Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (2): 22   https://doi.org/10.1007/s11705-024-2387-3
  本期目录
High-yield production of porous carbon spheres derived from enzymatic hydrolysis lignin for zinc ion hybrid capacitors
Tao Huang1, Xihong Zu1, Jianhui Ma1, Wenbin Jian1, Xueqing Qiu1,3(), Wenli Zhang1,2,3()
1. Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
2. School of Advanced Manufacturing, Guangdong University of Technology, Jieyang 522000, China
3. Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
 全文: PDF(10085 KB)   HTML
Abstract

The widespread implementation of supercapacitors is hindered by the limited energy density and the pricey porous carbon electrode materials. The cost of porous carbon is a significant factor in the overall cost of supercapacitors, therefore a high carbon yield could effectively mitigate the production cost of porous carbon. This study proposes a method to produce porous carbon spheres through a spray drying technique combined with a carbonization process, utilizing renewable enzymatic hydrolysis lignin as the carbon source and KOH as the activation agent. The purpose of this study is to examine the relationship between the quantity of activation agent and the development of morphology, pore structure, and specific surface area of the obtained porous carbon materials. We demonstrate that this approach significantly enhances the carbon yield of porous carbon, achieving a yield of 22% in contrast to the conventional carbonization-activation method (9%). The samples acquired through this method were found to contain a substantial amount of mesopores, with an average pore size of 1.59 to 1.85 nm and a mesopore ratio of 25.6%. Additionally, these samples showed high specific surface areas, ranging from 1051 to 1831 m2·g−1. Zinc ion hybrid capacitors with lignin-derived porous carbon cathode exhibited a high capacitance of 279 F·g−1 at 0.1 A·g−1 and an energy density of 99.1 Wh·kg−1 when the power density was 80 kW·kg−1. This research presents a novel approach for producing porous carbons with high yield through the utilization of a spray drying approach.

Key wordsenzymatic hydrolysis lignin    porous carbon spheres    spray drying    zinc ion hybrid capacitors
收稿日期: 2023-10-17      出版日期: 2024-01-03
Corresponding Author(s): Xueqing Qiu,Wenli Zhang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(2): 22.
Tao Huang, Xihong Zu, Jianhui Ma, Wenbin Jian, Xueqing Qiu, Wenli Zhang. High-yield production of porous carbon spheres derived from enzymatic hydrolysis lignin for zinc ion hybrid capacitors. Front. Chem. Sci. Eng., 2024, 18(2): 22.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2387-3
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I2/22
Fig.1  
Fig.2  
SampleSBET/(m2·g–1)Vtotal/(cm3·g–1)Vmicro/(cm3·g–1)Vmeso/(cm3·g–1)Vmeso/Vtotal/%Dave/nm
LPC-1-0.21051.40.420.380.037.21.59
LPC-1-11425.60.700.500.1927.11.90
LPC-1-31831.10.890.670.2325.61.95
Tab.1  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 Y Yang , S Bremner , C Menictas , M Kay . Battery energy storage system size determination in renewable energy systems: a review. Renewable & Sustainable Energy Reviews, 2018, 91: 109–125
https://doi.org/10.1016/j.rser.2018.03.047
2 H Zhao , Q Wu , S Hu , H Xu , C N Rasmussen . Review of energy storage system for wind power integration support. Applied Energy, 2015, 137: 545–553
https://doi.org/10.1016/j.apenergy.2014.04.103
3 S Liu , Y Yin , D Ni , K S Hui , M Ma , S Park , K N Hui , C Y Ouyang , S C Jun . New insight into the effect of fluorine doping and oxygen vacancies on electrochemical performance of Co2MnO4 for flexible quasi-solid-state asymmetric supercapacitors. Energy Storage Materials, 2019, 22: 384–396
https://doi.org/10.1016/j.ensm.2019.02.014
4 S Liu , L Kang , S C Jun . Challenges and strategies toward cathode materials for rechargeable potassium-ion batteries. Advanced Materials, 2021, 33(47): 2004689
https://doi.org/10.1002/adma.202004689
5 H D Yoo , S D Han , R D Bayliss , A A Gewirth , B Genorio , N N Rajput , K A Persson , A K Burrell , J Cabana . “Rocking-chair”-type metal hybrid supercapacitors. ACS Applied Materials & Interfaces, 2016, 8(45): 30853–30862
https://doi.org/10.1021/acsami.6b08367
6 M Z Iqbal , U Aziz . Supercapattery: merging of battery-supercapacitor electrodes for hybrid energy storage devices. Journal of Energy Storage, 2022, 46: 103823
https://doi.org/10.1016/j.est.2021.103823
7 R H Xu , P P Ma , G F Liu , Y Qiao , R Y Hu , L Y Liu , M Demir , G H Jiang . Dual-phase coexistence design and advanced electrochemical performance of Cu2MoS4 electrode materials for supercapacitor application. Energy & Fuels, 2023, 37(8): 6158–6167
https://doi.org/10.1021/acs.energyfuels.2c04273
8 Z Jiao , Y Chen , M Du , M Demir , F Yan , Y Zhang , C Wang , M Gu , X Zhang , J Zou . In-situ formation of morphology-controlled cobalt vanadate on coo urchin-like microspheres as asymmetric supercapacitor electrode. Journal of Alloys and Compounds, 2023, 958: 170489
https://doi.org/10.1016/j.jallcom.2023.170489
9 R Y Hu , L Y Liu , J H He , Y Zhou , S B Wu , M X Zheng , M Demir , P P Ma . Preparation and electrochemical properties of bimetallic carbide Fe3Mo3C/Mo2C@carbon nanotubes as negative electrode material for supercapacitor. Journal of Energy Storage, 2023, 72: 108656
https://doi.org/10.1016/j.est.2023.108656
10 H Aydın , Ü Kurtan , B Üstün , S N Koç , E Akgül , M Demir . A review on the recent advancement of metal-boride derived nanostructures for supercapacitors. Journal of Energy Storage, 2023, 72: 108306
https://doi.org/10.1016/j.est.2023.108306
11 H Tang , J Yao , Y Zhu . Recent developments and future prospects for zinc-ion hybrid capacitors: a review. Advanced Energy Materials, 2021, 11(14): 2003994
https://doi.org/10.1002/aenm.202003994
12 Y Wang , S Sun , X Wu , H Liang , W Zhang . Status and opportunities of zinc ion hybrid capacitors: focus on carbon materials, current collectors, and separators. Nano-Micro Letters, 2023, 15(1): 78
https://doi.org/10.1007/s40820-023-01065-x
13 Y Liu , L Wu . Recent advances of cathode materials for zinc-ion hybrid capacitors. Nano Energy, 2023, 109: 108290
https://doi.org/10.1016/j.nanoen.2023.108290
14 D Sui , M Wu , K Shi , C Li , J Lang , Y Yang , X Zhang , X Yan , Y Chen . Recent progress of cathode materials for aqueous zinc-ion capacitors: carbon-based materials and beyond. Carbon, 2021, 185: 126–151
https://doi.org/10.1016/j.carbon.2021.08.084
15 M S Javed , T Najam , I Hussain , M Idrees , A Ahmad , M Imran , S S A Shah , R Luque , W Han . Fundamentals and scientific challenges in structural design of cathode materials for zinc-ion hybrid supercapacitors. Advanced Energy Materials, 2023, 13(3): 2202303
https://doi.org/10.1002/aenm.202202303
16 J Yin , W Zhang , N A Alhebshi , N Salah , H N Alshareef . Electrochemical zinc ion capacitors: fundamentals, materials, and systems. Advanced Energy Materials, 2021, 11(21): 2100201
https://doi.org/10.1002/aenm.202100201
17 L Wang , M Peng , J Chen , X Tang , L Li , T Hu , K Yuan , Y Chen . High energy and power zinc ion capacitors: a dual-ion adsorption and reversible chemical adsorption coupling mechanism. ACS Nano, 2022, 16(2): 2877–2888
https://doi.org/10.1021/acsnano.1c09936
18 W Jian , W Zhang , X Wei , B Wu , W Liang , Y Wu , J Yin , K Lu , Y Chen , H N Alshareef . et al.. Engineering pore nanostructure of carbon cathodes for zinc ion hybrid supercapacitors. Advanced Functional Materials, 2022, 32(49): 2209914
https://doi.org/10.1002/adfm.202209914
19 W Zhang , J Yin , W Jian , Y Wu , L Chen , M Sun , U Schwingenschlögl , X Qiu , H N Alshareef . Supermolecule-mediated defect engineering of porous carbons for zinc-ion hybrid capacitors. Nano Energy, 2022, 103: 107827
https://doi.org/10.1016/j.nanoen.2022.107827
20 D W Lee , M H Jin , J H Park , Y J Lee , Y C Choi . Flexible synthetic strategies for lignin-derived hierarchically porous carbon materials. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10454–10462
https://doi.org/10.1021/acssuschemeng.8b01811
21 M J Gan , Y Q Niu , X J Qu , C H Zhou . Lignin to value-added chemicals and advanced materials: extraction, degradation, and functionalization. Green Chemistry, 2022, 24(20): 7705–7750
https://doi.org/10.1039/D2GC00092J
22 D Kai , M J Tan , P L Chee , Y K Chua , Y L Yap , X J Loh . Towards lignin-based functional materials in a sustainable world. Green Chemistry, 2016, 18(5): 1175–1200
https://doi.org/10.1039/C5GC02616D
23 J Zhu , C Yan , X Zhang , C Yang , M Jiang , X Zhang . A sustainable platform of lignin: from bioresources to materials and their applications in rechargeable batteries and supercapacitors. Progress in Energy and Combustion Science, 2020, 76: 100788
https://doi.org/10.1016/j.pecs.2019.100788
24 J Y Zhu , X J Pan . Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresource Technology, 2010, 101(13): 4992–5002
https://doi.org/10.1016/j.biortech.2009.11.007
25 W Chen , X Wang , Z Hashisho , M Feizbakhshan , P Shariaty , S Niknaddaf , X Zhou . Template-free and fast one-step synthesis from enzymatic hydrolysis lignin to hierarchical porous carbon for CO2 capture. Microporous and Mesoporous Materials, 2019, 280: 57–65
https://doi.org/10.1016/j.micromeso.2019.01.042
26 K A Jung , S H Woo , S R Lim , J M Park . Pyrolytic production of phenolic compounds from the lignin residues of bioethanol processes. Chemical Engineering Journal, 2015, 259: 107–116
https://doi.org/10.1016/j.cej.2014.07.126
27 N Guo , M Li , X Sun , F Wang , R Yang . Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities. Green Chemistry, 2017, 19(11): 2595–2602
https://doi.org/10.1039/C7GC00506G
28 F Shi , Y Tong , H Li , J Li , Z Cong , S Zhai , Q An , K Wang . Synthesis of oxygen/nitrogen/sulfur codoped hierarchical porous carbon from enzymatically hydrolyzed lignin for high-performance supercapacitors. Journal of Energy Storage, 2022, 52: 104992
https://doi.org/10.1016/j.est.2022.104992
29 J Zhu , X Qiu , S Sun , T Huang , Z Huang , L Zhao , X Zu , W Zhang . Combined sustainable production technology of calcium chloride and lignin-derived porous carbon electrode materials. Journal of Cleaner Production, 2023, 419: 138201
https://doi.org/10.1016/j.jclepro.2023.138201
30 X Liu , S Zuo , N Cui , S Wang . Investigation of ammonia/steam activation for the scalable production of high-surface area nitrogen-containing activated carbons. Carbon, 2022, 191: 581–592
https://doi.org/10.1016/j.carbon.2022.02.014
31 M Xu , Q Yu , Z Liu , J Lv , S Lian , B Hu , L Mai , L Zhou . Tailoring porous carbon spheres for supercapacitors. Nanoscale, 2018, 10(46): 21604–21616
https://doi.org/10.1039/C8NR07560C
32 S Tan , X Chen , S Zhai , A Ebrahimi , T Langrish , Y Chen . Spray drying assisted synthesis of porous carbons from whey powders for capacitive energy storage. Energy, 2018, 147: 308–316
https://doi.org/10.1016/j.energy.2018.01.066
33 H N Kwon , G D Park , Y C Kang , K C Roh . Fabrication of bimodal micro-mesoporous amorphous carbon-graphitic carbon-reduced graphene oxide composite microspheres prepared by pilot-scale spray drying and their application in supercapacitors. Carbon, 2019, 144: 591–600
https://doi.org/10.1016/j.carbon.2018.12.111
34 H Tian , T Wang , F Zhang , S Zhao , S Wan , F He , G Wang . Tunable porous carbon spheres for high-performance rechargeable batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(27): 12816–12841
https://doi.org/10.1039/C8TA02353K
35 T Cai , W Xing , Z Liu , J Zeng , Q Xue , S Qiao , Z Yan . Superhigh-rate capacitive performance of heteroatoms-doped double shell hollow carbon spheres. Carbon, 2015, 86: 235–244
https://doi.org/10.1016/j.carbon.2015.01.032
36 X F Li , Q Xu , Y Fu , Q X Guo . Preparation and characterization of activated carbon from kraft lignin via KOH activation. Environmental Progress & Sustainable Energy, 2014, 33(2): 519–526
https://doi.org/10.1002/ep.11794
37 Z Z Pan , L Dong , W Lv , D Zheng , Z Li , C Luo , C Zheng , Q H Yang , F Kang . A hollow spherical carbon derived from the spray drying of corncob lignin for high-rate-performance supercapacitors. Chemistry, an Asian Journal, 2017, 12(5): 503–506
https://doi.org/10.1002/asia.201601724
38 Y Chen , G Zhang , J Zhang , H Guo , X Feng , Y Chen . Synthesis of porous carbon spheres derived from lignin through a facile method for high performance supercapacitors. Journal of Materials Science and Technology, 2018, 34(11): 2189–2196
https://doi.org/10.1016/j.jmst.2018.03.010
39 C Wang , X Wang , H Lu , H Li , X S Zhao . Cellulose-derived hierarchical porous carbon for high-performance flexible supercapacitors. Carbon, 2018, 140: 139–147
https://doi.org/10.1016/j.carbon.2018.08.032
40 L Wang , H Li , M Li , L Zhang , H Zhang , Z Y Liu , W Zhu . Trace nitrogen-doped hierarchical porous biochar nanospheres: waste corn roots derived superior adsorbents for high concentration single and mixed organic dyes removal. Nano Research, 2023, 16(2): 1846–1858
https://doi.org/10.1007/s12274-022-5248-8
41 G Li , X Gao , K Wang , Z Cheng . Porous carbon nanospheres with high edlc capacitance. Diamond and Related Materials, 2018, 88: 12–17
https://doi.org/10.1016/j.diamond.2018.06.010
42 L Wang , M Peng , J Chen , T Hu , K Yuan , Y Chen . Eliminating the micropore confinement effect of carbonaceous electrodes for promoting Zn-ion storage capability. Advanced Materials, 2022, 34(39): 2203744
https://doi.org/10.1002/adma.202203744
43 J Yang , H Wu , M Zhu , W Ren , Y Lin , H Chen , F Pan . Optimized mesopores enabling enhanced rate performance in novel ultrahigh surface area meso-/microporous carbon for supercapacitors. Nano Energy, 2017, 33: 453–461
https://doi.org/10.1016/j.nanoen.2017.02.007
44 Y Yoo , G D Park , Y C Kang . Carbon microspheres with micro- and mesopores synthesized via spray pyrolysis for high-energy-density, electrical-double-layer capacitors. Chemical Engineering Journal, 2019, 365: 193–200
https://doi.org/10.1016/j.cej.2019.02.036
45 C Li , Y Li , Y Shao , L Zhang , S Zhang , S Wang , B Li , Z Cui , Y Tang , X Hu . Activation of biomass with volatilized KOH. Green Chemistry, 2023, 25(7): 2825–2839
https://doi.org/10.1039/D2GC04245B
46 F Fu , B Zhao , D Yang , H Wang , M Yan , Z Li , Y Qin , X Qiu . Insights into gas-exfoliation and the in-situ template mechanism of zinc compound for lignin-derived supercapacitive porous carbon. ACS Applied Energy Materials, 2021, 4(12): 13617–13626
https://doi.org/10.1021/acsaem.1c02283
47 Y Shao , Z Sun , Z Tian , S Li , G Wu , M Wang , X Tong , F Shen , Z Xia , V Tung . et al.. Regulating oxygen substituents with optimized redox activity in chemically reduced graphene oxide for aqueous Zn-ion hybrid capacitor. Advanced Functional Materials, 2021, 31(6): 2007843
https://doi.org/10.1002/adfm.202007843
48 J Wu , R Liu , M Li , X Luo , W Lai , X Zhang , D Li , F Yu , Y Chen . Boosting effects of hydroxyl groups on porous carbon for improved aqueous zinc-ion capacitors. Journal of Energy Storage, 2022, 48: 103996
https://doi.org/10.1016/j.est.2022.103996
49 J Yin , W Zhang , W Wang , N A Alhebshi , N Salah , H N Alshareef . Electrochemical zinc ion capacitors enhanced by redox reactions of porous carbon cathodes. Advanced Energy Materials, 2020, 10(37): 2001705
https://doi.org/10.1002/aenm.202001705
50 L Zhao , W Jian , J Zhu , X Zhang , F Wen , X Fei , L Chen , S Huang , J Yin , N R Chodankar . et al.. Molten salt self-template synthesis strategy of oxygen-rich porous carbon cathodes for zinc ion hybrid capacitors. ACS Applied Materials & Interfaces, 2022, 14(38): 43431–43441
https://doi.org/10.1021/acsami.2c13886
51 M Hu , Z Ye , Q Zhang , Q Xue , Z Li , J Wang , Z Pan . Towards understanding the chemical reactions between KOH and oxygen-containing groups during KOH-catalyzed pyrolysis of biomass. Energy, 2022, 245: 123286
https://doi.org/10.1016/j.energy.2022.123286
52 W Zhou , B Bai , G Chen , L Ma , B Yan . Thermogravimetric characteristics and kinetics of sawdust pyrolysis catalyzed by potassium salt during the process of hydrogen preparation. International Journal of Hydrogen Energy, 2019, 44(30): 15863–15870
https://doi.org/10.1016/j.ijhydene.2019.01.060
[1] FCE-23066-OF-HT_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed