Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (2): 17   https://doi.org/10.1007/s11705-023-2380-2
  本期目录
Clean production of lactic acid by selective carbon-carbon bond cleavage of biomass feedstock over a novel carbon-bismuth oxychloride photocatalyst
Zulfiqar Ali, Jiliang Ma(), Dongnv Jin, Rui Cui, Runcang Sun()
Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
 全文: PDF(11418 KB)   HTML
Abstract

The use of functional materials such as carbon-bismuth oxyhalides in integrated photorefineries for the clean production of fine chemicals requires restructuring. A facile biomass-assisted solvothermal fabrication of carbon/bismuth oxychloride nanocomposites (C/BiOCl) was achieved at various temperatures. Compared with BiOCl and C/BiOCl-120, C/BiOCl-180 exhibited higher crystallinity, wider visible light absorption, and a faster migration/separation rate of photoinduced carriers. For the selective C–C bond cleavage of biomass-based feedstocks photocatalyzed by C/BiOCl-180, the xylose conversion and lactic acid yield were 100% and 92.5%, respectively. C/BiOCl-180 efficiently converted different biomass-based monosaccharides to lactic acid, and the efficiency of pentoses was higher than that of hexoses. Moreover, lactic acid synthesis was favored by all active radicals including superoxide ion (·O2), holes (h+), hydroxyl radical (·OH), and singlet oxygen (1O2), with ·O2 playing a key role. The fabricated photocatalyst was stable, economical, and recyclable. The use of biomass-derived monosaccharides for the clean production of lactic acid via the C/BiOCl-180 photocatalyst has opened new research horizons for the investigation and application of C–C bond cleavage in biomass-based feedstocks.

Key wordscarbon-carbon bond cleavage    biomass reforming    C/BiOCl    lactic acid    photocatalysis
收稿日期: 2023-09-07      出版日期: 2024-01-15
Corresponding Author(s): Jiliang Ma,Runcang Sun   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(2): 17.
Zulfiqar Ali, Jiliang Ma, Dongnv Jin, Rui Cui, Runcang Sun. Clean production of lactic acid by selective carbon-carbon bond cleavage of biomass feedstock over a novel carbon-bismuth oxychloride photocatalyst. Front. Chem. Sci. Eng., 2024, 18(2): 17.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-023-2380-2
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I2/17
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
1 D J Wuebbles , A K Jain . Concerns about climate change and the role of fossil fuel use. Fuel Processing Technology, 2001, 71(1–3): 99–119
https://doi.org/10.1016/S0378-3820(01)00139-4
2 I Bilal , D Khan , W Tan , Hassan S Azam . Alternate energy sources and environmental quality: the impact of inflation dynamics. Gondwana Research, 2022, 106: 51–63
https://doi.org/10.1016/j.gr.2021.12.011
3 Q Lin , Y H Li , Z R Tang , Y J Xu . Valorization of biomass-derived platform molecules via photoredox sustainable catalysis. Transactions of Tianjin University, 2020, 26(5): 325–340
https://doi.org/10.1007/s12209-020-00271-7
4 M Y Qi , M Conte , M Anpo , Z R Tang , Y J Xu . Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chemical Reviews, 2021, 121(21): 13051–13085
https://doi.org/10.1021/acs.chemrev.1c00197
5 J L Ma , K N Liu , X P Yang , D N Jin , Y C Li , G J Jiao , J H Zhou , R C Sun . Recent advances and challenges in photoreforming of biomass-derived feedstocks into hydrogen, biofuels, or chemicals by using functional carbon nitride. ChemSusChem, 2021, 14(22): 4903–4922
https://doi.org/10.1002/cssc.202101173
6 J Vijayakumar , R Aravindan , T Viruthagiri . Recent trends in the production, purification and application of lactic acid. Chemical and Biochemical Engineering Quarterly, 2008, 22: 245–264
7 Martinez F A Castillo , E M Balciunas , J M Salgado , González J M Domínguez , A Converti , R P S Oliveira . Lactic acid properties, applications and production: a review. Trends in Food Science & Technology, 2013, 30(1): 70–83
https://doi.org/10.1016/j.tifs.2012.11.007
8 A Ahmad , F Banat , H Taher . A review on the lactic acid fermentation from low-cost renewable materials: recent developments and challenges. Environmental Technology & Innovation, 2020, 20: 101138
https://doi.org/10.1016/j.eti.2020.101138
9 Y Li , S S Bhagwat , Y R Cortés-Peña , D Ki , C V Rao , Y S Jin , J S Guest . Sustainable lactic acid production from lignocellulosic biomass. ACS Sustainable Chemistry & Engineering, 2021, 9(3): 1341–1351
https://doi.org/10.1021/acssuschemeng.0c08055
10 B Y Yang , R Montgomery . Alkaline degradation of fructofuranosides. Carbohydrate Research, 1996, 280(1): 47–57
https://doi.org/10.1016/0008-6215(95)00233-2
11 H Zhao , C F Li , X Yong , P Kumar , B Palma , Z Y Hu , G Van Tendeloo , S Siahrostami , S Larter , D Zheng . et al.. Coproduction of hydrogen and lactic acid from glucose photocatalysis on band-engineered Zn1−xCdxS homojunction. iScience, 2021, 24(2): 102109
https://doi.org/10.1016/j.isci.2021.102109
12 Y Wu , M Qi , C Tan , Z Tang , Y Xu . Photocatalytic selective oxidation of aromatic alcohols coupled with hydrogen evolution over CdS/WO3 composites. Chinese Journal of Catalysis, 2022, 43(7): 1851–1859
https://doi.org/10.1016/S1872-2067(21)63989-X
13 Z Xu , C Zhang , Y Zhang , Y Gu , Y An . BiOCl-based photocatalysts: synthesis methods, structure, property, application, and perspective. Inorganic Chemistry Communications, 2022, 138: 109277
https://doi.org/10.1016/j.inoche.2022.109277
14 C Wang , C Shao , Y Liu , L Zhang . Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning. Scripta Materialia, 2008, 59(3): 332–335
https://doi.org/10.1016/j.scriptamat.2008.03.038
15 R Liu , Z Wu , J Tian , C Yu , S Li , K Yang , X Liu , M Liu . The excellent dye-photosensitized degradation performance over hierarchical BiOCl nanostructures fabricated via a facile microwave-hydrothermal process. New Journal of Chemistry, 2018, 42(1): 137–149
https://doi.org/10.1039/C7NJ02990J
16 J Yu , B Wei , L Zhu , H Gao , W Sun , L Xu . Flowerlike C-doped BiOCl nanostructures: facile wet chemical fabrication and enhanced UV photocatalytic properties. Applied Surface Science, 2013, 284: 497–502
https://doi.org/10.1016/j.apsusc.2013.07.124
17 J Yang , Y Liang , K Li , G Yang , S Yin . One-step low-temperature synthesis of 0D CeO2 quantum dots/2D BiOX (X = Cl, Br) nanoplates heterojunctions for highly boosting photo-oxidation and reduction ability. Applied Catalysis B: Environmental, 2019, 250: 17–30
https://doi.org/10.1016/j.apcatb.2019.03.017
18 J Jiang , L Zhang , H Li , W He , J J Yin . Self-doping and surface plasmon modification induced visible light photocatalysis of BiOCl. Nanoscale, 2013, 5(21): 10573–10581
https://doi.org/10.1039/c3nr03597b
19 Y Gao , W Yang , X Shan , Y Chen . Synthesis of “walnut-like” BiOCl/Br solid solution photocatalyst by electrostatic self-assembly method. International Journal of Energy Research, 2020, 44(3): 2226–2242
https://doi.org/10.1002/er.5084
20 Y He , J Li , K Li , M Sun , C Yuan , R Chen , J Sheng , G Leng , F Dong . Bi quantum dots implanted 2D C-doped BiOCl nanosheets: enhanced visible light photocatalysis efficiency and reaction pathway. Chinese Journal of Catalysis, 2020, 41(9): 1430–1438
https://doi.org/10.1016/S1872-2067(20)63612-9
21 J Sun , S Wu , S-Z Yang , Q Li , J Xiong , Z Yang , L Gu , X Zhang , L Sun . Enhanced photocatalytic activity induced by sp3 to sp2 transition of carbon dopants in BiOCl crystals. Applied Catalysis B: Environmental, 2018, 221: 467–472
https://doi.org/10.1016/j.apcatb.2017.09.037
22 C Wang , N Liu , X Zhao , Y Tian , X Chen , Y Zhang , L Fan , B Hou . C-doped BiOCl/Bi2S3 heterojunction for highly efficient photoelectrochemical detection and photocatalytic reduction of Cr(VI). Journal of Materials Science and Technology, 2023, 164: 188–197
https://doi.org/10.1016/j.jmst.2023.03.066
23 J Li , L Cai , J Shang , Y Yu , L Zhang . Giant enhancement of internal electric field boosting bulk charge separation for photocatalysis. Advanced Materials, 2016, 28(21): 4059–4064
https://doi.org/10.1002/adma.201600301
24 S Li , S Liu , J Colmenares , Y Xu . A sustainable approach for lignin valorization by heterogeneous photocatalysis. Green Chemistry, 2016, 18(3): 594–607
https://doi.org/10.1039/C5GC02109J
25 F Shang , Y Li , M Qi , Z Tang , Y Xu . Photocatalytic materials for sustainable chemistry via cooperative photoredox catalysis. Catalysis Today, 2023, 410: 85–101
https://doi.org/10.1016/j.cattod.2022.04.007
26 B Li , L Shao , R Wang , X Dong , F Zhao , P Gao , Z Li . Interfacial synergism of Pd-decorated BiOCl ultrathin nanosheets for the selective oxidation of aromatic alcohols. Journal of Materials Chemistry A, 2018, 6(15): 6344–6355
https://doi.org/10.1039/C8TA00449H
27 J Jiang , K Zhao , X Xiao , L Zhang . Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. Journal of the American Chemical Society, 2012, 134(10): 4473–4476
https://doi.org/10.1021/ja210484t
28 S J Pennycook , D E Jesson , A J McGibbon , P D Nellist . High angle dark field STEM for advanced materials. Microscopy, 1996, 45: 36–43
29 S Wu , J Wang , Q Li , Z Huang , Z Rao , Y Zhou . Bi/BiOCl nanosheets enriched with oxygen vacancies to enhance photocatalytic CO2 reduction. Transactions of Tianjin University, 2021, 27(2): 155–164
https://doi.org/10.1007/s12209-020-00280-6
30 L DingR WeiH ChenJ HuJ Li. Controllable synthesis of highly active BiOCl hierarchical microsphere self-assembled by nanosheets with tunable thickness. Applied Catalysis B: Environmental, 2015, 172–173: 91–99
31 L Ye , X Jin , Y Leng , Y Su , H Xie , C Liu . Synthesis of black ultrathin BiOCl nanosheets for efficient photocatalytic H2 production under visible light irradiation. Journal of Power Sources, 2015, 293: 409–415
https://doi.org/10.1016/j.jpowsour.2015.05.101
32 J Hou , D Dai , R Wei , X Wu , X Wang , M Tahir , J Zou . Narrowing the band gap of BiOCl for the hydroxyl radical generation of photocatalysis under visible light. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16569–16576
https://doi.org/10.1021/acssuschemeng.9b03885
33 X Huang , H Zhang , J Zhao , D Jiang , Q Zhan . Carbon quantum dot (CQD)-modified Bi3O4Br nanosheets possessing excellent photocatalytic activity under simulated sunlight. Materials Science in Semiconductor Processing, 2021, 122: 105489
https://doi.org/10.1016/j.mssp.2020.105489
34 H Wang , W Zhang , X Li , J Li , W Cen , Q Li , F Dong . Highly enhanced visible light photocatalysis and in situ FT-IR studies on Bi metal/defective BiOCl hierarchical microspheres. Applied Catalysis B: Environmental, 2018, 225: 218–227
https://doi.org/10.1016/j.apcatb.2017.11.079
35 B Revathi , N K Chandar . Clad-modified fiber-optic magnetic field sensing characteristics of anion-doped bismuth manganite nanopowders. Journal of Materials Science Materials in Electronics, 2022, 33(19): 15742–15753
https://doi.org/10.1007/s10854-022-08476-3
36 W Liu , Q Li , X Yang , X Chen , X Xu . Synthesis of SiC/BiOCl composites and its efficient photocatalytic activity. Catalysts, 2020, 10(8): 946
https://doi.org/10.3390/catal10080946
37 K L Kauffman , J T Culp , A Goodman , C Matranga . Matranga C. FT-IR study of CO2 adsorption in a dynamic copper(II) benzoate-pyrazine host with CO2–CO2 interactions in the adsorbed state. Journal of Physical Chemistry C, 2011, 115(5): 1857–1866
https://doi.org/10.1021/jp102273w
38 S Kang , R C Pawar , Y Pyo , V Khare , C S Lee . Size-controlled BiOCl-RGO composites having enhanced photodegradative properties. Journal of Experimental Nanoscience, 2016, 11(4): 259–275
https://doi.org/10.1080/17458080.2015.1047420
39 C Hao , Y Xu , M Bao , X Wang , H Zhang , T Li . Hydrothermal synthesis of sphere-like BiOCl using sodium lignosulphonate as surfactant and its application in visible light photocatalytic degradation of rodamine B. Journal of Materials Science, 2017, 28: 3119–3127
40 J Li , L Guo , N Lei , Q Song , Z Liang . Metallic Bi nanocrystal-modified defective BiVO4 photoanodes with exposed (040) facets for photoelectrochemical water splitting. ChemElectroChem, 2017, 4(11): 2852–2861
https://doi.org/10.1002/celc.201700680
41 M K Kumar , K Bhavani , B Srinivas , S N Kumar , M Sudhakar , G Naresh , A Venugopal . Nano structured bismuth and nitrogen co-doped TiO2 as an efficient light harvesting photocatalyst under natural sunlight for the production of H2 by H2O splitting. Applied Catalysis A, General, 2016, 515: 91–100
https://doi.org/10.1016/j.apcata.2016.01.009
42 S F Lee , E Jimenez-Relinque , I Martinez , M Castellote . Effects of mott-schottky frequency selection and other controlling factors on flat-band potential and band-edge position determination of TiO2. Catalysts, 2023, 13(6): 1000
https://doi.org/10.3390/catal13061000
43 Y Gai , J Li , S Li , J B Xia , S H Wei . Design of narrow-gap TiO2: a passivated codoping approach for enhanced photoelectrochemical activity. Physical Review Letters, 2009, 102(3): 036402
https://doi.org/10.1103/PhysRevLett.102.036402
44 Z Ali , J Ma , M Hong , R Sun . Review: applications of the functional photocatalysts BiOX (X = Cl, Br, I) for clean energy, the environment, and future photobiorefineries. Journal of Materials Chemistry A, 2023, 11(7): 3297–3314
https://doi.org/10.1039/D2TA09877F
45 Y Zhang , S Yang , Z Wang , H Qin , G Lyu , J Chen , G Yang . High selective conversion of fructose to lactic acid by photocatalytic reforming of BiOBr/Znx@SnO2−n in alkaline condition. Journal of Catalysis, 2022, 413: 843–857
https://doi.org/10.1016/j.jcat.2022.07.042
46 Y Lv , W Shao , Y Kong , N Li , X Huang , Z Tang , M Gong , L Li , W Wei . Boron doping g-C3N4 supported Cu2O for photocatalytic reforming of xylose into lactic acid. Journal of Environmental Chemical Engineering, 2023, 11(3): 109981
https://doi.org/10.1016/j.jece.2023.109981
47 Y Zhang , H Luo , L Kong , X Zhao , G Miao , L Zhu , S Li , Y Sun . Highly efficient production of lactic acid from xylose using Sn-beta catalysts. Green Chemistry, 2020, 22(21): 7333–7336
https://doi.org/10.1039/D0GC02596H
48 C Kosri , S Kiatphuengporn , T Butburee , S Youngjun , S Thongratkaew , K Faungnawakij , C Yimsukanan , N Chanlek , P Kidkhunthod , J Wittayakun . et al.. Selective conversion of xylose to lactic acid over metal-based Lewis acid supported on γ-Al2O3 catalysts. Catalysis Today, 2021, 367: 205–212
https://doi.org/10.1016/j.cattod.2020.04.061
49 Y Liu , M Wang , B Zhang , D Yan , X Xiang . Mediating the oxidizing capability of surface-bound hydroxyl radicals produced by photoelectrochemical water oxidation to convert glycerol into dihydroxyacetone. ACS Catalysis, 2022, 12(12): 6946–6957
https://doi.org/10.1021/acscatal.2c01319
50 L Luo , Z J Wang , X Xiang , D Yan , J Ye . Selective activation of benzyl alcohol coupled with photoelectrochemical water oxidation via a radical relay strategy. ACS Catalysis, 2020, 10(9): 4906–4913
https://doi.org/10.1021/acscatal.0c00660
51 L Chen , Y Huang , R Zou , J Ma , Y Yang , T Li , M Li , Q Hao , H Xie , X Peng . Regulating TiO2/MXenes catalysts to promote photocatalytic performance of highly selective oxidation of d-xylose. Green Chemistry, 2021, 23(3): 1382–1388
https://doi.org/10.1039/D0GC03628E
52 Y Li , F Zhang , Y Chen , J Li , Y Xu . Photoredox-catalyzed biomass intermediate conversion integrated with H2 production over Ti3C2Tx/CdS composites. Green Chemistry, 2020, 22(1): 163–169
https://doi.org/10.1039/C9GC03332G
53 Y Li , Z Tang , Y Xu . Multifunctional graphene-based composite photocatalysts oriented by multifaced roles of graphene in photocatalysis. Chinese Journal of Catalysis, 2022, 43(3): 708–730
https://doi.org/10.1016/S1872-2067(21)63871-8
[1] FCE-23059-OF-AZ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed