1. School of Materials & Environment Engineering, Chengdu Technological University, Chengdu 611730, China 2. School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi’an 710021, China 3. Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China 4. Institute of Materials, Henan Key Laboratory of Advanced Conductor Materials, Henan Academy of Sciences, Zhengzhou 450046, China 5. Leibniz Institute for Solid State and Materials Research (IFW), Dresden e.V., Dresden 01069, Germany
Lithiumsulfur batteries have been intensively studied due to their high theoretical energy density and abundant sulfur resources. However, their commercial application is hindered by the low redox kinetics and high sulfur losses. In principle, in the design of cathodes and separators, the adsorption toward lithium-polysulfides should be enhanced and the conversion of soluble high-order lithium-polysulfides should be catalyzed. Herein, a KV3O8·0.75H2O separator is designed as an effective lithium-polysulfides mediator in lithiumsulfur batteries. The intercalated K+ would enlarge the interlayer spacing of vanadium oxides, preventing the collapse of the layer structure and improving the electrical/ion conductivity of the interface. Moreover, the KV3O8·0.75H2O modified separator possess a prior adsorption and high redox kinetics toward lithium-polysulfides due to the enhanced diffusion kinetics, which guarantees the high-rate capability and efficient utilization of sulfur. As a result, lithiumsulfur batteries exhibit a high capacity of 1362 mAh·g1 and a long lifespan with a low capacity loss of 0.073% per cycle. This work may provide an alternative way to establish a functional separator to balance the adsorption and conversion of polysulfides during the redox back and forth.
收稿日期: 2023-07-11
出版日期: 2024-01-16
Corresponding Author(s):
Hui Liu,Xiaoting Liu,Qiongqiong Lu
引用本文:
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(2): 20.
Yanqi Feng, Hui Liu, Xiaoting Liu, Qiongqiong Lu. Enlarged interlayer of separator coating enabling high-performance lithiumsulfur batteries. Front. Chem. Sci. Eng., 2024, 18(2): 20.
G F Jin , J L Zhang , B Y Dang , F C Wu , J D Li . Engineering zirconium-based metal-organic framework-801 films on carbon cloth as shuttle-inhibiting interlayers for lithium−sulfur batteries. Frontiers of Chemical Science and Engineering, 2022, 16(4): 511–522 https://doi.org/10.1007/s11705-021-2068-4
2
B W Du , Y H Luo , F C Wu , G H Liu , J D Li , W Xue . Continuous amino-functionalized University of Oslo 66 membranes as efficacious polysulfide barriers for lithium−sulfur batteries. Frontiers of Chemical Science and Engineering, 2023, 17(2): 194–205 https://doi.org/10.1007/s11705-022-2206-7
3
X Hong , R Wang , Y Liu , J Fu , J Liang , S Dou . Recent advances in chemical adsorption and catalytic conversion materials for LiS batteries. Journal of Energy Chemistry, 2020, 42: 144–168 https://doi.org/10.1016/j.jechem.2019.07.001
4
T Zhang , L Zhang , L Hou . MXenes: synthesis strategies and lithium−sulfur battery applications. eScience, 2022, 2(2): 164–182
5
J Zhang , M N Li , A H Younus , B S Wang , Q H Weng , Y Zhang , S G Zhang . An overview of the characteristics of advanced binders for high-performance Li–S batteries. Nano Materials Science, 2021, 3(2): 124–139 https://doi.org/10.1016/j.nanoms.2020.10.006
6
L T Ren , J Liu , H A Pato , Y Wang , X W Lu , A I Chandio , M Y Zhou , W Liu , H J Xu , X M Sun . Rational design of nanoarray structures for lithium–sulfur batteries: recent advances and future prospects. Materials Futures, 2023, 2(4): 042103 https://doi.org/10.1088/2752-5724/ace7e4
7
Y Hu , W Chen , T Lei , Y Jiao , J Huang , A Hu , C Gong , C Yan , X Wang , J Xiong . Strategies toward high-loading lithium–sulfur battery. Advanced Energy Materials, 2020, 10(17): 2000082 https://doi.org/10.1002/aenm.202000082
8
S F Ng , M Y L Lau , W J Ong . Lithium–sulfur battery cathode design: tailoring metal-based nanostructures for robust polysulfide adsorption and catalytic conversion. Advanced Materials, 2021, 33(50): 2008654 https://doi.org/10.1002/adma.202008654
9
S Y Wu , X Li , Y Z Zhang , Q H Guan , J Wang , C Y Shen , H Z Lin , J T Wang , Y L Wang , L Zhan . et al.. Interface engineering of mxene-based heterostructures for lithium−sulfur batteries. Nano Research, 2023, 16(7): 9158–9178 https://doi.org/10.1007/s12274-023-5532-2
10
P Li , H Lv , Z Li , X Meng , Z Lin , R Wang , X Li . The electrostatic attraction and catalytic effect enabled by ionic-covalent organic nanosheets on MXene for separator modification of lithium–sulfur batteries. Advanced Materials, 2021, 33(17): 2007803 https://doi.org/10.1002/adma.202007803
11
X Li , Q Guan , Z Zhuang , Y Zhang , Y Lin , J Wang , C Shen , H Lin , Y Wang , L Zhan . et al.. Ordered mesoporous carbon grafted mxene catalytic heterostructure as Li-ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li–S battery. ACS Nano, 2023, 17(2): 1653–1662 https://doi.org/10.1021/acsnano.2c11663
12
C Li , R Liu , Y Xiao , F Cao , H Zhang . Recent progress of separators in lithium–sulfur batteries. Energy Storage Materials, 2021, 40: 439–460 https://doi.org/10.1016/j.ensm.2021.05.034
13
D Zhu , T Long , B Xu , Y Zhao , H Hong , R Liu , F Meng , J Liu . Recent advances in interlayer and separator engineering for lithium–sulfur batteries. Journal of Energy Chemistry, 2021, 57: 41–60 https://doi.org/10.1016/j.jechem.2020.08.039
14
J D Tang , Q Zhao , F L Li , Z D Hao , X L Xu , Q Q Zhang , J B Liu , Y H Jin , H Wang . Two-dimensional materials towards separator functionalization in advanced Li–S batteries. Nanoscale, 2021, 13(45): 18883–18911 https://doi.org/10.1039/D1NR05489A
15
X X Wang , N P Deng , L Y Wei , Q Yang , H Y Xiang , M Wang , B W Cheng , W M Kang . Recent progress in high-performance lithium sulfur batteries: the emerging strategies for advanced separators/electrolytes based on nanomaterials and corresponding interfaces. Chemistry An Asian Journal, 2021, 16(19): 2852–2870 https://doi.org/10.1002/asia.202100765
16
M Song , H Tan , D L Chao , H J Fan . Recent advances in Zn-ion batteries. Advanced Functional Materials, 2018, 28(41): 1802564 https://doi.org/10.1002/adfm.201802564
17
S Y Zuo , X J Xu , S M Ji , Z S Wang , Z B Liu , J Liu . Cathodes for aqueous Zn-ion batteries: materials, mechanisms, and kinetics. Chemistry A European Journal, 2021, 27(3): 830–860 https://doi.org/10.1002/chem.202002202
18
C Wang , Y Cao , Z Luo , G Li , W Xu , C Xiong , G He , Y Wang , S Li , H Liu , D Fang . Flexible potassium vanadate nanowires on Ti fabric as a binder-free cathode for high-performance advanced lithium-ion battery. Chemical Engineering Journal, 2017, 307: 382–388 https://doi.org/10.1016/j.cej.2016.08.072
19
S Islam , M H Alfaruqi , D Y Putro , V Soundharrajan , B Sambandam , J Jo , S Park , S Lee , V Mathew , J Kim . K+ intercalated V2O5 nanorods with exposed facets as advanced cathodes for high energy and high rate zinc-ion batteries. Journal of Materials Chemistry A, 2019, 7(35): 20335–20347 https://doi.org/10.1039/C9TA05767F
20
F Wan , S Huang , H Cao , Z Niu . Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous zinc-ion batteries. ACS Nano, 2020, 14(6): 6752–6760 https://doi.org/10.1021/acsnano.9b10214
21
N Qiu , Z M Yang , R Xue , Y Wang , Y M Zhu , W Liu . Toward a high-performance aqueous zinc ion battery: potassium vanadate nanobelts and carbon enhanced zinc foil. Nano Letters, 2021, 21(7): 2738–2744 https://doi.org/10.1021/acs.nanolett.0c04539
22
Y Q Yang , Y Tang , G Z Fang , L T Shan , J S Guo , W Y Zhang , C Wang , L B Wang , J Zhou , S Q Liang . Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy & Environmental Science, 2018, 11(11): 3157–3162 https://doi.org/10.1039/C8EE01651H
23
B Sambandam , V Soundharrajan , S Kim , M H Alfaruqi , J Jo , S Kim , V Mathew , Y K Sun , J Kim . K2V6O16·2.7H2O nanorod cathode: an advanced intercalation system for high energy aqueous rechargeable Zn-ion batteries. Journal of Materials Chemistry A, 2018, 6(32): 15530–15539 https://doi.org/10.1039/C8TA02018C
24
R Baddour-Hadjean , L Thanh Nguyen Huynh , D Batyrbekuly , S Bach , J P Pereira-Ramos . Bilayered potassium vanadate K0.5V2O5 as superior cathode material for Na-ion batteries. ChemSusChem, 2019, 12(23): 5192–5198 https://doi.org/10.1002/cssc.201902093
25
W Zhang , C Tang , B Lan , L Chen , W Tang , C Zuo , S Dong , Q An , P Luo . K0.23V2O5 as a promising cathode material for rechargeable aqueous zinc ion batteries with excellent performance. Journal of Alloys and Compounds, 2020, 819: 152971 https://doi.org/10.1016/j.jallcom.2019.152971
26
X Zhang , X Li , Y Zhang , X Li , Q Guan , J Wang , Z Zhuang , Q Zhuang , X Cheng , H Liu . et al.. Accelerated Li+ desolvation for diffusion booster enabling low-temperature sulfur redox kinetics via electrocatalytic carbon-grazfted-CoP porous nanosheets. Advanced Functional Materials, 2023, 33(36): 2302624 https://doi.org/10.1002/adfm.202302624
27
Y H Zhu , Q Zhang , X Yang , E Y Zhao , T Sun , X B Zhang , S Wang , X Q Yu , J M Yan , Q Jiang . Reconstructed orthorhombic V2O5 polyhedra for fast ion diffusion in K-ion batteries. Chem, 2019, 5(1): 168–179 https://doi.org/10.1016/j.chempr.2018.10.004
28
P F Hao , T Zhu , Q Su , J D Lin , R Cui , X X Cao , Y P Wang , A Q Pan . Electrospun single crystalline fork-like K2V8O21 as high-performance cathode materials for lithium-ion batteries. Frontiers in Chemistry, 2018, 6: 195 https://doi.org/10.3389/fchem.2018.00195
29
F Wan , L L Zhang , X Dai , X Y Wang , Z Q Niu , J Chen . Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nature Communications, 2018, 9(1): 1656 https://doi.org/10.1038/s41467-018-04060-8
30
P Hu , M Y Yan , T Zhu , X P Wang , X J Wei , J T Li , L Zhou , Z H Li , L N Chen , L Q Mai . Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life. ACS Applied Materials & Interfaces, 2017, 9(49): 42717–42722 https://doi.org/10.1021/acsami.7b13110
31
Z Q Xie , J W Lai , X P Zhu , Y Wang . Green synthesis of vanadate nanobelts at room temperature for superior aqueous rechargeable zinc-ion batteries. ACS Applied Energy Materials, 2018, 1(11): 6401–6408 https://doi.org/10.1021/acsaem.8b01378
32
Y Q Feng , H Liu , Y Liu , J Q Li . Tunable oxygen deficient in MoO3x/MoO2 heterostructure for enhanced lithium storage properties. International Journal of Energy Research, 2022, 46(5): 5789–5799 https://doi.org/10.1002/er.7522
33
R Chen , Z Q Wang , Z X Chen , P J Wang , G Z Fang , J Zhou , X P Tan , S Q Liang . Synthesis of K0.25V2O5 hierarchical microspheres as a high-rate and long-cycle cathode for lithium metal batteries. Journal of Alloys and Compounds, 2019, 772: 852–860 https://doi.org/10.1016/j.jallcom.2018.09.076
34
R Baddour-Hadjean , A Boudaoud , S Bach , N Emery , J P Pereira-Ramos . A comparative insight of potassium vanadates as positive electrode materials for Li batteries: influence of the long-range and local structure. Inorganic Chemistry, 2014, 53(3): 1764–1772 https://doi.org/10.1021/ic402897d
35
S Bach , A Boudaoud , N Emery , R Baddour-Hadjean , J P Pereira-Ramos . K0.5V2O5: a novel Li intercalation compound as positive electrode material for rechargeable lithium batteries. Electrochimica Acta, 2014, 119: 38–42 https://doi.org/10.1016/j.electacta.2013.12.039
36
Z Peng , Q Wei , S Tan , P He , W Luo , Q An , L Mai . Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries. Chemical Communications, 2018, 54(32): 4041–4044 https://doi.org/10.1039/C8CC00987B
37
Y C Ding , Y Q Peng , W Y Chen , Y J Niu , S G Wu , X X Zhang , L H Hu . V-MOF derived porous V2O5 nanoplates for high performance aqueous zinc-ion battery. Applied Surface Science, 2019, 493: 368–374 https://doi.org/10.1016/j.apsusc.2019.07.026
38
M Singh , P Kumar , G B Reddy . Effect of Ar, O2, and N2 plasma on the growth and composition of vanadium oxide nanostructured thin films. Advanced Materials Interfaces, 2018, 5(18): 1800612 https://doi.org/10.1002/admi.201800612
39
K Cao , H Liu , Y Li , Y Wang , L Jiao . Encapsulating sulfur in δ-MnO2 at room temperature for Li–S battery cathode. Energy Storage Materials, 2017, 9: 78–84 https://doi.org/10.1016/j.ensm.2017.06.012