-standing electrodes for nonenzymatic glucose sensing. Journal of Colloid and Interface Science, 2021, 591: 384–395
https://doi.org/10.1016/j.jcis.2021.02.023
18 W Tian, C Wan, K T Yong, S Liu, S Wei, C Zhang, X Liu, J Su, W Cheng, Y Wu. Learning from nature: constructing a smart bionic structure for high-performance glucose sensing in human serums. Advanced Functional Materials, 2022, 32(1): 2106958
https://doi.org/10.1002/adfm.202106958
19 H Wang, Y Li, D Deng, M Li, C Zhang, L Luo. NiO-coated CuCo2O4 nanoneedle arrays on carbon cloth for non-enzymatic glucose sensing. ACS Applied Nano Materials, 2012, 4(9): 9821–9830
https://doi.org/10.1021/acsanm.1c02228
20 Y Zhang, Z Shang, M Shen, S P Chowdhury, A Ignaszak, S Sun, Y Ni. Cellulose nanofibers/reduced graphene oxide/polypyrrole aerogel electrodes for high-capacitance flexible all-solid-state supercapacitors. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11175–11185
https://doi.org/10.1021/acssuschemeng.9b00321
21 J Zhou, Y L Hsieh. Conductive polymer protonated nanocellulose aerogels for tunable and linearly responsive strain sensors. ACS Applied Materials & Interfaces, 2018, 10(33): 27902–27910
https://doi.org/10.1021/acsami.8b10239
22 R Chen, X Li, Q Huang, H Ling, Y Yang, X Wang. Self-assembled porous biomass carbon/RGO/nanocellulose hybrid aerogels for self-supporting supercapacitor electrodes. Chemical Engineering Journal, 2021, 412: 128755
https://doi.org/10.1016/j.cej.2021.128755
23 M Song, J Jiang, J Zhu, Y Zheng, Z Yu, X Ren, F Jiang. Lightweight, strong, and form-stable cellulose nanofibrils phase change aerogel with high latent heat. Carbohydrate Polymers, 2021, 272: 118460
https://doi.org/10.1016/j.carbpol.2021.118460
24 C Zhang, H Wang, Y Gao, C Wan. Cellulose-derived carbon aerogels: a novel porous platform for supercapacitor electrodes. Materials & Design, 2022, 219: 110778
https://doi.org/10.1016/j.matdes.2022.110778
25 R H Faradilla, G Lee, A Rawal, T Hutomo, M H Stenzel, J Arcot. Nanocellulose characteristics from the inner and outer layer of banana pseudo-stem prepared by TEMPO-mediated oxidation. Cellulose (London, England), 2016, 23(5): 3023–3037
https://doi.org/10.1007/s10570-016-1025-8
26 Q Wang, D O’Hare. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical Reviews, 2012, 112(7): 4124–4155
https://doi.org/10.1021/cr200434v
27 Y Li, Z Xia, Q Gong, X Liu, Y Yang, C Chen, C Qian. Green synthesis of free standing cellulose/graphene oxide/polyaniline aerogel electrode for high-performance flexible all-solid-state supercapacitors. Nanomaterials (Basel, Switzerland), 2020, 10(8): 1546
https://doi.org/10.3390/nano10081546
28 M Li, L Fang, H Zhou, F Wu, Y Lu, H Luo, Y Zhang, B Hu. Three-dimensional porous MXene/NiCo-LDH composite for high performance non-enzymatic glucose sensor. Applied Surface Science, 2019, 495: 143554
https://doi.org/10.1016/j.apsusc.2019.143554
29 J Xu, Y Tan, X Du, Z Du, X Cheng, H Wang. Cellulose nanofibril/polypyrrole hybrid aerogel supported form-stable phase change composites with superior energy storage density and improved photothermal conversion efficiency. Cellulose (London, England), 2020, 27(16): 9547–9558
https://doi.org/10.1007/s10570-020-03437-7
30 X Zhang, H Li, W Zhang, Z Huang, C P Tsui, C Lu, C He, Y Yang. In-situ growth of polypyrrole onto bamboo cellulose-derived compressible carbon aerogels for high performance supercapacitors. Electrochimica Acta, 2019, 301: 55–62
https://doi.org/10.1016/j.electacta.2019.01.166
31 J P Jyothibasu, D W Kuo, R H Lee. Flexible and freestanding electrodes based on polypyrrole/carbon nanotube/cellulose composites for supercapacitor application. Cellulose (London, England), 2019, 26(7): 4495–4513
https://doi.org/10.1007/s10570-019-02376-2
32 T Wang, W Zhang, S Yang, X Liu, L Zhang. Preparation of foam-like network structure of polypyrrole/graphene composite particles based on cellulose nanofibrils as electrode material. ACS Omega, 2020, 5(10): 4778–4786
https://doi.org/10.1021/acsomega.9b03006
33 K Sing. The use of nitrogen adsorption for the characterisation of porous materials. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2001, 187: 3–9
https://doi.org/10.1016/S0927-7757(01)00612-4
34 J Su, L Zhang, C Wan, Z Deng, S Wei, K T Yong, Y Wu. Dual-network self-healing hydrogels composed of graphene oxide@nanocellulose and poly(AAm-co-AAc). Carbohydrate Polymers, 2022, 296: 119905
https://doi.org/10.1016/j.carbpol.2022.119905
35 Y Chen, X Zhang, C Xu, H Xu. The fabrication of asymmetry supercapacitor based on MWCNTs/MnO2/PPy composites. Electrochimica Acta, 2019, 309: 424–431
https://doi.org/10.1016/j.electacta.2019.04.072
36 Y Mao, J Xie, H Liu, W Hu. Hierarchical core-shell Ag@Ni(OH)2@ PPy nanowire electrode for ultrahigh energy density asymmetric supercapacitor. Chemical Engineering Journal, 2021, 405: 126984
https://doi.org/10.1016/j.cej.2020.126984
37 H W Nesbitt, D Legrand, G M Bancroft. Interpretation of Ni 2p XPS spectra of Ni conductors and Ni insulators. Physics and Chemistry of Minerals, 2000, 27(5): 357–366
https://doi.org/10.1007/s002690050265
38 K J Babu, K T Raj, D J Yoo, S M Phang, K G Gnana. Electrodeposited nickel cobalt sulfide flowerlike architectures on disposable cellulose filter paper for enzyme-free glucose sensor applications. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16982–16989
https://doi.org/10.1021/acssuschemeng.8b04340
39 H Dai, P Cao, D Chen, Y Li, N Wang, H Ma, M Lin. Ni-Co-S/PPy core-shell nanohybrid on nickel foam as a non-enzymatic electrochemical glucose sensor. Synthetic Metals, 2018, 235: 97–102
https://doi.org/10.1016/j.synthmet.2017.12.004
40 M Ranjani, Y Sathishkumar, Y S Lee, D J Yoo, A R Kim. Ni-Co alloy nanostructures anchored on mesoporous silica nanoparticles for non-enzymatic glucose sensor applications. RSC Advances, 2015, 5(71): 57804–57814
https://doi.org/10.1039/C5RA08471G
41 H Liu, X Lu, D Xiao, M Zhou, D Xu, L Sun, Y Song. Hierarchical Cu-Co-Ni nanostructures electrodeposited on carbon nanofiber modified glassy carbon electrode: application to glucose detection. Analytical Methods, 2013, 5(22): 6360–6367
https://doi.org/10.1039/c3ay41170b
42 M Annalakshmi, S Kumaravel, T W Chen, S M Chen, B S Lou. 3D flower-like NiCo layered double hydroxides: an efficient electrocatalyst for non-enzymatic electrochemical biosensing of hydrogen peroxide in live cells and glucose in biofluids. ACS Applied Bio Materials, 2021, 4(4): 3203–3213
https://doi.org/10.1021/acsabm.0c01600
43 D Chu, F Li, X Song, H Ma, L Tan, H Pang, X Wang, D Guo, B Xiao. A novel dual-tasking hollow cube NiFe2O-NiCo-LDH@rGO hierarchical material for high performance supercapacitor and glucose sensor. Journal of Colloid and Interface Science, 2020, 568: 130–138
https://doi.org/10.1016/j.jcis.2020.02.012
44 S Samuei, J Fakkar, Z Rezvani, A Shomali, B Habibi. Synthesis and characterization of graphene quantum dots/CoNiAl-layered double-hydroxide nanocomposite: application as a glucose sensor. Analytical Biochemistry, 2017, 521: 31–39
https://doi.org/10.1016/j.ab.2017.01.005
45 X Kong, B Xia, Y Xiao, H Chen, H Li, W Chen, P Wu, Y Shen, J Wu, S Li. et al.. Regulation of cobalt-nickel LDHs’ structure and components for optimizing the performance of an electrochemical sensor. ACS Applied Nano Materials, 2019, 2(10): 6387–6396
https://doi.org/10.1021/acsanm.9b01370
46 J Xu, X Qiao, M Arsalan, N Cheng, W Cao, T Yue, Q Sheng, J Zheng. Preparation of one-dimensional silver nanowire/nickel-cobalt layered double hydroxide and its electrocatalysis of glucose. Journal of Electroanalytical Chemistry (Lausanne, Switzerland), 2018, 823: 315–321
https://doi.org/10.1016/j.jelechem.2018.06.028
47 G Ni, J Cheng, X Dai, Z Guo, X Ling, T Yu, Z Sun. Integrating ultrathin polypyrrole framework on nickel-cobalt layered double hydroxide as an amperometric sensor for non-enzymatic glucose determination. Electroanalysis, 2018, 30(10): 2366–2373
https://doi.org/10.1002/elan.201800362
48 E Asadian, S Shahrokhian, A I Zad. Highly sensitive nonenzymetic glucose sensing platform based on MOF-derived NiCo LDH nanosheets/graphene nanoribbons composite. Journal of Electroanalytical Chemistry (Lausanne, Switzerland), 2018, 808: 114–123
https://doi.org/10.1016/j.jelechem.2017.10.060
49 S Keav, A Martin, J Jr Barbier, D Duprez. Deactivation and reactivation of noble metal catalysts tested in the catalytic wet air oxidation of phenol. Catalysis Today, 2010, 151(1): 143–147
https://doi.org/10.1016/j.cattod.2010.01.025
50 A Maleki, P Zand, Z Mohseni. Fe3O4@PEG-SO3H rod-like morphology along with the spherical nanoparticles: novel green nanocomposite design, preparation, characterization and catalytic application. RSC Advances, 2015, 6(112): 110928–110934
https://doi.org/10.1039/C6RA24029A
51 X Guo, Y Ruan, Z Diao, K Shih, M Su, G Song, D Chen, S Wang, L Kong. Environmental-friendly preparation of Ni-Co layered double hydroxide (LDH) hierarchical nanoarrays for efficient removing uranium(VI). Journal of Cleaner Production, 2021, 308: 127384
https://doi.org/10.1016/j.jclepro.2021.127384
[1] FCE-22147-OF-LX_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed