Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (3): 27   https://doi.org/10.1007/s11705-024-2390-8
  本期目录
A projected Newton algorithm based on chemically allowed interval for chemical equilibrium computations
Hongbin Lu, Shaohui Tao(), Xiaoyan Sun, Li Xia, Shuguang Xiang
Institute of Process Systems Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
 全文: PDF(5036 KB)   HTML
Abstract

The chemical equilibrium equations utilized in reactive transport modeling are complex and nonlinear, and are typically solved using the Newton-Raphson method. Although this algorithm is known for its quadratic convergence near the solution, it is less effective far from the solution, especially for ill-conditioned problems. In such cases, the algorithm may fail to converge or require excessive iterations. To address these limitations, a projected Newton method is introduced to incorporate the concept of projection. This method constrains the Newton step by utilizing a chemically allowed interval that generates feasible descending iterations. Moreover, we utilize the positive continuous fraction method as a preconditioning technique, providing reliable initial values for solving the algorithms. The numerical results are compared with those derived using the regular Newton-Raphson method, the Newton-Raphson method based on chemically allowed interval updating rules, and the bounded variable least squares method in six different test cases. The numerical results highlight the robustness and efficacy of the proposed algorithm.

Key wordschemical equilibrium    reactive transport modeling    numerical methods    projected Newton method
收稿日期: 2023-09-08      出版日期: 2024-02-07
Corresponding Author(s): Shaohui Tao   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(3): 27.
Hongbin Lu, Shaohui Tao, Xiaoyan Sun, Li Xia, Shuguang Xiang. A projected Newton algorithm based on chemically allowed interval for chemical equilibrium computations. Front. Chem. Sci. Eng., 2024, 18(3): 27.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2390-8
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I3/27
Algorithm 1: Newton-Raphson (NR) algorithm
Input: X0, Y( X),J(X)
Output: X
1. Y0= Y( X0) (Eq. (11))
2. Check the convergence conditions. If it is satisfied, go to step 9. Else, do n = 0, go to step 3.
3. Jn= J( X0) (Eqs. (14)–(17))
4. Solve Jn? Δ Xn= Yn (Eq. (13)) for Δ Xn
5. Xn +1= Xn+Δ Xn (Eq. (12))
6. Yn +1= Y( Xn+1) (Eq. (11))
7. n = n + 1
8. Check the convergence conditions. If it is satisfied, go to step 9. Else, go to step 3.
9. X=Xn
10. End.
  
Fig.1  
Algorithm 2: Projected Newton (PN) algorithm
Input: X0, Y(X),J (X), l,u
Output: X
1. Y0= Y( X0) (Eq. (11))
2. Check the convergence conditions. If it is satisfied, go to step 12. Else, do n = 0, go to step 3.
3. Jn= J( X0) (Eqs. (14)–(17))
4. Solve Jn? Δ Xn= Yn (Eq. (13)) for ΔXn
5. Pn= P( Xn+Δ Xn, l,u)Xn (Eq. (32))
6. αn=max {α0, 1 Yn} (Eq. (33))
7. P¯n=αn?Pn (Eq. (34))
8. Xn +1= Xn+ P¯n (Eq. (35))
9. Yn +1= Y( Xn+1) (Eq. (11))
10. n = n + 1
11. Check the convergence conditions. If it is satisfied, go to step 12. Else, go to step 3.
12. X=Xn
13. End.
  
Test cases Xj Ci J-sizea) [log(Kmin), log(Kmax)]
Valocchi 5 7 5 × 5 [4, 8.602]
Phosphoric acid 4 8 4 × 4 [−21, −2]
Gallic acid 3 17 3 × 3 [−39.56, −4.15]
Calcium carbonate 3 9 3 × 3 [−14, 16.5]
MoMaS easy 5 12 5 × 5 [−12, 35]
Iron-chromium 7 39 7 × 7 [−83.17, 80.9]
Tab.1  
Test cases τ δ
Valocchi 0.8 1E-23
Phosphoric acid 0.8 1E-23
Gallic acid 0.8 1E-23
Calcium carbonate 0.9 1E-15
MoMaS easy 0.8 1E-24
Iron-chromium 0.8 1E-24
Tab.2  
Test cases α β Max iterations
Valocchi 0.9 0.8 50
Phosphoric acid 0.9 0.8 50
Gallic acid 0.9 0.8 50
Calcium carbonate 0.9 0.8 50
MoMaS easy 0.8 0.7 300
Iron-chromium 0.8 0.7 300
Tab.3  
Fig.2  
Test cases Preconditioning NR/% NR on CAI/% BVLS + BT/% PN/%
Valocchi No 74.25 100.00 100.00 100.00
PCF 96.25 100.00 90.61 100.00
Phosphoric acid No 0.35 100.00 53.45 100.00
PCF 0.73 100.00 36.68 100.00
Gallic acid No 97.96 73.06 100.00 100.00
PCF 99.63 91.05 100.00 100.00
Calcium carbonate No 33.98 100.00 89.24 100.00
PCF 62.71 100.00 100.00 100.00
MoMaS easy No 36.55 98.64 42.09 98.54
PCF 15.08 81.33 19.52 81.16
Iron-chromium No 0.00 3.35 3.03 3.63
PCF 0.13 1.63 1.06 2.18
Tab.4  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 J Carrera, M W Saaltink, J Soler-Sagarra, J Wang, C Valhondo. Reactive transport: a review of basic concepts with emphasis on biochemical processes. Energies, 2022, 15(3): 925
https://doi.org/10.3390/en15030925
2 A M M Leal, D A Kulik, W R Smith, M O Saar. An overview of computational methods for chemical equilibrium and kinetic calculations for geochemical and reactive transport modeling. Pure and Applied Chemistry, 2017, 89(5): 597–643
https://doi.org/10.1515/pac-2016-1107
3 S Y Liang, W S Lin, C P Chen, C W Liu, C Fan. A review of geochemical modeling for the performance assessment of radioactive waste disposal in a subsurface system. Applied Sciences, 2021, 11(13): 5879
https://doi.org/10.3390/app11135879
4 G T Yeh, V S Tripathi. A critical evaluation of recent developments in hydrogeochemical transport models of reactive multichemical components. Water Resources Research, 1989, 25(1): 93–108
https://doi.org/10.1029/WR025i001p00093
5 M W Saaltink, J Carrera, C Ayora. A comparison of two approaches for reactive transport modelling. Journal of Geochemical Exploration, 2000, 69–70: 97–101
https://doi.org/10.1016/S0375-6742(00)00012-1
6 C Steefel, C A J Appelo, B Arora, D Jacques, T Kalbacher, O Kolditz, V Lagneau, P C Lichtner, K U Mayer, J C L Meeussen. et al.. Reactive transport codes for subsurface environmental simulation. Computational Geosciences, 2015, 19(3): 445–478
https://doi.org/10.1007/s10596-014-9443-x
7 R Lu, T Nagel, J Poonoosamy, D Naumov, T Fischer, V Montoya, O Kolditz, H Shao. A new operator-splitting finite element scheme for reactive transport modeling in saturated porous media. Computers & Geosciences, 2022, 163: 105106
https://doi.org/10.1016/j.cageo.2022.105106
8 J Carrayrou, J Hoffmann, P Knabner, S Kräutle, Dieuleveult C de, J Erhel, der Lee J Van, V Lagneau, K U Mayer, K T B MacQuarrie. Comparison of numerical methods for simulating strongly non-linear and heterogeneous reactive transport problems—the MoMaS benchmark case. Computational Geosciences, 2010, 14(3): 483–502
https://doi.org/10.1007/s10596-010-9178-2
9 J Carrayrou, R Mosé, P Behra. New efficient algorithm for solving thermodynamic chemistry. AIChE Journal, 2002, 48(4): 894–904
https://doi.org/10.1002/aic.690480423
10 F Van ZeggerenS H Storey. The Computation of Chemical Equilibria. Cambridge: Cambridge University Press, 1970
11 A M LealD A KulikM O Saar. Ultra-fast reactive transport simulations when chemical reactions meet machine learning: chemical equilibrium. ArXiv:1708.04825, 2017
12 T M L Wigley. WATSPEC: a computer program for determining the equilibrium speciation of aqueous solutions. British Geomorphological Research Group, 1977
13 V Zhadan. Two-phase simplex method for linear semidefinite optimization. Optimization Letters, 2019, 13(8): 1969–1984
https://doi.org/10.1007/s11590-018-1333-z
14 J Van Der Lee. Thermodynamic and mathematical concepts of CHESS. Technical report LHM/RD/98/39, 1998
15 P Brassard, P Bodurtha. A feasible set for chemical speciation problems. Computers & Geosciences, 2000, 26(3): 277–291
https://doi.org/10.1016/S0098-3004(99)00137-5
16 M H Reed. Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase. Geochimica et Cosmochimica Acta, 1982, 46(4): 513–528
https://doi.org/10.1016/0016-7037(82)90155-7
17 Y X Yuan. Recent advances in numerical methods for nonlinear equations and nonlinear least squares. Numerical Algebra, 2011, 1(1): 15
18 E Weltin. Are the equilibrium concentrations for a chemical reaction always uniquely determined by the initial concentrations?. Journal of Chemical Education, 1990, 67(7): 548
https://doi.org/10.1021/ed067p548
19 F Morel, J Morgan. A numerical method for computing equilibria in aqueous chemical systems. Environmental Science & Technology, 1972, 6(1): 58–67
https://doi.org/10.1021/es60060a006
20 S P BoydL Vandenberghe. Convex Optimization. Cambridge: Cambridge University Press, 2004
21 P B Stark, R L Parker. Bounded-variable least-squares: an algorithm and applications. Computational Statistics, 1995, 10: 129
22 N Saraf. Bounded-variable least-squares methods for linear and nonlinear model predictive control. Dissertation for the Doctoral Degree. Lucca: IMT School for Advanced Studies Lucca, 2019
23 N Sagara, M Fukushima. A hybrid method for the nonlinear least squares problem with simple bounds. Journal of Computational and Applied Mathematics, 1991, 36(2): 149–157
https://doi.org/10.1016/0377-0427(91)90023-D
24 W Wei, H Dai, W Liang. A novel projected gradient-like method for optimization problems with simple constraints. Computational & Applied Mathematics, 2020, 39(3): 1–18
https://doi.org/10.1007/s40314-020-01210-x
25 S Bellavia, M Macconi, S Pieraccini. Constrained Dogleg methods for nonlinear systems with simple bounds. Computational Optimization and Applications, 2012, 53(3): 771–794
https://doi.org/10.1007/s10589-012-9469-8
26 A J Valocchi, R L Street, P V Roberts. Transport of ion-exchanging solutes in groundwater: chromatographic theory and field simulation. Water Resources Research, 1981, 17(5): 1517–1527
https://doi.org/10.1029/WR017i005p01517
27 J Carrayrou, C Bertagnolli, M Fahs. Algorithms for activity correction models for geochemical speciation and reactive transport modeling. AIChE Journal, 2022, 68(1): e17391
https://doi.org/10.1002/aic.17391
28 L O Öhman. Equilibrium studies of ternary aluminium(III) hydroxo complexes with ligands related to conditions in natural waters. Dissertation for the Doctoral Degree. Umeå: University of Umeå, 1983
29 J B Christian. Simulating aqueous processes. Chemical Engineering Progress, 2003, 99: 32–39
30 A Chilakapati, S Yabusaki, J Szecsody, W MacEvoy. Groundwater flow, multicomponent transport and biogeochemistry: development and application of a coupled process model. Journal of Contaminant Hydrology, 2000, 43(3–4): 303–325
https://doi.org/10.1016/S0169-7722(99)00107-2
31 H Machat, J Carrayrou. Comparison of linear solvers for equilibrium geochemistry computations. Computational Geosciences, 2017, 21(1): 131–150
https://doi.org/10.1007/s10596-016-9600-5
32 M Marinoni, J Carrayrou, Y Lucas, P Ackerer. Thermodynamic equilibrium solutions through a modified Newton Raphson method. AIChE Journal, 2017, 63(4): 1246–1262
https://doi.org/10.1002/aic.15506
[1] FCE-23069-OF-LH_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed