1. National & Local United Engineering Research Centre for Chemical Process Simulation and Intensification, Chemical Process Simulation and Optimization Engineering Research Center of Ministry of Education, Xiangtan University, Xiangtan 411100, China 2. Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China 3. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Biomass-derived carbon materials for lithium-ion batteries emerge as one of the most promising anodes from sustainable perspective. However, improving the reversible capacity and cycling performance remains a long-standing challenge. By combining the benefits of K2CO3 activation and KMnO4 hydrothermal treatment, this work proposes a two-step activation method to load MnO2 charge transfer onto biomass-derived carbon (KAC@MnO2). Comprehensive analysis reveals that KAC@MnO2 has a micro-mesoporous coexistence structure and uniform surface distribution of MnO2, thus providing an improved electrochemical performance. Specifically, KAC@MnO2 exhibits an initial charge-discharge capacity of 847.3/1813.2 mAh·g–1 at 0.2 A·g–1, which is significantly higher than that of direct pyrolysis carbon and K2CO3 activated carbon, respectively. Furthermore, the KAC@MnO2 maintains a reversible capacity of 652.6 mAh·g–1 after 100 cycles. Even at a high current density of 1.0 A·g–1, KAC@MnO2 still exhibits excellent long-term cycling stability and maintains a stable reversible capacity of 306.7 mAh·g–1 after 500 cycles. Compared with reported biochar anode materials, the KAC@MnO2 prepared in this work shows superior reversible capacity and cycling performance. Additionally, the Li+ insertion and de-insertion mechanisms are verified by ex situ X-ray diffraction analysis during the charge-discharge process, helping us better understand the energy storage mechanism of KAC@MnO2.
Specific discharge capacity after cycling/(mAh·g–1)
Ref.
MnO2/CNFs
703.0/1064.0
180
100
365.0
[41]
CF@MnO2
745.0/1240.0
100
150
648.0
[42]
MnO2/RGO
705.0/1048.0
100
50
427.7
[43]
MnO2/CNT
533.0/1390.0
250
150
320.0
[44]
MnO2@C PNSs
624.0/1128.0
200
100
641.0
[45]
KAC@MnO2
847.3/1813.2
200
100
652.6
This work
1000
500
306.7
Tab.3
Fig.8
Fig.9
Fig.10
1
J M Tarascon , M Armand . Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359–367 https://doi.org/10.1038/35104644
2
R Wang , X Cao , S Sui , B Li , Q Li . Study on the growth of platinum nanowires as cathode catalysts in proton exchange membrane fuel cells. Frontiers of Chemical Science and Engineering, 2022, 16(3): 364–375 https://doi.org/10.1007/s11705-021-2052-z
3
C Wang , C Yang , Z Zheng . Toward practical high-energy and high-power lithium battery anodes: present and future. Advanced Science, 2022, 9(9): 2105213 https://doi.org/10.1002/advs.202105213
4
Y Liu , Y Niu , X Ouyang , C Guo , P Han , R Zhou , A Heydari , Y Zhou , O Ikkala , G A Tigranovich . et al.. Progress of organic, inorganic redox flow battery and mechanism of electrode reaction. Nano Research Energy, 2023, 2: e9120081 https://doi.org/10.26599/NRE.2023.9120081
5
M A Rahman , Y C Wong , G S Song , C E Wen . A review on porous negative electrodes for high performance lithium-ion batteries. Journal of Porous Materials, 2015, 22(5): 1313–1343 https://doi.org/10.1007/s10934-015-0010-1
6
X Y Yang , R Li , J X Yang , H Z Liu , T Luo , X L Wang , L Yang . A novel route to constructing high-efficiency lithium sulfur batteries with spent graphite as the sulfur host. Carbon, 2022, 199: 215–223 https://doi.org/10.1016/j.carbon.2022.06.067
7
L Zhu , W Zhu , X B Cheng , J Q Huang , H J Peng , S H Yang , Q Zhang . Cathode materials based on carbon nanotubes for high-energy-density lithium-sulfur batteries. Carbon, 2014, 75: 161–168 https://doi.org/10.1016/j.carbon.2014.03.049
8
K P Lakshmi , K J Janas , M M Shaijumon . Antimony oxychloride/graphene aerogel composite as anode material for sodium and lithium ion batteries. Carbon, 2018, 131: 86–93 https://doi.org/10.1016/j.carbon.2018.01.095
9
W Zhang , J Yin , C Wang , L Zhao , W Jian , K Lu , H Lin , X Qiu , H N Alshareef . Lignin derived porous carbons: synthesis methods and supercapacitor applications. Small Methods, 2021, 5(11): 2100896 https://doi.org/10.1002/smtd.202100896
10
Y F Zhou , L K Zhu , S D Chen , L C Fu , L Cai , Q H Wang , Q G Xiong , F H Xie . In-depth study of synergism between torrefaction and catalyst for balanced production of bio-oil from rice husk pyrolysis based on hydrocarbons production, energy yield and deoxygenation degree. Biomass and Bioenergy, 2022, 162: 106494 https://doi.org/10.1016/j.biombioe.2022.106494
11
K Kim , R A Adams , P J Kim , A Arora , E Martinez , J P Youngblood , V G Pol . Li-ion storage in an amorphous, solid, spheroidal carbon anode produced by dry-autoclaving of coffee oil. Carbon, 2018, 133: 62–68 https://doi.org/10.1016/j.carbon.2018.03.013
12
F Luna-Lama , D Rodríguez-Padrón , A R Puente-Santiago , M J Muñoz-Batista , A Caballero , A M Balu , A A Romero , R Luque . Non-porous carbonaceous materials derived from coffee waste grounds as highly sustainable anodes for lithium-ion batteries. Journal of Cleaner Production, 2019, 207: 411–417 https://doi.org/10.1016/j.jclepro.2018.10.024
13
L P Wang , Z Schnepp , M M Titirici . Rice husk-derived carbon anodes for lithium ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(17): 5269–5273 https://doi.org/10.1039/c3ta10650k
14
J Y Xiang , W M Lv , C P Mu , J Zhao , B C Wang . Activated hard carbon from orange peel for lithium/sodium ion battery anode with long cycle life. Journal of Alloys and Compounds, 2017, 701: 870–874 https://doi.org/10.1016/j.jallcom.2017.01.206
15
G Jin , J Zhang , B Dang , F Wu , J Li . Engineering zirconium-based metal-organic framework-801 films on carbon cloth as shuttle-inhibiting interlayers for lithium-sulfur batteries. Frontiers of Chemical Science and Engineering, 2022, 16(4): 511–522 https://doi.org/10.1007/s11705-021-2068-4
16
G Q Mao , W J Yu , Q J Zhou , L J Li , Y D Huang , Y Y Yao , D W Chu , H Tong , X Y Guo . Improved electrochemical performance of high-nickel cathode material with electronic conductor RuO2 as the protecting layer for lithium-ion batteries. Applied Surface Science, 2020, 531: 147245 https://doi.org/10.1016/j.apsusc.2020.147245
17
X Li , C L Shao , X L Wang , J J Wang , G X Liu , W S Yu , X T Dong , J X Wang . Preparation of Fe3O4/fesheterostructures via electrochemical deposition method and their enhanced electrochemical performance for lithium-sulfur batteries. Chemical Engineering Journal, 2022, 446: 137267 https://doi.org/10.1016/j.cej.2022.137267
18
X Wang , J Wang , B Yu , W Jiang , J Wei , B Chen , R Xu , L Yang . Facile synthesis MnCo2O4.5@C nanospheres modifying PbO2 energy-saving electrode for zinc electrowinning. Journal of Hazardous Materials, 2022, 428: 128212 https://doi.org/10.1016/j.jhazmat.2021.128212
19
Y Q Ren , X C Xiao , J M Ni , H Zhao , H Yang , X Y Chen . RuO2 incorporated Co3O4 nanosheets as carbon-free integrated cathodes for lithium-oxygen battery application. Materials Letters, 2021, 304: 130634 https://doi.org/10.1016/j.matlet.2021.130634
20
H C Lee , Y A Kim , H J Lee , B H Kim . Improved electrochemical performance of sandwich-structured N-rich C@MnO@C electrodes. Carbon, 2023, 207: 154–161 https://doi.org/10.1016/j.carbon.2023.03.015
21
J Zhang , A Tahmasebi , J E Omoriyekomwan , J Yu . Microwave-assisted synthesis of biochar-carbon-nanotube-nio composite as high-performance anode materials for lithium-ion batteries. Fuel Processing Technology, 2021, 213: 106714 https://doi.org/10.1016/j.fuproc.2020.106714
22
F Luna-Lama , C Hernández-Rentero , A Caballero , J Morales . Biomass-derived carbon/γ-MnO2 nanorods/s composites prepared by facile procedures with improved performance for Li/S batteries. Electrochimica Acta, 2018, 292: 522–531 https://doi.org/10.1016/j.electacta.2018.09.176
23
T Li , X Bai , Y X Qi , N Lun , Y J Bai . Fe3O4 nanoparticles decorated on the biochar derived from pomelo pericarp as excellent anode materials for Li-ion batteries. Electrochimica Acta, 2016, 222: 1562–1568 https://doi.org/10.1016/j.electacta.2016.11.140
24
D Gueon , J H Moon . Mnonanoflake-shelled carbon nanotube particles for high-performance supercapacitors. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2445–2453 https://doi.org/10.1021/acssuschemeng.6b02803
25
Y You , X Zhang , P Li , F Lei , J Jiang . Co-production of xylooligosaccharides and activated carbons from Camellia oleifera shell treated by the catalysis and activation of zinc chloride. Bioresource Technology, 2020, 306: 123131 https://doi.org/10.1016/j.biortech.2020.123131
26
X Guo , S Yang , D H Wang , A Chen , Y B Wang , P Li , G J Liang , C Y Zhi . The energy storage mechanisms of MnO2 in batteries. Current Opinion in Electrochemistry, 2021, 30: 100769 https://doi.org/10.1016/j.coelec.2021.100769
27
K M Ji , G H Liang , Y H Shen , H X Dai , J H Han , Y Ito , T Fujita , J Fujita , C Y Wang , M M Chen . Ordered macroporous graphenic carbon-based framework materials and their low-temperature co-sacrificial template synthesis mechanism. Cell Reports. Physical Science, 2023, 4(2): 101283 https://doi.org/10.1016/j.xcrp.2023.101283
28
H Aghamohammadi , N Hassanzadeh , R Eslami-Farsani . A review study on the recent advances in developing the heteroatom-doped graphene and porous graphene as superior anode materials for Li-ion batteries. Ceramics International, 2021, 47(16): 22269–22301 https://doi.org/10.1016/j.ceramint.2021.05.048
29
N Yu , H Yin , W Zhang , Y Liu , Z Tang , M Q Zhu . High-performance fiber-shaped all-solid-state asymmetric supercapacitors based on ultrathin MnO2 nanosheet/carbon fiber cathodes for wearable electronics. Advanced Energy Materials, 2016, 6(2): 1501458 https://doi.org/10.1002/aenm.201501458
30
N Zhao , L B Deng , D W Luo , P X Zhang . One-step fabrication of biomass-derived hierarchically porous carbon/MnO nanosheets composites for symmetric hybrid supercapacitor. Applied Surface Science, 2020, 526: 146696 https://doi.org/10.1016/j.apsusc.2020.146696
31
Y Xie , C Yang , P Chen , D W Yuan , K K Guo . MnO2-decorated hierarchical porous carbon composites for high-performance asymmetric supercapacitors. Journal of Power Sources, 2019, 425: 1–9 https://doi.org/10.1016/j.jpowsour.2019.03.122
32
L Zhang , W Wang , S Lu , Y Xiang . Carbon anode materials: a detailed comparison between Na-ion and K-ion batteries. Advanced Energy Materials, 2021, 11(11): 2003640 https://doi.org/10.1002/aenm.202003640
33
Z Nie , Y Huang , B Ma , X Qiu , N Zhang , X Xie , Z Wu . Nitrogen-doped carbon with modulated surface chemistry and porous structure by a stepwise biomass activation process towards enhanced electrochemical lithium-ion storage. Scientific Reports, 2019, 9(1): 15032 https://doi.org/10.1038/s41598-019-50330-w
34
K F Yu , Z F Zhang , J C Liang , C Liang . Natural biomass-derived porous carbons from buckwheat hulls used as anode for lithium-ion batteries. Diamond and Related Materials, 2021, 119: 108553 https://doi.org/10.1016/j.diamond.2021.108553
35
C L Xia , C W Kang , M D Patel , L P Cai , B Gwalani , R Banerjee , S Q Shi , W Choi . Pine wood extracted activated carbon through self-activation process for high-performance lithium-ion battery. ChemistrySelect, 2016, 1(13): 4000–4007 https://doi.org/10.1002/slct.201600926
36
R Muruganantham , F M Wang , R A Yuwono , M Sabugaa , W R Liu . Biomass feedstock of waste mango-peel-derived porous hard carbon for sustainable high-performance lithium-ion energy storage devices. Energy & Fuels, 2021, 35(13): 10878–10889 https://doi.org/10.1021/acs.energyfuels.1c01226
37
Y Qin , H Tang , K Chang , B Li , Y Li , Y Hou , Z Chang . In situ synthesis of open hollow tubular MnO/C with high performance anode materials for lithium ion batteries using kapok fiber as carbon matrix. Nanotechnology, 2019, 30(1): 015403 https://doi.org/10.1088/1361-6528/aae69e
38
W Zhang , J Li , J Zhang , J Sheng , T He , M Tian , Y Zhao , C Xie , L Mai , S Mu . Top-down strategy to synthesize mesoporous dual carbon armored mno nanoparticles for lithium-ion battery anodes. ACS Applied Materials & Interfaces, 2017, 9(14): 12680–12686 https://doi.org/10.1021/acsami.6b16576
39
H L Qiu , H J Yue , T Zhang , T T Li , C Z Wang , G Chen , Y J Wei , D Zhang . Enhanced electrochemical performance of Li2FeSiO4/C cathode materials by surface modification with AlPO4 nanosheets. Electrochimica Acta, 2016, 222: 1870–1877 https://doi.org/10.1016/j.electacta.2016.11.180
40
Y Gao , R X Sun , A M Li , G Z Ji . Self-activation strategy toward highly porous biochar for supercapacitors: direct carbonization of marine algae. Journal of Electroanalytical Chemistry, 2021, 882: 114986 https://doi.org/10.1016/j.jelechem.2021.114986
41
D Liu , W M Choi . Hierarchical hollow urchin-like structured MnO2 microsphere/carbon nanofiber composites as anode materials for Li-ion batteries. Current Applied Physics, 2019, 19(6): 768–774 https://doi.org/10.1016/j.cap.2019.04.005
42
Q G Han , W Q Zhang , Z W Han , F X Wang , D Geng , X Li , Y Li , X Zhang . Preparation of PAN-based carbon fiber@MnO2 composite as an anode material for structural lithium-ion batteries. Journal of Materials Science, 2019, 54(18): 11972–11982 https://doi.org/10.1007/s10853-019-03751-x
43
X Wang , M Yin , H Xue , Y Su , S Tian . Simple microwave synthesis and improved electrochemical performance of Nb-doped MnO2/reduced graphene oxide composite as anode material for lithium-ion batteries. Ionics, 2018, 24(9): 2583–2590 https://doi.org/10.1007/s11581-017-2401-6
44
A Abdollahi , A Abnavi , F Ghasemi , S Ghasemi , Z Sanaee , S Mohajerzadeh . Facile synthesis and simulation of MnO2 nanoflakes on vertically aligned carbon nanotubes, as a high-performance electrode for Li-ion battery and supercapacitor. Electrochimica Acta, 2021, 390: 138826 https://doi.org/10.1016/j.electacta.2021.138826
45
C A Luo , Y J Chen , Q H Tian , W Zhang , Z Y Sui . Ultrathin porous MnO2@C nanosheets for high-performance lithium-ion battery anodes. Journal of Electroanalytical Chemistry, 2023, 930: 117173 https://doi.org/10.1016/j.jelechem.2023.117173
46
L C Fu , Q A Xiong , Q H Wang , L Cai , Z H Chen , Y F Zhou . Catalytic pyrolysis of waste polyethylene using combined CaO and Ga/ZSM-5 catalysts for high value-added aromatics production. ACS Sustainable Chemistry & Engineering, 2022, 10(29): 9612–9623 https://doi.org/10.1021/acssuschemeng.2c02881
47
D Zhan , T Wen , Y Q Li , Y Q Zhu , K Liu , P Cui , Z Y Jia , H J Liu , K L Lei , Z A Xiao . Using peanut shells to construct a porous MnO/C composite material with highly improved lithium storage performance. ChemElectroChem, 2020, 7(1): 347–354 https://doi.org/10.1002/celc.201901811
48
X P Fang , X Lu , X W Guo , Y Mao , Y S Hu , J Z Wang , Z X Wang , F Wu , H K Liu , L Q Chen . Electrode reactions of manganese oxides for secondary lithium batteries. Electrochemistry Communications, 2010, 12(11): 1520–1523 https://doi.org/10.1016/j.elecom.2010.08.023
49
W Zhang , B Zhang , H Jin , P Li , Y Zhang , S Ma , J Zhang . Waste eggshell as bio-template to synthesize high capacity δ-MnO2 nanoplatelets anode for lithium ion battery. Ceramics International, 2018, 44(16): 20441–20448 https://doi.org/10.1016/j.ceramint.2018.08.038
50
H P Chen , Z Y Tang , B Liu , W Chen , J H Hu , Y Q Chen , H P Yang . The new insight about mechanism of the influence of K2CO3 on cellulose pyrolysis. Fuel, 2021, 295: 120617 https://doi.org/10.1016/j.fuel.2021.120617