1. College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China 2. School of Physical Science and Technology, Tiangong University, Tianjin 300387, China
Excitonic devices are an emerging class of technology that utilizes excitons as carriers for encoding, transmitting, and storing information. Van der Waals heterostructures based on transition metal dichalcogenides often exhibit a type II band alignment, which facilitates the generation of interlayer excitons. As a bonded pair of electrons and holes in the separation layer, interlayer excitons offer the chance to investigate exciton transport due to their intrinsic out-of-plane dipole moment and extended exciton lifetime. Furthermore, interlayer excitons can potentially analyze other encoding strategies for information processing beyond the conventional utilization of spin and charge. The review provided valuable insights and recommendations for researchers studying interlayer excitonic devices within van der Waals heterostructures based on transition metal dichalcogenides. Firstly, we provide an overview of the essential attributes of transition metal dichalcogenide materials, focusing on their fundamental properties, excitonic effects, and the distinctive features exhibited by interlayer excitons in van der Waals heterostructures. Subsequently, this discourse emphasizes the recent advancements in interlayer excitonic devices founded on van der Waals heterostructures, with specific attention is given to the utilization of valley electronics for information processing, employing the valley index. In conclusion, this paper examines the potential and current challenges associated with excitonic devices.
Y Song , C Jia , H Xiong , B Wang , Z Jiang , K Huang , J Hwang , Z Li , C Hwang , Z Liu . et al.. Signatures of the exciton gas phase and its condensation in monolayer 1T-ZrTe2. Nature Communications, 2023, 14(1): 1116 https://doi.org/10.1038/s41467-023-36857-7
2
F Tagarelli , E Lopriore , D Erkensten , R Perea-Causín , S Brem , J Hagel , Z Sun , G Pasquale , K Watanabe , T Taniguchi . et al.. Electrical control of hybrid exciton transport in a van der Waals heterostructure. Nature Photonics, 2023, 17(7): 615–621 https://doi.org/10.1038/s41566-023-01198-w
3
B Datta , M Khatoniar , P Deshmukh , F Thouin , R Bushati , S De Liberato , S K Cohen , V M Menon . Highly nonlinear dipolar exciton-polaritons in bilayer MoS2. Nature Communications, 2022, 13(1): 6341 https://doi.org/10.1038/s41467-022-33940-3
4
Z Zhang , E C Regan , D Wang , W Zhao , S Wang , M Sayyad , K Yumigeta , K Watanabe , T Taniguchi , S Tongay . et al.. Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and Moiré WS2/WSe2. Nature Physics, 2022, 18(10): 1214–1220 https://doi.org/10.1038/s41567-022-01702-z
5
D Erkensten , S Brem , R Perea-Causin , E Malic . Microscopic origin of anomalous interlayer exciton transport in van der Waals heterostructures. Physical Review Materials, 2022, 6(9): 094006 https://doi.org/10.1103/PhysRevMaterials.6.094006
6
H Yuan , Z Liu , G Xu , B Zhou , S Wu , D Dumcenco , K Yan , Y Zhang , S K Mo , P Dudin . et al.. Evolution of the valley position in bulk transition-metal chalcogenides and their monolayer limit. Nano Letters, 2016, 16(8): 4738–4745 https://doi.org/10.1021/acs.nanolett.5b05107
7
Y Zhang , T R Chang , B Zhou , Y T Cui , H Yan , Z Liu , F Schmitt , J Lee , R Moore , Y Chen . et al.. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nature Nanotechnology, 2014, 9(2): 111–115 https://doi.org/10.1038/nnano.2013.277
8
Q Li , J H Song , F Xu , J van de Groep , J Hong , A Daus , Y J Lee , A C Johnson , E Pop , F Liu . et al.. A purcell-enabled monolayer semiconductor free-space optical modulator. Nature Photonics, 2023, 17(10): 897–903 https://doi.org/10.1038/s41566-023-01250-9
9
Q Zhang , H Sun , J Tang , X Dai , Z Wang , C Z Ning . Prolonging valley polarization lifetime through gate-controlled exciton-to-trion conversion in monolayer molybdenum ditelluride. Nature Communications, 2022, 13(1): 4101 https://doi.org/10.1038/s41467-022-31672-y
10
Y S Chen , S K Chiu , D L Tsai , C Y Liu , H A Ting , Y C Yao , H Son , G Haider , M Kalbáč , C C Ting . et al.. Mediator-assisted synthesis of WS2 with ultrahigh-optoelectronic performance at multi-wafer scale. npj 2D Materials and Applications, 2022, 6(1): 1–8
11
J Xiao , Y Zhang , H Chen , N Xu , S Deng . Enhanced performance of a monolayer MoS2/WSe2 heterojunction as a photoelectrochemical cathode. Nano-Micro Letters, 2018, 10(4): 60 https://doi.org/10.1007/s40820-018-0212-6
12
Y Jiang , R Wang , X Li , Z Ma , L Li , J Su , Y Yan , X Song , C Xia . Photovoltaic field-effect photodiodes based on double van der Waals heterojunctions. ACS Nano, 2021, 15(9): 14295–14304 https://doi.org/10.1021/acsnano.1c02830
13
X Yu , G Zhao , C Liu , C Wu , H Huang , J He , N A Zhang . MoS2 and Graphene alternately stacking van der Waals heterostructure for Li+/Mg2+ co-intercalation. Advanced Functional Materials, 2021, 31(42): 2103214 https://doi.org/10.1002/adfm.202103214
14
X Liu , W Wang , F Yang , S Feng , Z Hu , J Lu , Z Ni . Bi2O2Se/BP van der Waals heterojunction for high performance broadband photodetector. Science China. Information Sciences, 2021, 64(4): 140404 https://doi.org/10.1007/s11432-020-3101-1
15
Y Wu , X Chen , J Cao , Y Zhu , W Yuan , Z Hu , Z Ao , G W Brudvig , F Tian , J C Yu . et al.. Photocatalytically recovering hydrogen energy from wastewater treatment using MoS2@TiO2 with sulfur/oxygen dual-defect. Applied Catalysis B: Environmental, 2022, 303(4): 120878 https://doi.org/10.1016/j.apcatb.2021.120878
16
Y Zeng , W Dai , R Ma , Z Li , Z Ou , C Wang , Y Yu , T Zhu , X Liu , T Wang . et al.. Distinguishing ultrafast energy transfer in atomically thin MoS2/WS2 heterostructures. Small, 2022, 18(44): 2204317 https://doi.org/10.1002/smll.202204317
17
Y Zhou , C S Garoufalis , S Baskoutas , Z Zeng , Y Jia . Twisting enabled charge transfer excitons in epitaxially fused quantum dot molecules. Nano Letters, 2022, 22(12): 4912–4918 https://doi.org/10.1021/acs.nanolett.2c01459
18
Z Hu , X Liu , P L Hernandez-Martinez , S Zhang , P Gu , W Du , W Xu , H V Demir , H Liu , Q Xiong . Interfacial charge and energy transfer in van der Waals heterojunctions. InfoMat, 2022, 4(3): e12290 https://doi.org/10.1002/inf2.12290
19
J Kiemle , F Sigger , M Lorke , B Miller , K Watanabe , T Taniguchi , A Holleitner , U Wurstbauer . Control of the orbital character of indirect excitons in MoS2/WS2 heterobilayers. Physical Review. B, 2020, 101(12): 121404 https://doi.org/10.1103/PhysRevB.101.121404
20
H Kim , K Aino , K Shinokita , W Zhang , K Watanabe , T Taniguchi , K Matsuda . Dynamics of Moiré exciton in a twisted MoSe2/WSe2 heterobilayer. Advanced Optical Materials, 2023, 11(14): 2300146 https://doi.org/10.1002/adom.202300146
21
Q Tan , A Rasmita , S Li , S Liu , Z Huang , Q Xiong , S A Yang , K S Novoselov , W Gao . Layer-engineered interlayer excitons. Science Advances, 2021, 7(30): eabh0863 https://doi.org/10.1126/sciadv.abh0863
22
J Kim , C Jin , B Chen , H Cai , T Zhao , P Lee , S Kahn , K Watanabe , T Taniguchi , S Tongay . et al.. Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Science Advances, 2017, 3(7): e1700518 https://doi.org/10.1126/sciadv.1700518
23
C Jiang , W Xu , A Rasmita , Z Huang , K Li , Q Xiong , W Gao . Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures. Nature Communications, 2018, 9(1): 753 https://doi.org/10.1038/s41467-018-03174-3
24
D N Shanks , F Mahdikhanysarvejahany , T G Stanfill , M R Koehler , D G Mandrus , T Taniguchi , K Watanabe , B J LeRoy , J R Schaibley . Interlayer exciton diode and transistor. Nano Letters, 2022, 22(16): 6599–6605 https://doi.org/10.1021/acs.nanolett.2c01905
25
Y Tang , J Gu , S Liu , K Watanabe , T Taniguchi , J Hone , K F Mak , J Shan . Tuning layer-hybridized Moiré excitons by the quantum-confined Stark effect. Nature Nanotechnology, 2021, 16(1): 52–57 https://doi.org/10.1038/s41565-020-00783-2
26
Y Meng , T Wang , C Jin , Z Li , S Miao , Z Lian , T Taniguchi , K Watanabe , F Song , S F Shi . Electrical switching between exciton dissociation to exciton funneling in MoSe2/WS2 heterostructure. Nature Communications, 2020, 11(1): 2640 https://doi.org/10.1038/s41467-020-16419-x
27
A Y Joe , L A Jauregui , K Pistunova , A M Mier Valdivia , Z Lu , D S Wild , G Scuri , K De Greve , R J Gelly , Y Zhou . et al.. Electrically controlled emission from singlet and triplet exciton species in atomically thin light-emitting diodes. Physical Review. B, 2021, 103(16): L161411 https://doi.org/10.1103/PhysRevB.103.L161411
28
J Hagel , S Brem , E Malic . Electrical tuning of Moiré excitons in MoSe2 bilayers. 2D Materials, 2022, 10(1): 014013
29
D Erkensten , S Brem , R Perea-Causín , J Hagel , F Tagarelli , E Lopriore , A Kis , E Malic . Electrically tunable dipolar interactions between layer-hybridized excitons. Nanoscale, 2023, 15(26): 11064–11071 https://doi.org/10.1039/D3NR01049J
30
P Nagler , G Plechinger , M V Ballottin , A Mitioglu , S Meier , N Paradiso , C Strunk , A Chernikov , P C M Christianen , C Schüller . et al.. Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure. 2D Materials, 2017, 4(2): 025112
31
O Karni , E Barré , S C Lau , R Gillen , E Y Ma , B Kim , K Watanabe , T Taniguchi , J Maultzsch , K Barmak . et al.. Infrared interlayer exciton emission in MoS2/WSe2 heterostructures. Physical Review Letters, 2019, 123(24): 247402 https://doi.org/10.1103/PhysRevLett.123.247402
32
P Rivera , H Yu , K L Seyler , N P Wilson , W Yao , X Xu . Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nature Nanotechnology, 2018, 13(11): 1004–1015 https://doi.org/10.1038/s41565-018-0193-0
33
L A Jauregui , A Y Joe , K Pistunova , D S Wild , A A High , Y Zhou , G Scuri , K De Greve , A Sushko , C H Yu . et al.. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science, 2019, 366(6467): 870–875 https://doi.org/10.1126/science.aaw4194
34
H C Kamban , T G Pedersen . Interlayer excitons in van der Waals heterostructures: binding energy, stark shift, and field-induced dissociation. Scientific Reports, 2020, 10(1): 5537 https://doi.org/10.1038/s41598-020-62431-y
35
P Merkl , F Mooshammer , P Steinleitner , A Girnghuber , K Q Lin , P Nagler , J Holler , C Schueller , J M Lupton , T Korn . et al.. Ultrafast transition between exciton phases in van der Waals heterostructures. Nature Materials, 2019, 18(7): 691–696 https://doi.org/10.1038/s41563-019-0337-0
36
X Y Dong , R Z Li , J P Deng , Z W Wang . Interlayer exciton-polaron effect in transition metal dichalcogenides van der Waals heterostructures. Journal of Physics and Chemistry of Solids, 2019, 134(1): 1–4 https://doi.org/10.1016/j.jpcs.2019.05.022
37
E Ponomarev , N Ubrig , I Gutiérrez-Lezama , H Berger , A F Morpurgo . Semiconducting van der Waals interfaces as artificial semiconductors. Nano Letters, 2018, 18(8): 5146–5152 https://doi.org/10.1021/acs.nanolett.8b02066
38
M Brotons-Gisbert , H Baek , A Campbell , K Watanabe , T Taniguchi , B D Gerardot . Moiré-trapped interlayer trions in a charge-tunable WSe2/MoSe2 heterobilayer. Physical Review X, 2021, 11(3): 031033 https://doi.org/10.1103/PhysRevX.11.031033
39
M Brotons-Gisbert , H Baek , A Molina-Sánchez , A Campbell , E Scerri , D White , K Watanabe , T Taniguchi , C Bonato , B D Gerardot . Spin-layer locking of interlayer excitons trapped in Moiré potentials. Nature Materials, 2020, 19(6): 630–636 https://doi.org/10.1038/s41563-020-0687-7
40
H Yu , G B Liu , J Tang , X Xu , W Yao . Moiré excitons: from programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. Science Advances, 2017, 3(11): e1701696 https://doi.org/10.1126/sciadv.1701696
41
F A Rasmussen , K S Thygesen . Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. Journal of Physical Chemistry C, 2015, 119(23): 13169–13183 https://doi.org/10.1021/acs.jpcc.5b02950
42
X Yin , C S Tang , Y Zheng , J Gao , J Wu , H Zhang , M Chhowalla , W Chen , A T S Wee . Recent developments in 2D transition metal dichalcogenides: phase transition and applications of the (quasi-)metallic phases. Chemical Society Reviews, 2021, 50(18): 10087–10115 https://doi.org/10.1039/D1CS00236H
43
Y Li , L Su , Y Lu , Q Luo , P Liang , H Shu , X Chen . High-throughput screening of phase-engineered atomically thin transition-metal dichalcogenides for van der Waals contacts at the schottky-mott limit. InfoMat, 2023, 5(7): e12407 https://doi.org/10.1002/inf2.12407
44
S Manzeli , D Ovchinnikov , D Pasquier , O V Yazyev , A Kis . 2D transition metal dichalcogenides. Nature Reviews. Materials, 2017, 2(8): 17033 https://doi.org/10.1038/natrevmats.2017.33
45
K F Mak , C Lee , J Hone , J Shan , T F Heinz . Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters, 2010, 105(13): 136805 https://doi.org/10.1103/PhysRevLett.105.136805
46
A Splendiani , L Sun , Y Zhang , T Li , J Kim , C Y Chim , G Galli , F Wang . Emerging photoluminescence in monolayer MoS2. Nano Letters, 2010, 10(4): 1271–1275 https://doi.org/10.1021/nl903868w
47
D Xiao , G B Liu , W Feng , X Xu , W Yao . Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Physical Review Letters, 2012, 108(19): 196802 https://doi.org/10.1103/PhysRevLett.108.196802
48
K F Mak , K He , J Shan , T F Heinz . Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotechnology, 2012, 7(8): 494–498 https://doi.org/10.1038/nnano.2012.96
49
M Koperski , M R Molas , A Arora , K Nogajewski , M Bartos , J Wyzula , D Vaclavkova , P Kossacki , M Potemski . Orbital, spin and valley contributions to zeeman splitting of excitonic resonances in MoSe2, WSe2 and WS2 monolayers. 2D Materials, 2018, 6(1): 015001
50
X X Zhang , Y You , S Y F Zhao , T F Heinz . Experimental evidence for dark excitons in monolayer WSe2. Physical Review Letters, 2015, 115(25): 257403 https://doi.org/10.1103/PhysRevLett.115.257403
51
Z Ye , T Cao , K OʼBrien , H Zhu , X Yin , Y Wang , S G Louie , X Zhang . Probing excitonic dark states in single-layer tungsten disulphide. Nature, 2014, 513(7517): 214–218 https://doi.org/10.1038/nature13734
52
M R Molas , C Faugeras , A O Slobodeniuk , K Nogajewski , M Bartos , D M Basko , M Potemski . Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides. 2D Materials, 2017, 4(2): 021003
53
A Arora , K Nogajewski , M Molas , M Koperski , M Potemski . Exciton band structure in layered MoSe2: from a monolayer to the bulk limit. Nanoscale, 2015, 7(48): 20769–20775 https://doi.org/10.1039/C5NR06782K
54
K Hao , R Shreiner , A Kindseth , A A High . Optically controllable magnetism in atomically thin semiconductors. Science Advances, 2022, 8(39): eabq7650 https://doi.org/10.1126/sciadv.abq7650
55
Z Li , Y Xiao , Y Gong , Z Wang , Y Kang , S Zu , P M Ajayan , P Nordlander , Z Fang . Active light control of the MoS2 monolayer exciton binding energy. ACS Nano, 2015, 9(10): 10158–10164 https://doi.org/10.1021/acsnano.5b03764
56
A Chernikov , T C Berkelbach , H M Hill , A Rigosi , Y Li , B Aslan , D R Reichman , M S Hybertsen , T F Heinz . Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2. Physical Review Letters, 2014, 113(7): 076802 https://doi.org/10.1103/PhysRevLett.113.076802
57
E J Sie , J W McIver , Y H Lee , L Fu , J Kong , N Gedik . Valley-selective optical stark effect in monolayer WS2. Nature Materials, 2015, 14(3): 290–294 https://doi.org/10.1038/nmat4156
58
R Shreiner , K Hao , A Butcher , A A High . Electrically controllable chirality in a nanophotonic interface with a two-dimensional semiconductor. Nature Photonics, 2022, 16(4): 330–336 https://doi.org/10.1038/s41566-022-00971-7
59
G Aivazian , Z Gong , A M Jones , R L Chu , J Yan , D G Mandrus , C Zhang , D Cobden , W Yao , X Xu . Magnetic control of valley pseudospin in monolayer WSe2. Nature Physics, 2015, 11(2): 148–152 https://doi.org/10.1038/nphys3201
60
H Zeng , J Dai , W Yao , D Xiao , X Cui . Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotechnology, 2012, 7(8): 490–493 https://doi.org/10.1038/nnano.2012.95
61
T Cao , G Wang , W Han , H Ye , C Zhu , J Shi , Q Niu , P Tan , E Wang , B Liu . et al.. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Communications, 2012, 3(1): 887 https://doi.org/10.1038/ncomms1882
62
A M Jones , H Yu , N J Ghimire , S Wu , G Aivazian , J S Ross , B Zhao , J Yan , D G Mandrus , D Xiao . et al.. Optical generation of excitonic valley coherence in monolayer WSe2. Nature Nanotechnology, 2013, 8(9): 634–638 https://doi.org/10.1038/nnano.2013.151
63
F Mujeeb , P Chakrabarti , V Mahamiya , A Shukla , S Dhar . Influence of defects on the valley polarization properties of monolayer MoS2 grown by chemical vapor deposition. Physical Review. B, 2023, 107(11): 115429 https://doi.org/10.1103/PhysRevB.107.115429
64
C Mai , A Barrette , Y Yu , Y G Semenov , K W Kim , L Cao , K Gundogdu . Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. Nano Letters, 2014, 14(1): 202–206 https://doi.org/10.1021/nl403742j
65
E J Sie , C H Lui , Y H Lee , L Fu , J Kong , N Gedik . Large, valley-exclusive bloch-siegert shift in monolayer WS2. Science, 2017, 355(6329): 1066–1069 https://doi.org/10.1126/science.aal2241
66
G Scuri , T I Andersen , Y Zhou , D S Wild , J Sung , R J Gelly , D Bérubé , H Heo , L Shao , A Y Joe . et al.. Electrically tunable valley dynamics in twisted WSe2/WSe2 bilayers. Physical Review Letters, 2020, 124(21): 217403 https://doi.org/10.1103/PhysRevLett.124.217403
67
A Srivastava , M Sidler , A V Allain , D S Lembke , A Kis , A Imamoğlu . Valley zeeman effect in elementary optical excitations of monolayer WSe2. Nature Physics, 2015, 11(2): 141–147 https://doi.org/10.1038/nphys3203
68
A Arora , T Deilmann , P Marauhn , M Drüppel , R Schneider , M R Molas , D Vaclavkova , S Vasconcellos . Valley-contrasting optics of interlayer excitons in Mo- and W-based bulk transition metal dichalcogenides. Nanoscale, 2018, 10(33): 15571–15577 https://doi.org/10.1039/C8NR03764G
69
M Fortin-Deschenes , K Watanabe , T Taniguchi , F Xia . Van der Waals epitaxy of tunable Moiré enabled by alloying. Nature Materials, 2023, 22(10): 1–8 https://doi.org/10.1038/s41563-023-01596-z
70
S Conti , A Chaves , T Pandey , L Covaci , F M Peeters , D Neilson , M V Milosevic . Flattening conduction and valence bands for interlayer excitons in a Moiré MoS2/WSe2 heterobilayer. Nanoscale, 2023, 15(34): 14032–14042 https://doi.org/10.1039/D3NR01183F
71
C Ge , D Zhang , F Xiao , H Zhao , M He , L Huang , S Hou , Q Tong , A Pan , X Wang . Observation and modulation of high-temperature Moiré-locale excitons in van der Waals heterobilayers. ACS Nano, 2023, 17(16): 16115–16122 https://doi.org/10.1021/acsnano.3c04943
72
F Li , Y Wang , Y Liang , Y Dai , B Huang , W Wei . Direct formation of interlayer excitons in MoSSe/WSSe van der Waals heterobilayer. Journal of Physics Condensed Matter, 2023, 35(30): 304005 https://doi.org/10.1088/1361-648X/accfdb
73
S Y Lim , H G Kim , Y W Choi , T Taniguchi , K Watanabe , H J Choi , H Cheong . Modulation of phonons and excitons due to Moiré potentials in twisted bilayer of WSe2/MoSe2. ACS Nano, 2023, 17(14): 13938–13947 https://doi.org/10.1021/acsnano.3c03883
74
C Louca , A Genco , S Chiavazzo , T P Lyons , S Randerson , C Trovatello , P Claronino , R Jayaprakash , X Hu , J Howarth . et al.. Interspecies exciton interactions lead to enhanced nonlinearity of dipolar excitons and polaritons in MoS2 homobilayers. Nature Communications, 2023, 14(1): 3818 https://doi.org/10.1038/s41467-023-39358-9
75
V O Özçelik , J G Azadani , C Yang , S J Koester , T Low . Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Physical Review. B, 2016, 94(3): 035125 https://doi.org/10.1103/PhysRevB.94.035125
76
Y S Kim , S Kang , J P So , J C Kim , K Kim , S Yang , Y Jung , Y Shin , S Lee , D Lee . et al.. Atomic-layer-confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides. Science Advances, 2021, 7(13): eabd7921 https://doi.org/10.1126/sciadv.abd7921
77
C Zhang , C Gong , Y Nie , K-A Min , C Liang , Y J Oh , H Zhang , W Wang , S Hong , L Colombo . et al.. Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in van der Waals heterostructures. 2D Materials, 2016, 4(1): 015026
78
K Xu , Y Xu , H Zhang , B Peng , H Shao , G Ni , J Li , M Yao , H Lu , H Zhu . et al.. The role of Andersonʼs rule in determining electronic, optical and transport properties of transition metal dichalcogenide heterostructures. Physical Chemistry Chemical Physics, 2018, 20(48): 30351–30364 https://doi.org/10.1039/C8CP05522J
79
Y Guo , J Robertson . Band engineering in transition metal dichalcogenides: stacked versus lateral heterostructures. Applied Physics Letters, 2016, 108(23): 233104 https://doi.org/10.1063/1.4953169
80
N R Wilson , P V Nguyen , K Seyler , P Rivera , A J Marsden , Z P L Laker , G C Constantinescu , V Kandyba , A Barinov , N D M Hine . et al.. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Science Advances, 2017, 3(2): e1601832 https://doi.org/10.1126/sciadv.1601832
81
M H Chiu , C Zhang , H W Shiu , C P Chuu , C H Chen , C Y S Chang , C H Chen , M Y Chou , C K Shih , L J Li . Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nature Communications, 2015, 6(1): 7666 https://doi.org/10.1038/ncomms8666
82
H Zeng , X Liu , H Zhang , X Cheng . New theoretical insights into the photoinduced carrier transfer dynamics in WS2/WSe2 van der Waals heterostructures. Physical Chemistry Chemical Physics, 2021, 23(1): 694–701 https://doi.org/10.1039/D0CP04517A
83
L Wu , C Cong , J Shang , W Yang , Y Chen , J Zhou , W Ai , Y Wang , S Feng , H Zhang . et al.. Raman scattering investigation of twisted WS2/MoS2 heterostructures: interlayer mechanical coupling versus charge transfer. Nano Research, 2021, 14(7): 2215–2223 https://doi.org/10.1007/s12274-020-3193-y
84
T Zheng , Y C Lin , N Rafizadeh , D B Geohegan , Z Ni , K Xiao , H Zhao . Janus monolayers for ultrafast and directional charge transfer in transition metal dichalcogenide heterostructures. ACS Nano, 2022, 16(3): 4197–4205 https://doi.org/10.1021/acsnano.1c10082
85
T R Kafle , B Kattel , S D Lane , T Wang , H Zhao , W L Chan . Charge transfer exciton and spin flipping at organic transition-metal dichalcogenide interfaces. ACS Nano, 2017, 11(10): 10184–10192 https://doi.org/10.1021/acsnano.7b04751
86
G Froehlicher , E Lorchat , S Berciaud . Charge versus energy transfer in atomically thin graphene-transition metal dichalcogenide van der Waals heterostructures. Physical Review X, 2018, 8(1): 011007 https://doi.org/10.1103/PhysRevX.8.011007
87
V R Policht , M Russo , F Liu , C Trovatello , M Maiuri , Y Bai , X Zhu , S Dal Conte , G Cerullo . Dissecting interlayer hole and electron transfer in transition metal dichalcogenide heterostructures via two-dimensional electronic spectroscopy. Nano Letters, 2021, 21(11): 4738–4743 https://doi.org/10.1021/acs.nanolett.1c01098
88
X Hong , J Kim , S F Shi , Y Zhang , C Jin , Y Sun , S Tongay , J Wu , Y Zhang , F Wang . Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nature Nanotechnology, 2014, 9(9): 682–686 https://doi.org/10.1038/nnano.2014.167
89
K Tran , G Moody , F Wu , X Lu , J Choi , K Kim , A Rai , D A Sanchez , J Quan , A Singh . et al.. Evidence for Moiré excitons in van der waals heterostructures. Nature, 2019, 567(7746): 71–75 https://doi.org/10.1038/s41586-019-0975-z
90
E Liu , E Barré , Baren J van , M Wilson , T Taniguchi , K Watanabe , Y T Cui , N M Gabor , T F Heinz , Y C Chang , C H Lui . Signatures of Moiré trions in WSe2/MoSe2 heterobilayers. Nature, 2021, 594(7861): 46–50 https://doi.org/10.1038/s41586-021-03541-z
91
P Rivera , J R Schaibley , A M Jones , J S Ross , S Wu , G Aivazian , P Klement , K Seyler , G Clark , N J Ghimire . et al.. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nature Communications, 2015, 6(1): 6242 https://doi.org/10.1038/ncomms7242
92
M Baranowski , A Surrente , L Klopotowski , J M Urban , N Zhang , D K Maude , K Wiwatowski , S Mackowski , Y C Kung , D Dumcenco . et al.. Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der Waals heterostructure. Nano Letters, 2017, 17(10): 6360–6365 https://doi.org/10.1021/acs.nanolett.7b03184
93
K Shinokita , K Watanabe , T Taniguchi , K Matsuda . Valley relaxation of the Moiré excitons in a WSe2/MoSe2 heterobilayer. ACS Nano, 2022, 16(10): 16862–16868 https://doi.org/10.1021/acsnano.2c06813
94
W Li , X Lu , J Wu , A Srivastava . Optical control of the valley zeeman effect through many-exciton interactions. Nature Nanotechnology, 2021, 16(2): 148–152 https://doi.org/10.1038/s41565-020-00804-0
95
E M Alexeev , A Catanzaro , O V Skrypka , P K Nayak , S Ahn , S Pak , J Lee , J I Sohn , K S Novoselov , H S Shin . et al.. Imaging of interlayer coupling in van der waals heterostructures using a bright-field optical microscope. Nano Letters, 2017, 17(9): 5342–5349 https://doi.org/10.1021/acs.nanolett.7b01763
96
D H Luong , H S Lee , G P Neupane , S Roy , G Ghimire , J H Lee , Q A Vu , Y H Lee . Tunneling photocurrent assisted by interlayer excitons in staggered van der Waals hetero-bilayers. Advanced Materials, 2017, 29(33): 1701512 https://doi.org/10.1002/adma.201701512
97
Z Sun , A Ciarrocchi , F Tagarelli , J F Gonzalez Marin , K Watanabe , T Taniguchi , A Kis . Excitonic transport driven by repulsive dipolar interaction in a van der Waals heterostructure. Nature Photonics, 2022, 16(1): 79–85 https://doi.org/10.1038/s41566-021-00908-6
98
I Schwartz , Y Shimazaki , C Kuhlenkamp , K Watanabe , T Taniguchi , M Kroner , A Imamoğlu . Electrically tunable feshbach resonances in twisted bilayer semiconductors. Science, 2021, 374(6565): 336–340 https://doi.org/10.1126/science.abj3831
99
R Ya Kezerashvili , A Spiridonova . Magnetoexcitons in transition metal dichalcogenides monolayers, bilayers, and van der Waals heterostructures. Physical Review Research, 2021, 3(3): 033078 https://doi.org/10.1103/PhysRevResearch.3.033078
100
S Latini , K T Winther , T Olsen , K S Thygesen . Interlayer excitons and band alignment in MoS2/hBN/WSe2 van der Waals heterostructures. Nano Letters, 2017, 17(2): 938–945 https://doi.org/10.1021/acs.nanolett.6b04275
101
H Zhou , Y Zhao , W Tao , Y Li , Q Zhou , H Zhu . Controlling exciton and valley dynamics in two-dimensional heterostructures with atomically precise interlayer proximity. ACS Nano, 2020, 14(4): 4618–4625 https://doi.org/10.1021/acsnano.0c00218
102
Y Shimazaki , I Schwartz , K Watanabe , T Taniguchi , M Kroner , A Imamoğlu . Strongly correlated electrons and hybrid excitons in a Moiré heterostructure. Nature, 2020, 580(7804): 472–477 https://doi.org/10.1038/s41586-020-2191-2
103
L Ma , P X Nguyen , Z Wang , Y Zeng , K Watanabe , T Taniguchi , A H MacDonald , K F Mak , J Shan . Strongly correlated excitonic insulator in atomic double layers. Nature, 2021, 598(7882): 585–589 https://doi.org/10.1038/s41586-021-03947-9
104
D A Ruiz-Tijerina , V FalʼKo . Interlayer hybridization and Moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Physical Review. B, 2019, 99(12): 125424 https://doi.org/10.1103/PhysRevB.99.125424
105
K L Seyler , P Rivera , H Yu , N P Wilson , E L Ray , D G Mandrus , J Yan , W Yao , X Xu . Signatures of Moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567(7746): 66–70 https://doi.org/10.1038/s41586-019-0957-1
106
K Wu , H Zhong , Q Guo , J Tang , J Zhang , L Qian , Z Shi , C Zhang , S Yuan , S Zhang . et al.. Identification of twist-angle-dependent excitons in WS2/WSe2 heterobilayers. National Science Review, 2022, 9(6): nwab135 https://doi.org/10.1093/nsr/nwab135
107
E Marcellina , X Liu , Z Hu , A Fieramosca , Y Huang , W Du , S Liu , J Zhao , K Watanabe , T Taniguchi . et al.. Evidence for Moiré trions in twisted MoSe2 homobilayers. Nano Letters, 2021, 21(10): 4461–4468 https://doi.org/10.1021/acs.nanolett.1c01207
108
N Sokolowski , S Palai , M Dyksik , K Posmyk , M Baranowski , A Surrente , D Maude , F Carrascoso , O Cakiroglu , E Sanchez . et al.. Twist-angle dependent dehybridization of momentum-indirect excitons in MoSe2/MoS2 heterostructures. 2D Materials, 2023, 10(3): 034003
109
Y Yoon , Z Zhang , R Qi , A Y Joe , R Sailus , K Watanabe , T Taniguchi , S Tongay , F Wang . Charge transfer dynamics in MoSe2/hBN/WSe2 heterostructures. Nano Letters, 2022, 22(24): 10140–10146 https://doi.org/10.1021/acs.nanolett.2c04030
110
M Bernardi , C Ataca , M Palummo , J C Grossman . Optical and electronic properties of two-dimensional layered materials. Nanophotonics, 2017, 6(2): 479–493 https://doi.org/10.1515/nanoph-2015-0030
111
X Zhang , Q H Tan , J B Wu , W Shi , P H Tan . Review on the raman spectroscopy of different types of layered materials. Nanoscale, 2016, 8(12): 6435–6450 https://doi.org/10.1039/C5NR07205K
112
Y Gong , J Lin , X Wang , G Shi , S Lei , Z Lin , X Zou , G Ye , R Vajtai , B I Yakobson . et al.. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Materials, 2014, 13(12): 1135–1142 https://doi.org/10.1038/nmat4091
113
W T Hsu , L S Lu , P H Wu , M H Lee , P J Chen , P Y Wu , Y C Chou , H T Jeng , L J Li , M W Chu . et al.. Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers. Nature Communications, 2018, 9(1): 1356 https://doi.org/10.1038/s41467-018-03869-7
114
C Zhang , C P Chuu , X Ren , M Y Li , L J Li , C Jin , M Y Chou , C K Shih . Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Science Advances, 2017, 3(1): e1601459 https://doi.org/10.1126/sciadv.1601459
115
J Hong , Z Hu , M Probert , K Li , D Lv , X Yang , L Gu , N Mao , Q Feng , L Xie . et al.. Exploring atomic defects in molybdenum disulphide monolayers. Nature Communications, 2015, 6(1): 6293 https://doi.org/10.1038/ncomms7293
116
D Rhodes , S H Chae , R Ribeiro-Palau , J Hone . Disorder in van der waals heterostructures of 2D materials. Nature Materials, 2019, 18(6): 541–549 https://doi.org/10.1038/s41563-019-0366-8
117
C R Dean , A F Young , I Meric , C Lee , L Wang , S Sorgenfrei , K Watanabe , T Taniguchi , P Kim , K L Shepard . et al.. Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology, 2010, 5(10): 722–726 https://doi.org/10.1038/nnano.2010.172
118
F Pizzocchero , L Gammelgaard , B S Jessen , J M Caridad , L Wang , J Hone , P Bøggild , T J Booth . The hot pick-up technique for batch assembly of van der Waals heterostructures. Nature Communications, 2016, 7(1): 1–10 https://doi.org/10.1038/ncomms11894
119
A V Kretinin , Y Cao , J S Tu , G L Yu , R Jalil , K S Novoselov , S J Haigh , A Gholinia , A Mishchenko , M Lozada . et al.. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Letters, 2014, 14(6): 3270–3276 https://doi.org/10.1021/nl5006542
120
C H Lui , Z Ye , C Ji , K C Chiu , C T Chou , T I Andersen , C Means-Shively , H Anderson , J M Wu , T Kidd . et al.. Observation of interlayer phonon modes in van der Waals heterostructures. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(16): 165403 https://doi.org/10.1103/PhysRevB.91.165403
121
F Liu , W Wu , Y Bai , S H Chae , Q Li , J Wang , J Hone , X Y Zhu . Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science, 2020, 367(6480): 903–906 https://doi.org/10.1126/science.aba1416
122
Y Huang , Y H Pan , R Yang , L H Bao , L Meng , H L Luo , Y Q Cai , G D Liu , W J Zhao , Z Zhou . et al.. Universal mechanical exfoliation of large-area 2D crystals. Nature Communications, 2020, 11(1): 2453 https://doi.org/10.1038/s41467-020-16266-w
123
J Shim , S H Bae , W Kong , D Lee , K Qiao , D Nezich , Y J Park , R Zhao , S Sundaram , X Li . et al.. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science, 2018, 362(6415): 665–670 https://doi.org/10.1126/science.aat8126
124
A Ciarrocchi , F Tagarelli , A Avsar , A Kis . Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics. Nature Reviews. Materials, 2022, 7(6): 449–464 https://doi.org/10.1038/s41578-021-00408-7
125
A Ciarrocchi , D Unuchek , A Avsar , K Watanabe , T Taniguchi , A Kis . Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nature Photonics, 2019, 13(2): 131–136 https://doi.org/10.1038/s41566-018-0325-y
126
A Ripin , R Peng , X Zhang , S Chakravarthi , M He , X Xu , K M Fu , T Cao , M Li . Tunable phononic coupling in excitonic quantum emitters. Nature Nanotechnology, 2023, 18(6): 1020–1026 https://doi.org/10.1038/s41565-023-01410-6
127
Y Chen , Z Liu , J Li , X Cheng , J Ma , H Wang , D Li . Robust interlayer coupling in two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(8): 10258–10264 https://doi.org/10.1021/acsnano.0c03624
128
M Kremser , M Brotons-Gisbert , J Knörzer , J Gückelhorn , M Meyer , M Barbone , A V Stier , B D Gerardot , K Müller , J J Finley . Discrete interactions between a few interlayer excitons trapped at a MoSe2-WSe2 heterointerface. npj 2D Materials and Applications, 2020, 4(1): 1–6
129
X Sun , Y Zhu , H Qin , B Liu , Y Tang , T Lü , S Rahman , T Yildirim , Y Lu . Enhanced interactions of interlayer excitons in free-standing heterobilayers. Nature, 2022, 610(7932): 478–484 https://doi.org/10.1038/s41586-022-05193-z
130
F Wu , T Lovorn , A H MacDonald . Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Physical Review. B, 2018, 97(3): 035306 https://doi.org/10.1103/PhysRevB.97.035306
131
H Yu , Y Wang , Q Tong , X Xu , W Yao . Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Physical Review Letters, 2015, 115(18): 187002 https://doi.org/10.1103/PhysRevLett.115.187002
132
E M Alexeev , D A Ruiz-Tijerina , M Danovich , M J Hamer , D J Terry , P K Nayak , S Ahn , S Pak , J Lee , J I Sohn . et al.. Resonantly hybridized excitons in Moiré superlattices in van der Waals heterostructures. Nature, 2019, 567(7746): 81–86 https://doi.org/10.1038/s41586-019-0986-9
133
L Zhang , Z Zhang , F Wu , D Wang , R Gogna , S Hou , K Watanabe , T Taniguchi , K Kulkarni , T Kuo . Twist-angle dependence of Moiré excitons in WS2/MoSe2 heterobilayers. Nature Communications, 2020, 11(1): 5888 https://doi.org/10.1038/s41467-020-19466-6
134
P Rivera , K L Seyler , H Yu , J R Schaibley , J Yan , D G Mandrus , W Yao , X Xu . Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science, 2016, 351(6274): 688–691 https://doi.org/10.1126/science.aac7820
135
J Förste , N V Tepliakov , S Y Kruchinin , J Lindlau , V Funk , M Förg , K Watanabe , T Taniguchi , A S Baimuratov , A Högele . Exciton g-factors in monolayer and bilayer WSe2 from experiment and theory. Nature Communications, 2020, 11(1): 4539 https://doi.org/10.1038/s41467-020-18019-1
136
Z Li , J Förste , K Watanabe , T Taniguchi , B Urbaszek , A S Baimuratov , I C Gerber , A Högele , I Bilgin . Stacking-dependent exciton multiplicity in WSe2 bilayers. Physical Review. B, 2022, 106(4): 045411 https://doi.org/10.1103/PhysRevB.106.045411
137
Z Li , T Wang , S Miao , Y Li , Z Lu , C Jin , Z Lian , Y Meng , M Blei , T Taniguchi . et al.. Phonon-exciton interactions in WSe2 under a quantizing magnetic field. Nature Communications, 2020, 11(1): 3104 https://doi.org/10.1038/s41467-020-16934-x
138
E Liu , J van Baren , T Taniguchi , K Watanabe , Y C Chang , C H Lui . Landau-quantized excitonic absorption and luminescence in a monolayer valley semiconductor. Physical Review Letters, 2020, 124(9): 097401 https://doi.org/10.1103/PhysRevLett.124.097401
139
M He , P Rivera , D Van Tuan , N P Wilson , M Yang , T Taniguchi , K Watanabe , J Yan , D G Mandrus , H Yu . et al.. Valley phonons and exciton complexes in a monolayer semiconductor. Nature Communications, 2020, 11(1): 618 https://doi.org/10.1038/s41467-020-14472-0
140
P E Junior Faria , J Fabian . Signatures of electric field and layer separation effects on the spin-valley physics of MoSe2/WSe2 heterobilayers: from energy bands to dipolar excitons. Nanomaterials, 2023, 13(7): 1187 https://doi.org/10.3390/nano13071187
141
D S Smirnov , J Holler , M Kempf , J Zipfel , P Nagler , M Ballottin , A A Mitioglu , A Chernikov , P C M Christianen , C Schueller . et al.. Valley-magnetophonon resonance for interlayer excitons. 2D Materials, 2022, 9(4): 045016
142
P Nagler , M V Ballottin , A A Mitioglu , F Mooshammer , N Paradiso , C Strunk , R Huber , A Chernikov , P C M Christianen , C Schüller . et al.. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nature Communications, 2017, 8(1): 1551 https://doi.org/10.1038/s41467-017-01748-1
143
T Wang , S Miao , Z Li , Y Meng , Z Lu , Z Lian , M Blei , T Taniguchi , K Watanabe , S Tongay . et al.. Giant valley-zeeman splitting from spin-singlet and spin-triplet interlayer excitons in WSe2/MoSe2 heterostructure. Nano Letters, 2020, 20(1): 694–700 https://doi.org/10.1021/acs.nanolett.9b04528
144
H Baek , M Brotons-Gisbert , Z X Koong , A Campbell , M Rambach , K Watanabe , T Taniguchi , B D Gerardot . Highly energy-tunable quantum light from Moiré-trapped excitons. Science Advances, 2020, 6(37): eaba8526 https://doi.org/10.1126/sciadv.aba8526
145
T Woźniak , P E Junior Faria , G Seifert , A Chaves , J Kunstmann . Exciton g factors of van der Waals heterostructures from first-principles calculations. Physical Review. B, 2020, 101(23): 235408 https://doi.org/10.1103/PhysRevB.101.235408
146
W Li , X Lu , S Dubey , L Devenica , A Srivastava . Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nature Materials, 2020, 19(6): 624–629 https://doi.org/10.1038/s41563-020-0661-4
147
B Miller , A Steinhoff , B Pano , J Klein , F Jahnke , A Holleitner , U Wurstbauer . Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Letters, 2017, 17(9): 5229–5237 https://doi.org/10.1021/acs.nanolett.7b01304
148
J Xia , J Yan , Z Wang , Y He , Y Gong , W Chen , T C Sum , Z Liu , P M Ajayan , Z Shen . Strong coupling and pressure engineering in WSe2-MoSe2 heterobilayers. Nature Physics, 2021, 17(1): 92–98 https://doi.org/10.1038/s41567-020-1005-7
149
H Moon , G Grosso , C Chakraborty , C Peng , T Taniguchi , K Watanabe , D Englund . Dynamic exciton funneling by local strain control in a monolayer semiconductor. Nano Letters, 2020, 20(9): 6791–6797 https://doi.org/10.1021/acs.nanolett.0c02757
150
Y He , Y Yang , Z Zhang , Y Gong , W Zhou , Z Hu , G Ye , X Zhang , E Bianco , S Lei . et al.. Strain-induced electronic structure changes in stacked van der Waals heterostructures. Nano Letters, 2016, 16(5): 3314–3320 https://doi.org/10.1021/acs.nanolett.6b00932
151
X B Lu , X Q Li , L Yang . Modulated interlayer exciton properties in a two-dimensional Moiré crystal. Physical Review. B, 2019, 100(15): 155416 https://doi.org/10.1103/PhysRevB.100.155416
152
W T Geng , V Wang , Y C Liu , T Ohno , J Nara . Moiré potential, lattice corrugation, and band gap spatial variation in a twist-free MoTe2/MoS2 heterobilayer. Journal of Physical Chemistry Letters, 2020, 11(7): 2637–2646 https://doi.org/10.1021/acs.jpclett.0c00605
153
C Jin , E C Regan , A Yan , M Iqbal Bakti Utama , D Wang , S Zhao , Y Qin , S Yang , Z Zheng , S Shi . et al.. Observation of Moiré excitons in WSe2/WS2 heterostructure superlattices. Nature, 2019, 567(7746): 76–80 https://doi.org/10.1038/s41586-019-0976-y
154
B Wu , H Zheng , S Li , J Ding , J He , Y Zeng , K Chen , Z Liu , S Chen , A Pan . et al.. Evidence for Moiré intralayer excitons in twisted WSe2/WSe2 homobilayer superlattices. Light, Science & Applications, 2022, 11(1): 166 https://doi.org/10.1038/s41377-022-00854-0
155
Z Li , X Lu , D F Cordovilla Leon , Z Lyu , H Xie , J Hou , Y Lu , X Guo , A Kaczmarek , T Taniguchi . et al.. Interlayer exciton transport in MoSe2/WSe2 heterostructures. ACS Nano, 2021, 15(1): 1539–1547 https://doi.org/10.1021/acsnano.0c08981
156
J Wang , Q Shi , E M Shih , L Zhou , W Wu , Y Bai , D Rhodes , K Barmak , J Hone , C R Dean . et al.. Diffusivity reveals three distinct phases of interlayer excitons in MoSe2/WSe2 heterobilayers. Physical Review Letters, 2021, 126(10): 106804 https://doi.org/10.1103/PhysRevLett.126.106804
157
L Zhang , F Wu , S Hou , Z Zhang , Y H Chou , K Watanabe , T Taniguchi , S R Forrest , H Deng . Van der Waals heterostructure polaritons with Moiré-induced nonlinearity. Nature, 2021, 591(7848): 61–65 https://doi.org/10.1038/s41586-021-03228-5
158
Q Tong , H Yu , Q Zhu , Y Wang , X Xu , W Yao . Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nature Physics, 2017, 13(4): 356–362 https://doi.org/10.1038/nphys3968
159
S Zhao , Z Li , X Huang , A Rupp , J Göser , I A Vovk , S Y Kruchinin , K Watanabe , T Taniguchi , I Bilgin . et al.. Excitons in mesoscopically reconstructed Moiré heterostructures. Nature Nanotechnology, 2023, 18(6): 572–579 https://doi.org/10.1038/s41565-023-01356-9
160
N P Wilson , W Yao , J Shan , X Xu . Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature, 2021, 599(7885): 383–392 https://doi.org/10.1038/s41586-021-03979-1
161
D Chen , Z Lian , X Huang , Y Su , M Rashetnia , L Yan , M Blei , T Taniguchi , K Watanabe , S Tongay . et al.. Tuning Moiré excitons and correlated electronic states through layer degree of freedom. Nature Communications, 2022, 13(1): 4810 https://doi.org/10.1038/s41467-022-32493-9
162
J Sung , Y Zhou , G Scuri , V Zólyomi , T I Andersen , H Yoo , D S Wild , A Y Joe , R J Gelly , H Heo . et al.. Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nature Nanotechnology, 2020, 15(9): 750–754 https://doi.org/10.1038/s41565-020-0728-z
163
H Yu , W Yao . Luminescence anomaly of dipolar valley excitons in homobilayer semiconductor Moiré superlattices. Physical Review X, 2021, 11(2): 021042 https://doi.org/10.1103/PhysRevX.11.021042
164
S Brem , K Q Lin , R Gillen , J M Bauer , J Maultzsch , J M Lupton , E Malic . Hybridized intervalley Moiré excitons and flat bands in twisted WSe2 bilayers. Nanoscale, 2020, 12(20): 11088–11094 https://doi.org/10.1039/D0NR02160A
165
Y Tang , L Li , T Li , Y Xu , S Liu , K Barmak , K Watanabe , T Taniguchi , A H MacDonald , J Shan . et al.. Simulation of hubbard model physics in WSe2/WS2 Moiré superlattices. Nature, 2020, 579(7799): 353–358 https://doi.org/10.1038/s41586-020-2085-3
166
E Y Paik , L Zhang , G W Burg , R Gogna , E Tutuc , H Deng . Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature, 2019, 576(7785): 80–84 https://doi.org/10.1038/s41586-019-1779-x
167
Y Liu , H Fang , A Rasmita , Y Zhou , J Li , T Yu , Q Xiong , N Zheludev , J Liu , W Gao . Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Science Advances, 2019, 5(4): eaav4506 https://doi.org/10.1126/sciadv.aav4506
168
Q LinH FangY LiuY ZhangM FischerJ LiJ HagelS BremE MalicN Stenger, et al.. A room temperature Moiré interlayer exciton laser. 2023, arXiv: 2302.01266
169
D Unuchek , A Ciarrocchi , A Avsar , K Watanabe , T Taniguchi , A Kis . Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature, 2018, 560(7718): 340–344 https://doi.org/10.1038/s41586-018-0357-y
170
R Peng , A Ripin , Y Ye , J Zhu , C Wu , S Lee , H Li , T Taniguchi , K Watanabe , T Cao . et al.. Long-range transport of 2D excitons with acoustic waves. Nature Communications, 2022, 13(1): 1334 https://doi.org/10.1038/s41467-022-29042-9
171
M Long , E Liu , P Wang , A Gao , H Xia , W Luo , B Wang , J Zeng , Y Fu , K Xu . et al.. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Letters, 2016, 16(4): 2254–2259 https://doi.org/10.1021/acs.nanolett.5b04538
172
S Lukman , L Ding , L Xu , Y Tao , A C Riis-Jensen , G Zhang , Q Y S Wu , M Yang , S Luo , C Hsu . et al.. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nature Nanotechnology, 2020, 15(8): 675–682 https://doi.org/10.1038/s41565-020-0717-2
173
J Yan , X Yang , X Liu , C Du , F Qin , M Yang , Z Zheng , J Li . Van der Waals heterostructures with built-in mie resonances for polarization-sensitive photodetection. Advanced Science, 2023, 10(9): 2207022 https://doi.org/10.1002/advs.202207022
174
J R Schaibley , H Y Yu , G Clark , P Rivera , J S Ross , K L Seyler , W Yao , X D Xu . Valleytronics in 2D materials. Nature Reviews. Materials, 2016, 1(11): 16055 https://doi.org/10.1038/natrevmats.2016.55
175
J Lee , K F Mak , J Shan . Electrical control of the valley hall effect in bilayer MoS2 transistors. Nature Nanotechnology, 2016, 11(5): 421–425 https://doi.org/10.1038/nnano.2015.337
176
N Ubrig , S Jo , M Philippi , D Costanzo , H Berger , A B Kuzmenko , A F Morpurgo . Microscopic origin of the valley hall effect in transition metal dichalcogenides revealed by wavelength-dependent mapping. Nano Letters, 2017, 17(9): 5719–5725 https://doi.org/10.1021/acs.nanolett.7b02666
177
Z Huang , Y Liu , K Dini , Q Tan , Z Liu , H Fang , J Liu , T Liew , W Gao . Robust room temperature valley hall effect of interlayer excitons. Nano Letters, 2020, 20(2): 1345–1351 https://doi.org/10.1021/acs.nanolett.9b04836
178
L Li , L Shao , X Liu , A Gao , H Wang , B Zheng , G Hou , K Shehzad , L Yu , F Miao , Y Shi , Y Xu , X Wang . Room-temperature valleytronic transistor. Nature Nanotechnology, 2020, 15(9): 743–749 https://doi.org/10.1038/s41565-020-0727-0
179
C Jiang , A Rasmita , H Ma , Q Tan , Z Zhang , Z Huang , S Lai , N Wang , S Liu , X Liu . et al.. A room-temperature gate-tunable bipolar valley hall effect in molybdenum disulfide/tungsten diselenide heterostructures. Nature Electronics, 2022, 5(1): 23–27 https://doi.org/10.1038/s41928-021-00686-7
180
L Zhang , R Gogna , G W Burg , J Horng , E Paik , Y H Chou , K Kim , E Tutuc , H Deng . Highly valley-polarized singlet and triplet interlayer excitons in van der Waals heterostructure. Physical Review. B, 2019, 100(4): 041402 https://doi.org/10.1103/PhysRevB.100.041402
181
T Ye , Y Li , J Li , H Shen , J Ren , C Z Ning , D Li . Nonvolatile electrical switching of optical and valleytronic properties of interlayer excitons. Light, Science & Applications, 2022, 11(1): 23 https://doi.org/10.1038/s41377-022-00718-7
182
Y Hu , X Wen , J Lin , W Yao , Y Chen , J Li , S Chen , L Wang , W Xu , D Li . All-optical valley polarization switch via controlling spin-triplet and spin-singlet interlayer exciton emission in WS2/WSe2 heterostructure. Nano Letters, 2023, 23(14): 6581–6587 https://doi.org/10.1021/acs.nanolett.3c01698